/Paraxial Approximation in CSR Modeling
Using the Discontinuous Galerkin Method

[Introduction and Outline]

e Well-established paraxial approximation in CSR

has been previously modeled with a finite differ-
ence (FD) method.

e Novel approach in applying a discontinuous
Galerkin (DG) method to the same equations.

e Starting point: nonhomogeneous Schrodinger
type equations which arise from a paraxial ap-
proximation to Maxwell’s equations.

e Include brief overview of DG and its implemen-
tation into our algorithm.

e Apply DG on a 2D transverse (z,y) grid and
evolve the equations along the arclength s.

e Fistimate the errors of our results and compute
the longitudinal impedance.

e Discuss CPU vs GPU performance.

e Outline possible future work and new applica-
tions for DG.

[Mathematical Problem]

e Domain of problem.

Consider rectangular domain with (z,y) € 2 =
|—a,a] x [=b,b] and s € [0, L]. Additional pa-
rameters satisty: £ € R and p > 0.

e Paraxial PDEs for E"(z,y, s; k):

1kx 1kx

OBl = v El+—"FE" 4+ 2"F?
(1a)
kx 1kx
OsEl = =V El + ——E + ~—E
(1b)
)

¢ Known beam component of field E:

X

Eb =07 (2)

b
Eb—C |

e Boundary conditions for £, ,(z,y, s; k):

axE;; — ayE57 oIl xr = :|:CL

3
E;:—Eg, on vy = &b, (3)

k), = —ES, on z = +a

r A b B (4)
OyEy = Oz By, on y=+b.

e Initial conditions for £ (z,y, s; k):

ViE,=0, ViE;=0, at s=0 (5

Physical Problem|

e Beam Setup.

Consider a line charge moving at v = ¢, on a cir-
cular arc of radius p and length L, with perfectly
conducting rectangular vacuum chamber.

¢ Beam coordinate system.

Adopt special case with line charge reduced to
a single point. Maxwell’s equations written in
beam coordinates (x, y, s) where the arc is in the
(x, s) plane, s is the distance along the arc, and
(x,y) are perpendicular to arc.

e Electric field transformation.
Relate the electric field £(x, y, s,t) to frequency

domain field E(z,y, s; k) by Fourier-type trans-
formation:

m o
8(x7 Y,S, t) X / dkE(x, Y, S; k)eZk(S_t)

— OO

e Initial condition of the electric field.

Assume fields reached steady-state from infinite
straight prior to entering bend. Decompose elec-
tric field E into two components: radiation and
beam field denoted by E" and E? respectively.
E? reduces the effect of the singularity:.

[DG Overview]

e DG shares similarities with the finite element and
finite volume methods.

e Rescale to dimensionless variables:
T = az, y — ay, s — 2ka’s, Ey, — Cu/a

e Equations (1a) and (1b) become:

qz = Oz, Qy = ayu

(6)

e Split () into K elements, select single element D.

e Local solution u € PN (D).

e Multiply (6) by test functions v € P (D), inte-
grate by parts over D, adjust boundary terms for
fluxes (u*, g3, g;), and integrate by parts again:

— z/ dA(vOsu) = / dAv(Opqz + Oyqy + F)
D D
_ /aD dLv [nx(qx — qz) + nylgy — q;)] (7a)
/ dA(vgy y) = / dAv(Oy 1)
D D

— /81) dLvng y(u — u™) (7h)

e [ixpand local solution in nodal Lagrange basis:
Np

B Z“jgj(f’?v y), vzy)=Lir,y)
7=1

e Vectors for nodal values u = (uy, uo, . .. ,uNp)T

with Np = (N +1)(N +2)/2.
e Similarly for gz 4, F', £, then (7a)-(7b) become:

d

_ / dLna(qe — o) (Sa)
oD

— dLn,(qy — q;)€
/(9D y((] y)

Mday = Spu — / dLngz(u —u*)€ (8b)
0D

Mqy = Syu — / dLnz(u —u*)€ (8c)
oD

e Mass and stiffness matrices:
D D (9)

e Numerical fluxes depend on adjacent elements:

Gy = Hawyl —7ludey, o ={ul}

e Full details found in Nodal Discontinuous

Galerkin Methods, (New York: Springer, 2008)
by J. Hesthaven and T. Warburton.

UNM D. A. Bizzozero, J. A. Ellison, K. A. Heinemann, and S. R. Lau

Department of Mathematlcs and Statistics, Unlver81ty of New Mexico; [

[DG Algorithm Cont.]

0) _ -
-100 39 20 -10 0 10 20 30
y (mm) x (mm)

Figure 2: E’. initial state prior to entering bend.

Step 3: Evolve the Fields

e Listimate step size for evolution by:
As=0Cs- k- ’rmm (11)

Tmin 15 the minimum distance between all nodes,
C's is CFL-like constant of O(1). Note: 7y, x
1/(KN?).

e Compute qz 4 with (8b)-(8c) and insert into (8a)
for right-hand-side of du/ds.

e Use 4th order explicit Runge-Kutta to evolve.
e At each step, compute EL with (10).

15
10

5.

Re E: a/C
Sl

1
(9]
/

-10-

150
10 ™~ -

¥ (mm)
15
10
5.
3
.\LQR O\
()
K5
10
15
10 \\\
0 ;\) \ Y
10 39 220 .10 0 10 20 30
y (mm) x (mm)

Figure 3: Real (top) and imaginary (bottom)
parts of E!. after bend for a = 30mm, b = 10mm,
L = 200mm, p = 1m, and £ = Smm !

Step 4: Compute Impedance

e [ivaluate impedance Z in two parts:

7 = 7y + 7,
7 L

T, = QW% dsE4(0,0,s: k) (12)
Z OO

L = 27TOC dsFs(0,0,s; k)

e For details on the evaluation of Z, see D. Zhou's
paper: Jpn. J. Appl. Phys. 51 016401 (2012).

Ll 2013, New York

[Numerical Results: FD]

e I'D MATLAB code is CPU-only based on Agoh
and Yokoya: PR-STAB 7 054403 (2004) which
uses 2nd-order stencil with leap-frog evolution.

FD E!. Error and Computation Time
Grid |61 x 21121 x 41|181 x 61241 x 81

3.845e-1| 1.126e-1| 4.016e-2| 3.440e-2
4.539e-1| 1.223e-1| 4.551e-2| 2.840e-2
8s 1258 642s 2032s

200 800 1800 3200

Table 2: Point-wise (top), L? error (upper mid-
dle), computation times (lower middle), and num-
ber of timesteps (bottom) for FD code using CPU.

[Impedance Comparisons]

Re Z (ohms)

N
e

P

Im Z (ohms)

|
N
(@]

-

“4 2 3 4 s s 7 8 9 10
k (mm °)

Figure 4: Real (top) and imaginary (bottom)
parts of the longitudinal impedance [DG (blue
solid), FD (red dashed)| for a = 30mm, b = 10mm,
L = 200mm, p = 1m, and k& = Smm L. Agrees

with D .Zhou referenced above.

[GPU Computing Comments]

e GPU code was adapted from CPU code with
MATLAB’s gpuArray CUDA kernel.

e MATLAB’s GPU computing scales favorably for

larger problems with large matrix-matrix opera-
tions or highly parallel tasks.

e Observed ~ 60% GPU usage for high resolution
run with matrices of size 45 x 2400.

e CPU : Intel Xeon E5-1620 (~ 80Gflops/sec)
GPU : NVIDIA GTX Titan (~ 1.6Tflops/sec)

DG Algorithm|

Step 1: Build Elements and Matrices

e Partition (2 into K = 2NN triangles and
space nodes optimally for matrix conditioning.

Figure 1. Mesh of N;*° =6, N;*° =2, N =4.

e Build collocation derivative matrices: D, =

Step 2: Compute Initial Conditions

e Use sparse DG Poisson solver on (5) with (3), (4)

to obtain initial Erjy

e Generate initial £ with derivative matrices:

B = %(Dng + DyE}) (10)

[Numerical Results: DG]

DG EJ. Error and Computation Time

N\K 150 600, 1350, 2400
8.107e-113.915e-1|7.471e-2|2.453e-2

9 8.032e-112.528e-14.291e-2|1.484e-2
9s 28s 49s 81s

122 486 1093 1943
1.265e-114.897e-3|9.344e-4| 3.590e-4

4 8.017e-2|3.427e-319.462e-4 | 4.342e-4
29s 88s 202s 392s

539 2156 4850 8622
1.122e-215.177e-4|1.407e-4| 5.483e-5

6 6.974e-316.187e-4|1.932¢-4 | 8.045e-5
83s 2838 677s| 1319s

1691 6764| 15218 27054
1.569e-3|1.672e-4|5.612e-5| N\ A*

N 1.493e-3|2.098e-4 | 7.473e-5| N\ A+
208s 723s| 1867s| 3630s

41741 16693 37559 66771

*.Used for comparison to other tests.
Table 1: Point-wise (top), L? error (upper mid-
dle), computation times (lower middle), and num-

ber of timesteps (bottom) for DG code using MAT-
LAB gpuArray implementation.

[Future Work]

e Fixamine spectral convergence order for DG.

e Design a higher order F'D code with GPU imple-
mentation and compare performance with DG.

e bixplore possible perturbation expansion of
2k%a’/p in rescaled versions of (1a) and (1b).

e Implement DG on Maxwell’s equations without
paraxial approximation and compare results.

e Consider DG on Vlasov-Maxwell’s equations for
future applications.

[Acknowledgments]

Our MATLAB DG code was built upon generic 2D
DG codes written by J. Hesthaven and T. Warbur-

ton (see nudg.org). We thank T. Agoh and D. Zhou

for sharing their work, D. Brewer for his timely help
in making our GPU system operational, and D. Ap-

pelo for his insightful comments. Work supported
by DOE under DE-FG-99ER41104.

