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Abstract. We provide a quantitative two weight estimate for the dyadic paraproduct πb
under certain conditions on a pair of weights (u, v) and b in Carlu,v, a new class of functions
that we show coincides with BMO when u = v ∈ Ad2. We obtain quantitative two weight
estimates for the dyadic square function and the martingale transforms under the assumption
that the maximal function is bounded from L2(u) into L2(v) and v ∈ RHd

1 . Finally we obtain
a quantitative two weight estimate from L2(u) into L2(v) for the dyadic square function
under the assumption that the pair (u, v) is in joint Ad2 and u−1 ∈ RHd

1 , this is sharp in the
sense that when u = v the conditions reduce to u ∈ Ad2 and the estimate is the known linear
mixed estimate.

1. Introduction

We study quantitative two weight inequalities for some dyadic operators. More precisely,
we study conditions on pairs of locally integrable a.e. positive functions (u, v) so that a
linear or sublinear dyadic operator T is bounded from L2(u) into L2(v), that is there exists
a constant CT,u,v > 0 such that for all f ∈ L2(u),

‖Tf‖L2(v) ≤ CT,u,v‖f‖L2(u),

with estimates on CT,u,v involving the constants that appear in the conditions imposed on
the weights and/or the operator.

There are two current schools of thought regarding the two weight problem. First, given
one operator find necessary and sufficient conditions on the weights to ensure boundedness of
the operator on the appropriate spaces. Second, given a family of operators find necessary and
sufficient conditions on the weights to ensure boundedness of the family of operators. In the
first case, the conditions are usually “testing conditions” obtained from checking bounded-
ness of the given operator on a collection of test functions. In the second case, the conditions
are more “geometric”, meaning to only involve the weights and not the operators, such as
Carleson conditions or bilinear embedding conditions, Muckenhoupt A2 type conditions or
bumped conditions. Operators of interest are the maximal function [S1, Moe, PzR, V], frac-
tional and Poisson integrals [S2, Cr], the Hilbert transform [CS1, CS2, KP, NTV1, LSSU, L3]
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and general Calderón–Zygmund singular integral operators and their commutators [CrRV,
CrMoe, CrMPz2, NRTV], the square functions [LLi1, LLi2, CLiX, HLi], paraproducts and
their dyadic counterparts [M, HoLWic1, HoLWic2, IKP, Be3]. Necessary and sufficient con-
ditions are only known for the maximal function, fractional and Poisson integrals [S1], square
functions [LLi1] and the Hilbert transform [L3, LSSU], and among the dyadic operators for
the martingale transform, the dyadic square functions, positive and well localized dyadic op-
erators [Wil1, NTV1, NTV3, T, Ha, HaHLi, HL, LSU2, Ta, Vu1, Vu2]. If the weights u and v
are assumed to be in Ad2, then necessary and sufficient conditions for boundedness of dyadic
paraproducts and commutators in terms of Bloom’s BMO are known [HoLWic1, HoLWic2].
The assumption that a weight is in dyadic Adp is a strong assumption, it implies, for example,
that the weight is dyadic doubling. On the other hand if the paraproduct is adapted to the
weights u and v, then necessary and sufficient conditions for its boundedness from Lp(u) into
Lp(v) are known [LaT] even in the non-homogeneous case, interestingly enough the conditions
are different depending on whether 1 ≤ p < 2 or p > 2.

In this paper we obtain a quantitative two weight estimate for πb, the dyadic paraproduct
associated to b, where b ∈ Carlu,v a new class of functions that we show coincides with

BMOd when u = v ∈ Ad2. The sufficient conditions on the pair of weights (u, v) required
in our theorem are half of the conditions required for the boundedness of the martingale
transform, namely (i) (u, v) ∈ Ad2 (joint dyadic A2 condition) and (ii) a Carleson condition
on the weights, or equivalently, the conditions required for the boundedness of the dyadic
square function from L2(v−1) into L2(u−1).

In what follows D denotes the dyadic intervals, D(J) denotes the dyadic subintervals of
an interval J , |J | denotes the length of the interval J , {hI}I∈D denotes the Haar functions,
mIf := 1

|I|
∫
I f denotes the integral average of f over the interval I with respect to Lebesgue

measure, and 〈f, g〉 :=
∫
fg denotes the inner product on L2(R). We prove the following

theorem.

Theorem 1.1. Let (u, v) be a pair of measurable functions on R such that v and u−1, the
reciprocal of u, are weights on R, and such that

(i) (u, v) ∈ Ad2, that is [u, v]Ad2
:= supI∈DmI(u

−1)mIv <∞.
(ii) there is a constant Du,v > 0 such that∑

I∈D(J)

|∆Iv|2|I|mI(u
−1) ≤ Du,vv(J) for all J ∈ D,

where ∆Iv := mI+v −mI−v, and I± are the right and left children of I.

Assume that b ∈ Carlu,v, that is b ∈ L1
loc(R) and there is a constant Bu,v > 0 such that∑

I∈D(J)

|〈b, hI〉|2

mIv
≤ Bu,vu−1(J) for all J ∈ D.

Then πb, the dyadic paraproduct associated to b, is bounded from L2(u) into L2(v). More-
over, there exists a constant C > 0 such that for all f ∈ L2(u)

‖πbf‖L2(v) ≤ C
√

[u, v]Ad2
Bu,v

(√
[u, v]Ad2

+
√
Du,v

)
‖f‖L2(u) ,

where πbf :=
∑

I∈DmIf 〈b, hI〉hI .
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When u = v = w the conditions in Theorem 1.1 reduce to w ∈ Ad2 and b ∈ BMOd, but we
do not recover the first author’s linear bound for the dyadic paraproduct [Be1], we are off by

a factor of [w]
1/2

RHd
1
. In [M, MP] similar methods yield the linear bound in the one weight case,

but there is a step in that argument that can not be taken in the two weight setting. More
precisely, in the one weight case, u = v = w, we have ww−1 = 1 and 1 ≤ mIwmI(w

−1); in
the two weight case we can no longer bound vu−1 nor can we bound mIvmI(u

−1) positively
away from zero.

We compare the known two weight results for the martingale transform, the dyadic square
function, and the dyadic maximal function. Assuming the maximal operator is bounded from
L2(u) into L2(v), and under the additional condition that v is in the RHd

1 class, we conclude
the other operators are bounded with quantitative estimates involving the operator norm of
the maximal function and the RHd

1 constant. Notice that the boundedness of the maximal
function implies that the weights (u, v) obey the joint Ad2 condition, but this is not sufficient
for boundedness neither of the martingale transform nor the dyadic square function. Finally
we obtain quantitative two weight estimates for the dyadic square function when (u, v) ∈ Ad2
and u−1 is in RHd

1 . This extends work of the first author [Be2] where similar quantitative
two weight bounds were obtained under the stronger assumption that u−1 ∈ Adq for some

q > 1 (in other words, u−1 ∈ Ad∞).

Theorem 1.2. Let (u, v) be a pair of measurable functions such that (u, v) ∈ Ad2 and u−1 ∈
RHd

1 . Then there is a constant such that

‖Sd‖L2(u)→L2(v) ≤ C[u, v]
1/2

Ad2

(
1 + [u−1]

1/2

RHd
1

)
.

When the two weights equal w the conditions in Theorem 1.2 reduce to w ∈ Ad2 and
we improve the sharp linear estimates of Hukovic et al [HTV] to a mixed linear estimate.
Compare to one weight mixed type estimates of Lerner [Le2], and two weight strong and
weak estimates in [CLiX, LLi1, HLi] where similar estimates are obtained for the g-function
and Wilson’s intrinsic square function [Wil2]. In the aformentioned papers, both weights are
assumed to be in A∞.

The one weight problem, corresponding to u = v = w is well understood. In 1960,
Helson and Szegö ([HS]) presented the first necessary and sufficient conditions on w for the
boundedness of the Hilbert transform on L2(w) in the context of prediction theory. They used
methods involving analytic functions and operator theory. The two weight characterization
for the Hilbert transform in this direction was completely solved by Cotlar and Sadosky in
[CS1] and [CS2]. The class of Ap weights was introduced in 1972 by Muckenhoupt ([Mu]),
these are the weights w for which the Hardy-Littlewood maximal function maps Lp(w) into
itself. We say the positive almost everywhere and locally integrable function w satisfies the
Ap condition if and only if

[w]Ap := sup
I

(
1

|I|

∫
I
w(x)dx

)(
1

|I|

∫
I
w
− 1
p−1 (x)dx

)p−1

<∞,

where [w]Ap denotes the Ap characteristic (often called Ap constant or norm) of the weight.
In 1973, Hunt, Muckenhoupt, and Wheeden [HMW] showed that the Hilbert transform is
bounded on Lp(w) if and only if w ∈ Ap . Also, in 1973, Coiffman and Fefferman [CoFe]
extended this result to the classical Calderón-Zygmund operators. When u = v = w the
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joint A2 condition coincides with A2. The joint A2 condition is necessary and sufficient for
the two weight weak (1,1) boundedness of the maximal function but is not enough for the
strong boundedness [S1]. In 1982 Sawyer found necessary and sufficient conditions on pairs
of weights for the boundedness of the maximal function, namely joint A2 and the testing
conditions [S1]. In the 90’s the interest shifted toward the study, in the one weight case,
of the sharp dependence of Ap characteristic for a general Calderón-Zygmund operator on
weighted Lebesgue spaces Lp(w). In 2012 Hytönen proved the A2-conjecture (now theorem):
Let T be a Calderón-Zgmund operator and w be an A2 weight then

‖Tf‖L2(w) ≤ C [w]A2‖f‖L2(w) ,

where the constant C depends only on the dimension d, the growth and smoothness of the
kernel of T , and its norm in the non-weighted L2. From sharp extrapolation [DGPPet] one
deduces that for 1 < p <∞ , and w ∈ Ap,

‖Tf‖Lp(w) ≤ Cd,T,p [w]
max{1,1/(p−1)}
Ap

‖f‖Lp(w) .

After these groundbreaking results, improvements were found in the form of mixed type
estimates such as the following L2(w) estimate

‖Tf‖L2(w) ≤ C [w]
1/2
A2

([w]
1/2

Ad∞
+ [w−1]

1/2

Ad∞
)‖f‖L2(w),

where Ad∞ = ∪p>1A
d
p , and [w]Ad∞ is the Hruščev constant or is replaced by the smaller [w]RHd

1

as we do in this paper, see [HL, HP] and [LeMoe, PzR] for other variations. Currently a lot
of effort has been put into finding two weight analogues of these estimates as described at the
beginning of this introduction. In this paper we present two weight quantitative and mixed
type estimates for the dyadic paraproduct, martingale transform, and the dyadic square
function.

In this paper we work in R but the results should hold in Rd and in spaces of homogeneous
type.

Definitions and frequently used theorems are collected in Section 2, including joint Ad2,
regular and weighted Haar functions, w-Carleson sequences, the class Carlu,v, the class RHd

1

and its quantitative relation to Ad∞, weighted Carleson’s and Buckley’s Lemmas. The main
dyadic operators are introduced in Section 3: dyadic maximal function, dyadic square func-
tion, martingale transform and the dyadic paraproduct, we record the known two weight
results for these operators. In Section 4 we prove our quantitative two weight result for the
dyadic paraproduct, we also show that when u = v ∈ Ad2 then Carlu,u = BMOd. We com-
pare our conditions to bumped conditions and argue that neither result implies the other,
we also compare Carlu,v to the Bloom BMO and related conditions. In Section 5 we obtain
some quantitative two weight estimates for the dyadic square function and the martingale
transforms under the assumptions that the maximal function is bounded and the additional
assumption v is a weight in RHd

1 . In Section 6 we obtain a sharp two weight estimate for the
dyadic square function under the assumptions that (u, v) ∈ A2 and u−1 ∈ RHd

1 .
The authors would like to thank the referee for thoughtful comments, and for enticing us

to explore in more depth the Bloom BMO condition and compare it to Carlu,v. The authors
would also like to thank Jethro van Ekeren, a friend of the third author and a native English
speaker, who proofread the article.
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2. Definitions and frequently used theorems.

Throughout the proofs a constant C will be a numerical constant that may change from
line to line. The symbol An . Bn means there is a constant c > 0 independent of n such that
An ≤ cBn, and An ≈ Bn means that An . Bn and Bn . An. Given a measurable set E in R,
|E| will denote its Lebesgue measure. We say that a function v : R→ R is a weight if v is an
almost everywhere positive locally integrable function. For a given weight v, the v-measure
of a measurable set E, denoted by v(E), is v(E) =

∫
E v(x)dx. We say that a weight v is a

regular weight if v((−∞, 0)) = v((0,∞)) = ∞. Let us denote D the collection of all dyadic
intervals, and let us denote D(J) the collection of all dyadic subintervals of J .

We say that a pair of weights (u, v) satisfies the joint Ad2 condition if and only if both v
and u−1, the reciprocal of u, are weights, and

(2.1) [u, v]Ad2
:= sup

I∈D
mI(u

−1)mIv <∞,

where mIv stands for the integral average of a weight v over the interval I . Note that
(u, v) ∈ Ad2 is equivalent to (v−1, u−1) ∈ Ad2 and the corresponding constants are equal.
Similarly a pair of weights (u, v) satisfies the joint Adp condition iff

[u, v]Adp := sup
I∈D

mI(u
−1
p−1 )p−1mIv <∞.

Note also that (v, v) ∈ Adp coincides with the usual one weight definition of v ∈ Adp.

2.1. Haar bases. For any interval I ∈ D, there is a Haar function defined by

hI(x) =
1√
|I|

(
1I+(x)− 1I−(x)

)
,

where 1I denotes the characteristic function of the interval I , and I+, I− denote the right
and left child of I respectively. For a given weight v and an interval I define the weighted
Haar function as

hvI(x) =
1√
v(I)

(√
v(I−)

v(I+)
1I+(x) −

√
v(I+)

v(I−)
1I−(x)

)
.

The space L2(v) is the collection of square integrable complex valued functions with respect
to the measure dµ = vdx, it is a Hilbert space with the weighted inner product defined by
〈f, g〉v =

∫
fgvdx. It is a well known fact that the Haar systems {hI}I∈D and {hvI}I∈D are

orthonormal systems in L2(R) and L2(v) respectively. Therefore, for any weight v, by Bessel’s
inequality we have the following:∑

I∈D
|〈f, hvI〉v|2 ≤ ‖f‖2L2(v) .

Furthermore, if v is a regular weight, then every function f ∈ L2(v) can be written as

f =
∑
I∈D
〈f, hvI〉vhvI ,

where the sum converges a.e. in L2(v), hence the family {hvI}I∈D is a complete orthonormal
system. Note that if v is not a regular weight so that v((−∞, 0)), v((0,∞)), or both are
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finite, then either 1(−∞,0), 1(0,∞), or both are in L2(v) and are orthogonal to hvI for every
dyadic interval I.

The weighted and unweighted Haar functions are related linearly as follows:

Proposition 2.1. [NTV1] For any weight v and every I ∈ D, there are numbers αvI , βvI such
that

hI(x) = αvI h
v
I(x) + βvI

1I(x)√
|I|

where (i) |αvI | ≤
√
mIv, (ii) |βvI | ≤

|∆Iv|
mIv

, and ∆Iv := mI+v −mI−v.

2.2. Dyadic BMO. A locally integrable function b is in the space of dyadic bounded mean
oscillation (BMOd) if and only if there is a constant C > 0 such that for all I ∈ D one has∫

I
|b(x)−mIb| dx ≤ C|I|.

The smallest constant C is the BMOd-norm of b. The celebrated John-Nirenberg Theorem
(see [P1]) implies that for each 1 ≤ p <∞, b ∈ BMOd iff

‖b‖p
BMOdp

:= sup
I∈D

1

|I|

∫
I
|b(x)−mIb|pdx <∞.

Furthermore ‖b‖BMOdp
is comparable to the BMO-norm of b.

In this paper we will mostly be concerned with p = 2 and we will declare

‖b‖BMOd := ‖b‖BMOd2
= sup

I∈D

( 1

|I|

∫
I
|b(x)−mIb|2dx

)1/2
.

Lemma 2.2. If b ∈ BMOd then

‖b‖2BMOd = sup
I∈D

1

|I|
∑

J∈D(I)

|〈b, hJ〉|2.

Proof. The family {hJ}J∈D(I) is an orthonormal basis of the space L2
0(I) := {f ∈ L2(I) :∫

I f = 0}. The function (b−mIb)1I ∈ L2
0(I), hence by Plancherel∫

I
|b(x)−mIb|2dx =

∑
J∈D(I)

|〈b, hJ〉|2.

This proves the lemma. �

In other words, b ∈ BMOd if and only if there is a constant C > 0 such that for all I ∈ D∑
J∈D(I)

|〈b, hJ〉|2 ≤ C|I|.

2.3. Carleson sequences. A positive sequence {λI}I∈D is a v-Carleson sequence if there is
a constant C > 0 such that for all dyadic intervals J

(2.2)
∑

I∈D(J)

λI ≤ Cv(J) .

When v = 1 almost everywhere we say that the sequence is a Carleson sequence or a dx-
Carleson sequence. The infimum among all C’s that satisfy the inequality (2.2) is called
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the intensity of the v-Carleson sequence {λI}I∈D . For instance, b ∈ BMOd if and only if
{|〈b, hI〉|2}I∈D is a Carleson sequence with intensity ‖b‖2

BMOd
. The following lemma gives a

relationship between unweighted and weighted Carleson sequences.

Lemma 2.3 (Little Lemma, [Be1]). Let v be a weight, such that v−1 is also a weight, and
let {αI}I∈D be a Carleson sequence with intensity B then {αI/mI(v

−1)}I∈D is a v-Carleson
sequence with intensity at most 4B, that is for all J ∈ D,

1

|J |
∑

I∈D(J)

αI
mI(v−1)

≤ 4BmJv .

We also need to define a class of objects that will take the place of the BMOd class in the
two weighted case, we will call this class the two weight Carleson class.

Definition 2.4. Given a pair of functions (u, v) such that v and u−1 are weights, we say
that a locally integrable function b belongs to the two weight Carleson class, Carlu,v, if{
|bI |2/mIv}I∈D is a u−1- Carleson sequence where bI = 〈b, hI〉 .

Note that if u = v, then we have that b ∈ Carlv,v iff {|bI |2/mIv}I∈D is a v−1-Carleson
sequence. The later statement is true if {|bI |2}I∈D is a Carleson sequence (by Lemma 2.3),
which in turn is equivalent to saying that b ∈ BMOd. Therefore for any weight v , such that
v−1 is also a weight, we have that

BMOd ⊂ Carlv,v .
Moreover, if Bv,v is the intensity of the v−1-Carleson sequence {|bI |2/mIv}I∈D then Bv,v ≤
4‖b‖2

BMOd
. In Section 4 we will show that if v ∈ Ad2 then BMOd = Carlv,v ∩ L2

loc(R) (see
Corollary 4.6).

We now introduce some useful lemmas which will be used frequently throughout this paper.
You can find proofs in [MP]. The following lemma was stated first in [NTV1].

Lemma 2.5 (Weighted Carleson Lemma). Let v be a weight, then {αI}I∈D is a v-Carleson
sequence with intensity B if and only if for all non-negative v-measurable functions F on the
line,

(2.3)
∑
I∈D

(inf
x∈I

F (x))αI ≤ B
∫
R
F (x) v(x) dx.

In relation to Carleson sequences we consider another class of weights which is called the
Reverse Hölder class with index 1 and is defined as follows.

Definition 2.6. A weight v belongs to the dyadic Reverse Hölder class RHd
1 whenever its

characteristic [v]RHd
1

is finite, where

[v]RHd
1

:= sup
I∈D

mI

(
v

mIv
log

v

mIv

)
<∞ .

It is well known that v ∈ A∞ if and only if v ∈ RH1. In the dyadic case, v ∈ RHd
1 does not

imply that v is dyadic doubling, however v ∈ Ad∞ does. See [P1] for more details. Recently,
the first author and Reznikov obtained, in [BeRe], the sharp comparability of the Ad∞ and
RHd

1 characteristics.
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Theorem 2.7. [BeRe]. If a weight v belongs to the Ad∞ class, then v ∈ RHd
1 . Moreover,

[v]RHd
1
≤ log(16)[v]Ad∞ .

The constant log(16) is the best possible.

We would also like to note here that results of Iwaniek and Verde [IwVe] show that [w]RHd
1
≈

supI∈D
‖w‖L logL,I

‖w‖L,I , where ‖·‖Φ(L),I stands for the Φ(L)-Luxemburg norm (for more details see

[BeRe]). In the same paper you can find the following characterization of the L logL-norm
(Part (a)) and a sharp version of Buckley’s theorem (Part (b)).

Theorem 2.8. (a) [BeRe, Theorem II.6(2)] There exist real positive constants c and C,
independent of the weight v, such that for every weight v and every interval J we have

(2.4) cmJ

(
v log

(
v

mJv

))
6

1

|J |
∑

I∈D(J)

|∆Iv|2

mIv
|I| 6 CmJ

(
v log

(
v

mJv

))

and as a consequence ‖v‖L logL,J ≈ 1
|J |
∑

I∈D(J)
|∆Iv|2
mIv
|I|.

(b) Let v be a weight such that v ∈ RHd
1 . Then {|∆Iv|2|I|/mIv}I∈D is a v-Carleson

sequence with intensity comparable to [v]RHd
1
. That is, there is a constant C > 0 such that

for any J ∈ D,

1

|J |
∑

I∈D(J)

|∆Iv|2

mIv
|I| ≤ C[v]RHd

1
mJv .

3. Dyadic operators and known two weight results

We now introduce several dyadic operators which will be considered in this paper, and
record known two weight results for them.

3.1. Dyadic weighted maximal function. First we recall the dyadic weighted maximal
function.

Definition 3.1. We define the dyadic weighted maximal function Md
v as follows

Md
v f(x) := sup

I3x
I∈D

1

v(I)

∫
I
|f(y)| v(y)dy

The weighted maximal function Mv is defined analogously by taking the supremum over
all intervals not just dyadic intervals. A very important fact about the weighted maximal
function is that the Lp(v) norm of Md

v only depends on p′ = p/(p− 1) not on the weight v .

Theorem 3.2. Let v be a locally integrable function such that v > 0 a.e. Then for all
1 < p <∞, Md

v is bounded in Lp(v). Moreover, for all f ∈ Lp(v)

‖Md
v g‖Lp(v) ≤ Cp‖f‖Lp(v) .

This result follows by the Marcinkiewicz interpolation theorem, with constant Cp = 2(p′)
1
p ,

using the facts that Md
v is bounded on L∞(v) with constant 1 and it is weak-type (1, 1) also

with constant 1. Note that as p→ 1, Cp → 2p′ and C2 = 2
√

2.
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When v = 1, M1 is the maximal function that we will denote M . In [Bu], Buckley showed

that the Lp(w) norm of M behaves like [w]
1
p−1

Ap
, in particular the L2(w) norm of M depends

linearly on the A2 charateristic of the weight. The next theorem is Sawyer’s celebrated two
weight result for the maximal function M in the case p = 2.

Theorem 3.3. [S1] The maximal function M is bounded from L2(u) into L2(v) if and only
if there is a constant Cu,v > 0 such that

(3.1)

∫
I

(
M(1Iu

−1)(x)
)2
v(x) dx ≤ Cu,vu−1(I), for all intervals I.

A quantitative version of this result was given by Moen, he showed in [Moe] that the
operator norm of M from L2(u) into L2(v) is comparable to 2Cu,v. Note that Sawyer’s test
condition (3.1) implies (u, v) ∈ A2, moreover [u, v]A2 ≤ Cu,v.

A quantitative two weight result for the maximal function not involving Sawyer’s test
conditions, instead involving joint A2 and RH1 constant of u−1, has been recently found by
Pérez and Rela.

Theorem 3.4. [PzR] Let u and v be weights such that (u, v) ∈ A2 and u−1 ∈ RH1 then

‖M‖L2(u)→L2(v) ≤ C([u, v]A2 [u−1]RH1)1/2.

This result is valid in certain spaces of homogeneous type, see [PzR]. In fact they prove a
result valid in Lp replacing joint A2 by joint Ap and the power 1/2 by 1/p. More precisely
they show

‖M‖Lp(u)→Lp(v) ≤ Cp′([u, v]Ap [u
−1]RH1)1/p,

where p′ = p/(p− 1) is the dual exponent to p.

3.2. Dyadic square function. Second, we introduce the dyadic square function.

Definition 3.5. We define the dyadic square function as follows

Sdf(x) :=

(∑
I∈D
|mIf −mÎf |

2
1I(x)

)1/2

,

where Î denotes the dyadic parent of I.

In [HTV], Hukovic, Treil and Volberg showed that the L2(v) norm of Sd depends linearly on
the A2 characteristic of the weight. Cruz-Uribe, Martell, and Pérez [CrMPz2] showed that the

L3(v) norm of Sd depends on [v]
1/2
A3

. One concludes that ‖Sdf‖Lp(v) ≤ C[v]
max{ 1

2
, 1
p−1
}

Ap
‖f‖Lp(v)

by sharp extrapolation [DGPPet], this bound is optimal. Lerner [Le] has shown that this
holds for Wilson’s intrinsic square function [Wil2].

The following two weight characterization was introduced by Wilson, see also [NTV1]

Theorem 3.6. [Wil1] The dyadic square function Sd is bounded from L2(u) into L2(v) if
and only if

(i) (u, v) ∈ Ad2
(ii) {|I| |∆Iu

−1|2mIv}I∈D is a u−1-Carleson sequence with intensity Cu,v .
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Condition (ii) can be viewed as a localized testing condition on the test functions u−1
1J

for J ∈ D. Thus, Cu,v ≤ ‖Sd‖2L2(u)→L2(v).

Recently Lacey and Li [LLi1] showed a continuous quantitative analogue of this theorem
and they claim the dyadic version is “a direct analog of their theorem”, their estimate would
read

(3.2) ‖Sd‖L2(u)→L2(v) . ([u, v]Ad2
+ Cu,v)1/2.

We will present a proof of this estimate in Section 6. We will get quantitative two weight
estimates for the dyadic square function involving either the two weight norm of the maximal

operator and [v]
1/2

RHd
1
, or [u, v]

1/2

Ad2
, [u−1]

1/2

RHd
1
, and [v]

1/2

RHd
1
, under appropriate assumptions in

each case.
Theorem 2.8(b) implies that if u−1 ∈ RHd

1 and (u, v) ∈ Ad2 then condition (ii) in Theo-
rem 3.6 holds with Cu,v . [u, v]Ad2

[u−1]RHd
1
. As a corollary of (3.2) we get that if u−1 ∈ RHd

1

and (u, v) ∈ Ad2 then

(3.3) ‖Sd‖L2(u)→L2(v) ≤ C([u, v]Ad2
+ [u, v]Ad2

[u−1]RHd
1
)1/2.

This improves [Be2, Theorem 4.1] where the stronger assumption u−1 ∈ Adq for some

q > 1 was made and a similar quantitative two weight estimate was obtained with [u−1]Adq
replacing [u−1]RHd

1
and the constant C depending on q. Her results are proved in a setting

where the underlying Lebesgue measure is replaced by a doubling measure σ on R (a space of
homogeneous type), introducing a dependence on the doubling constant of σ which is tracked
in the aformentioned theorem. We will prove (3.3) without relying on (3.2) in Section 6. A
closer look shows that the same argument will allow us to recover (3.2). When u = v = w ∈ Ad2
this improves Hukovic’s linear bound to a mixed bound:

‖Sd‖L2(w) ≤ C([w]Ad2
[w−1]RHd

1
)1/2.

3.3. Martingale transform. Third, we introduce the martingale transforms.

Definition 3.7. Let r be a function from D into {−1, 1} so that r(I) = rI , then we define
the martingale transform Tr associated to r, acting on functions f ∈ L2(R), by

Trf(x) :=
∑
I∈D

rI〈f, hI〉hI(x) .

In [W], Wittwer showed that the L2(w) norm of Tr depends linearly on the A2 characteristic
of the weight w. The next theorem is from [NTV1] and it gives necessary and sufficient
conditions for the martingale transforms Tr to be uniformly bounded from L2(u) into L2(v).
Before we state the theorem, let us define the positive operator

T0f(x) :=
∑
I∈D

αI
|I|
mIf 1I(x) ,

where αI = |∆Iv|
mIv

|∆I(u−1)|
mI(u−1)

|I| .

Theorem 3.8. [NTV1] The martingale transforms Tr are uniformly bounded from L2(u) to
L2(v) if and only if the following four assertions hold simultaneously:
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(i) (u, v) ∈ A2

(ii) {|I| |∆Iu
−1|2mIv}I∈D is a u−1-Carleson sequence.

(iii) {|I| |∆Iv|2mI(u
−1)}I∈D is a v-Carleson sequence.

(iv) The positive operator T0 is bounded from L2(u) into L2(v) .

As a corollary of the previous results in this section we can rewrite Theorem 3.8 as follows,

Corollary 3.9. The martingale transforms Tr are uniformly bounded from L2(u) to L2(v) if
and only if the following three assertions hold simultaneously:

(i) Sd is bounded from L2(u) into L2(v).
(ii) Sd is bounded from L2(v−1) into L2(u−1).
(iii) The positive operator T0 is bounded from L2(u) into L2(v) .

3.4. Dyadic paraproduct. Finally we recall the definition of the dyadic paraproduct.

Definition 3.10. We formally define the dyadic paraproduct πb associated to b ∈ L1
loc(R) as

follows for functions f which are at least locally integrable:

πbf(x) :=
∑
I∈D

mIf 〈b, hI〉hI(x).

It is a well know fact that the dyadic paraproduct is bounded not only on Lp(dx) but also
on Lp(v) when b ∈ BMOd and v ∈ Adp. Beznosova proved in [Be1] that the L2(v) norm of
the dyadic paraproduct depends linearly on both [v]Ad2

and ‖b‖BMOd . Sharp extrapolation

[DGPPet] then shows

‖πbf‖Lp(w) ≤ C‖b‖BMOd [w]
max{1, 1

p−1
}

Adp
‖f‖Lp(w).

When both weights u, v ∈ Adp then it is known that the boundedness of the dyadic paraprod-

uct πb : Lp(u)→ Lp(v) is equivalent to b being in a weighted BMOd(µ) where µ = u1/pv−1/p,
that is,

(3.4) ‖b‖BMOd(µ) := sup
I∈D

1

µ(I)

∫
I
|b(x)−mIb| dx <∞.

This space is known as Bloom’s BMO [Bl]. In fact there are a number of conditions equivalent
to (3.4) (see [HoLWic1]) one of them being the boundedness of the adjoint of the dyadic para-
product π∗b : Lp(u) → Lp(v). By duality the last result is equivalent to the boundedness of

the dyadic paraproduct πb : Lp
′
(v′)→ Lp

′
(u′), where p, p′ are dual exponents, 1

p + 1
p′ = 1, and

u′, v′ are dual weights, namely u′ = u
−1
p−1 = u−p

′/p. Not surprisingly µ′ = (v′)1/p′(u′)−1/p′ = µ,
so that BMO(µ′) = BMO(µ). The assumption that both weights are in Adp is very sym-
metric and forces boundedness of the paraproduct and its adjoint to occur simultaneously.
This is the appropriate setting when dealing with two-weight inequalities for commutators
which very naturally can be separated into commutators with a paraproduct, its adjoint,
and other terms which will all be bounded from L2(u) into L2(v) provided u, v ∈ Adp and

b is in Bloom’s BMO(µ). Assuming both u, v ∈ Adp allows one to use Littlewood-Paley

theory for the dyadic square function Sd, specifically, the Lp(w) norm of Sdg is compara-
ble to the Lp(w) norm of g whenever w ∈ Adp. In particular ‖πbf‖2L2(v) is comparable to
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‖Sd(πbf)‖2L2(v) =
∑

I∈D |mIf |2b2ImI(v), and from here boundedness from L2(u) into L2(v) of

the dyadic paraproduct is reduced to verifying the following estimate∑
I∈D
|mIf |2b2ImI(v) ≤ Cu,v,b‖f‖2L2(u).

This inequality holds by the weighted Carleson lemma (Lemma 2.5) and the boundedness
of the maximal function in L2(u) when u ∈ Ad2, provided the sequence {b2ImI(v)}I∈D is a
u-Carleson sequence, namely

(3.5)
∑

I∈D(J)

b2ImI(v) ≤ Cu(J).

Another use of the Littlewood-Paley theory (v ∈ A2) allows us to compare the left-hand-
side to

∫
J |b(x) − mJb|2v(x) dx yielding what turns out is an equivalent condition for the

boundedness of the paraproduct from L2(u)→ L2(v) when u, v ∈ Ad2 (see [HoLWic1])

(3.6) sup
J∈D

1

u(J)

∫
J
|b(x)−mIb|2v(x) dx <∞.

In [HoLWic2, Theorem 3.1] the authors present an equivalent condition for the boundedness
of the paraproduct from L2(u)→ L2(v) when only v ∈ Ad2, namely

(3.7) B2(u, v) := sup
J∈D

1

u−1(J)

∑
I∈D(J)

b2I(mIu
−1)2mI(v) <∞.

Conditions (3.6) and (3.7) are testing conditions for the test functions u−1
1J .

In Section 4 we provide sufficient conditions on a pair of weights (u, v) for the two weight
boundedness of the dyadic paraproduct operator from L2(u) into L2(v) when b ∈ Carlu,v,
together with a quantitative estimate. The conditions we consider are less symmetric, we
assume a priori that (u, v) ∈ Ad2 (which is equivalent to (v−1, u−1) ∈ Ad2), and an assymetric
weighted Carleson condition, or equivalently we assume the dyadic square Sd function is
bounded from L2(v−1)→ L2(u−1). Under these conditions we show that if b ∈ Carlu,v then
πb is bounded from L2(u) into L2(v). We would have liked to show that b ∈ Carlu,v is not
only a sufficient condition but also a necessary condition for the boundedness of the dyadic
paraproduct under the a priori assumptions on the pair of weights, but we have not been
able to identify the appropriate testing functions that will yield this result. If we wish to
show that both the paraproduct and its adjoint are bounded from L2(u) into L2(v) then
we need to assume a priori joint A2 and two mixed Carleson conditions on the weights,
and we need to assume b ∈ Carlu,v ∩ Carlv−1,u−1 . It will be interesting to compare these

conditions, for example can one show that if u, v ∈ Ad2 then Bloom’s BMO coincides with
b ∈ Carlu,v ∩Carlv−1,u−1? Can we conclude that when (u, v) ∈ Ad2 then Carlu,v is equivalent

to B2(u, v) <∞? or that when v ∈ Ad2 then Carlv,v is equivalent to B2(v, v) <∞? We record
some results comparing these conditions in Section 4.4.

4. The dyadic paraproduct, bump conditions, and BMO vs Carlu,v

In this section we will state and prove our main two weight result about the dyadic para-
product (Theorem 1.1 in the introduction, called Theorem 4.1 in this section ). We will also
compare our result to known two weight bump conditions, compare the class Carlv,v with
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BMOd when v ∈ Ad2, and compare the class Carlu,v ∩Carlv−1,u−1 with Bloom’s BMO when

both u, v ∈ Ad2.

4.1. Two weight estimate for the dyadic paraproduct. In this section we obtain quan-
titative two-weight estimates for the dyadic paraproduct πb when b ∈ Carlu,v and (u, v) are
two weights with some additional conditions. Note that by definition b is a locally integrable
function, thus bI = 〈b, hI〉 is well defined.

Theorem 4.1. Let (u, v) be a pair of functions such that v and u−1 are weights, (u, v) ∈ Ad2,
and {|∆Iv|2|I|mI(u

−1)}I∈D is a v-Carleson sequence with intensity Du,v. Then πb is bounded
from L2(u) into L2(v) if b ∈ Carlu,v. Moreover, if Bu,v is the intensity of the u−1-Carleson
sequence {|bI |2/mIv}I∈D then there exists C > 0 such that for all f ∈ L2(u)

‖πbf‖L2(v) ≤ C
√

[u, v]Ad2
Bu,v

(√
[u, v]Ad2

+
√
Du,v

)
‖f‖L2(u) .

Proof. Fix f ∈ L2(u−1) and g ∈ L2(v) , then fu−1 ∈ L2(u), ‖fu−1‖L2(u) = ‖f‖L2(u−1), gv ∈
L2(v−1) and ‖gv‖L2(v−1) = ‖g‖L2(v) , πb(fu

−1) is expected to be in L2(v) , then gv ∈ L2(v−1)
is in the right space for the pairing. Thus, by duality, suffices to prove:

(4.1) |〈πb(fu−1), gv〉| ≤ C
√

[u, v]Ad2
Bu,v

(√
[u, v]Ad2

+
√
Du,v

)
‖f‖L2(u−1)‖g‖L2(v) .

Replace hI by αIh
v
I + βI

1I√
|I|

where αI = αvI and βI = βvI as described in Proposition 2.1, to

get

(4.2) |〈πb(fu−1), gv)〉| ≤
∑
I∈D
|bI |mI(|f |u−1)

∣∣∣∣〈gv, αIhvI + βI
1I√
|I|

〉∣∣∣∣.
Use the triangle inequality to separate the sum in (4.2) into two summands

|〈πb(fu−1), gv〉| ≤
∑
I∈D
|bI ||αI |mI(|f |u−1)|〈gv, hvI〉|+

∑
I∈D
|bI |
|βI |√
|I|
mI(|f |u−1)|〈gv,1I〉| .

Using the estimates |αI | ≤
√
mIv and |βI | ≤ |∆Iv|

mIv
in Proposition 2.1, we have that,

|〈πb(fu−1), gv〉| ≤ Σ1 + Σ2,

where

Σ1 :=
∑
I∈D
|bI |mI(|f |u−1)|〈gv, hvI〉|

√
mIv

Σ2 :=
∑
I∈D
|bI |mI(|f |u−1)|〈gv,1I〉|

|∆Iv|
mIv

1√
|I|

.

Estimating Σ1: We have

Σ1 ≤
∑
I∈D

|bI |√
mIv

mu−1

I (|f |)|〈g, hvI〉v|mI(u
−1)mIv

≤ [u, v]Ad2

∑
I∈D

bI√
mIv

inf
x∈I

Mu−1f(x)|〈g, hvI〉v|
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≤ [u, v]Ad2

(∑
I∈D

|bI |2

mIv
inf
x∈I

M2
u−1f(x)

)1/2(∑
I∈D
|〈g, hv〉v|2

)1/2

.

Here in the first line we use that 〈gv, f〉 = 〈g, f〉v, in the second line we use that mu−1

I |f | :=
mI(|f |u−1)
mI(u−1)

≤ Mu−1f(x) for all x ∈ I , and that mI(u
−1)mIv ≤ [u, v]Ad2

and in the third line

we use the Cauchy-Schwarz inequality.
Using the fact that {hvI}I∈D is an orthonormal system in L2(v) and the Weighted Carleson
Lemma 2.5, with F (x) = M2

u−1f(x) , and αI = |bI |2/mIv, which is a u−1-Carleson sequence
with intensity Bu,v, by assumption, we get

Σ1 ≤ [u, v]Ad2

√
Bu,v

(∫
R
M2
u−1f(x)u−1(x)dx

)1/2

‖g‖L2(v)

≤ 2
√

2[u, v]Ad2

√
Bu,v‖f‖L2(u−1)‖g‖L2(v) .(4.3)

In the second inequality we used Theorem 3.2.

Estimating Σ2: Using similar arguments as the ones used for Σ1 , we conclude that,

Σ2 ≤
∑
I∈D
|bI |mu−1

I (|f |)mv
I(|g|)

|∆Iv|
mIv

√
|I|mI(u

−1)mIv

=
∑
I∈D

|bI |√
mIv

mu−1

I (|f |)mv
I(|g|)|∆Iv|

√
|I|mI(u

−1)
√
mIv

≤ [u, v]
1/2

Ad2

∑
I∈D

|bI |√
mIv
|∆Iv|

√
|I|
√
mIu−1 inf

x∈I
Mu−1f(x) inf

x∈I
Mvg(x)

≤ [u, v]
1/2

Ad2

(∑
I∈D

|bI |2

mIv
inf
x∈I

M2
u−1f(x)

)1/2(∑
I∈D
|∆Iv|2mI(u

−1)|I| inf
x∈I

M2
v g(x)

)1/2

.

By hypothesis {|bI |2/mIv}I∈D is a u−1-Carleson sequence and {|∆Iv| |I|mI(u
−1)}I∈D is a

v-Carleson sequence with intensities Bu,v and Du,v respectively. By Lemma (2.5),

Σ2 ≤
√

[u, v]Ad2
Bu,vDu,v

(∫
R
M2
u−1f(x)u−1(x)dx

)1/2(∫
R
M2
v g(x)v(x)dx

)1/2

≤
√

[u, v]Ad2
Bu,vDu,v‖Mu−1f‖L2(u−1)‖Mvg‖L2(v)

≤ 8
√

[u, v]Ad2
Bu,vDu,v‖f‖L2(u−1)‖g‖L2(v) .

This estimate, together with estimate (4.3), gives (4.1). �

We can replace the conditions on the pair (u, v) by boundedness of the dyadic square
function to deduce boundedness of the dyadic paraproduct when b ∈ Carlu,v.

Corollary 4.2. Let b ∈ L1
loc(R) and (u, v) be a pair of functions such that v and u−1 are

weights and {|bI |2/mIv}I∈D is a u−1-Carleson sequence (b ∈ Carlu,v) with intensity Bu,v. If

the dyadic square function Sd is bounded from L2(v−1) into L2(u−1) then the paraproduct πb
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is bounded from L2(u) into L2(v) . Moreover

‖πbf‖L2(v) ≤ C
√

[u, v]Ad2
Bu,v

(√
[u, v]Ad2

+ ‖Sd‖L2(v−1)→L2(u−1)

)
‖f‖L2(u) .

Proof. Assume Sd is bounded from L2(v−1) into L2(u−1). Theorem 3.8 implies that (u, v) ∈
A2 and {|∆Iv|2|I|mI(u

−1)}I∈D is v-Carleson sequence with intensity Cv−1,u−1 . Moreover,

Cv−1,u−1 ≤ ‖Sd‖2L2(v−1)→L2(u−1). These two facts together with the hypothesis that {|bI |2/mIv}I∈D
is a u−1-Carleson sequence imply, by Theorem 1.1, that πb is bounded from L2(u) to L2(v) .
The claimed estimate holds. �

If we especialize to the one weight case u = v = w ∈ Ad2 then ‖Sd‖L2(w−1) ≤ C[w−1]Ad2
=

C[w]Ad2
. Moreover, b ∈ Carlw,w ∩L2

loc is equivalent to b ∈ BMOd and Bw,w ≤ C‖b‖2BMOd
, we

show this in Corollary 4.6. The previous Corollary would give us that

‖πb‖L2(w)→L2(w) ≤ C‖b‖BMOd [w]
3
2

Ad2
.

Thus, we do not recover Beznosova’s linear bound, we are off by [w]
1
2

Ad2
.

4.2. Comparison to one-sided bump theorems. The dyadic paraproduct is especially
interesting because it allows us to estimate Calderón-Zygmund singular integral operators
(CZSIO). The general approach to the two weight estimates for the CZSIO as a class is a
bump-approach. We refer the reader to [NRV] for the precise definitions and statements, the
interested reader can also consult [V] in this volume.

Theorem 4.3. [NRV, Theorem 3.2] Suppose Φ satisfies several conditions1. Suppose that
there exists a constant C such that for all I ∈ D
(4.4) ‖u−1‖L,I‖v‖Φ(L),I 6 C.

Then any Calderón-Zygmund singular integral operator T is weakly bounded from L2(u) into
L2,∞(v), i.e.,

(4.5) v{x ∈ R : |Tf(x)| ≥ λ} 6
(
C‖f‖L2(u)

λ

)2

.

Let us assume that u and v are such that

‖u−1‖L,J‖v‖L logL,J 6 C,

which is a weaker condition than the condition in Theorem 4.3. Then by Theorem 2.8 we
have that, for every J ∈ D,

(4.6) ‖v‖L logL,J ≈
1

|J |
∑

I∈D(J)

|∆Iv|2

mIv
|I| 6 C

mJ(u−1)
.

The condition we have for the paraproduct is

(4.7)
1

|J |
∑

I∈D(J)

|∆Iv|2mI(u
−1)|I| 6 CmJ(v)

1The conditions on the function Φ are satisfied by the functions Φ(L) = L log1+σ L and L logL log log1+σ L
(for sufficiently large σ > 0), but not by Φ(L) = L logL.
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Note that if (u, v) ∈ Ad2 we have that

1

|J |
∑

I∈D(J)

|∆Iv|2mI(u
−1)|I| 6 [u, v]Ad2

1

|J |
∑

I∈D(J)

|∆Iv|2

mIv
|I|

while mJv 6
[u,v]

Ad2
mJ (u−1)

. Therefore we cannot compare bump conditions to the conditions

in our results without the additional assumption that there is a constant q > 0 such that
mJ(u−1)mJv > q for all J ∈ D. If q 6 mJ(u−1)mJv 6 Q for all J ∈ D; the two conditions
(4.6) and (4.7) become equivalent, but this assumption essentially reduces the problem to the
one weight case [M, Proposition 7.4].

4.3. BMO vs Cv,v. Formally the dyadic paraproduct is a bilinear operator for the locally

integrable functions b and f . After we fix b in BMOd, we consider πb as a linear operator
acting on f . In the following proposition, we try to answer the question: if πb is bounded on
(weighted) Lebesgue spaces, then in which space does the locally square integrable function b
lie?

Proposition 4.4 (A necessary condition for boundedness of πb). Let u and v be weights and,
for 1 < p <∞, b ∈ L2

loc(R). Assume πb : Lp(u)→ Lp(v) is a bounded operator then there is
a constant Cp > 0 such that for any I ∈ D ,

(4.8)

∫
I
|b(x)−mIb|pv(x)dx ≤ Cpu(Î) ,

where Î is the dyadic parent of I. The constant C
1/p
p is the operator norm ‖πb‖Lp(u)→Lp(v).

Proof. Let us choose f = hJ for some dyadic interval J . Then, by assumption, there exists a
constant Cp = ‖πb‖pLp(u)→Lp(v) such that

(4.9)

∫
R
|πb(hJ)(x)|pv(x)dx ≤ Cp

∫
R
|hJ(x)|pu(x)dx = Cp

u(J)

|J |p/2
.

On the other hand,

πb(hJ)(x) =
∑
I∈D

mI(hJ)〈b, hI〉hI(x)

=
∑

I∈D(J+)

1√
|J |
〈b, hI〉hI(x)−

∑
I∈D(J−)

1√
|J |
〈b, hI〉hI(x)

=
1√
|J |

[
(b(x)−mJ+b)1J+(x)− (b(x)−mJ−b)1J−(x)

]
,

where the last equality is due to the fact that (b −mJb)1J =
∑

I∈D(J)〈b, hI〉hI . Therefore
we can write∫

R
|πb(hJ)(x)|pu(x)dx=

1

|J |p/2

∫
R

∣∣(b(x)−mJ+b)1J+(x)− (b(x)−mJ−b)1J−(x)
∣∣pv(x)dx

=
1

|J |p/2

(∫
J+

∣∣b(x)−mJ+b|pv(x)dx+

∫
J−

|b(x)−mJ−b|pv(x)dx

)
.
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Thus we can conclude that there is a constant Cp such that for all I ∈ D∫
I
|b(x)−mIb|pv(x)dx ≤ Cpu(Î) .

�

The condition (4.8) can be considered as a testing condition for the boundedness of the
dyadic paraproduct from Lp(u) into Lp(v). When u, v ∈ Adp both weights are doubling

weights, in particular u(Î) ≤ D(u)u(I) (where D(u) := supI∈D u(Î)/u(I) <∞ is the dyadic
doubling constant of u). In this case, (4.8) becomes∫

I
|b(x)−mIb|pv(x) dx ≤ Cpu(I)

which is equivalent to the boundedness of the paraproduct and its adjoint ([HoLWic1, The-
orem 4.1]) from Lp(u) into Lp(v) when u, v ∈ Adp. When u = v this necessary condition was
known in the more general matrix Ap context [IKP].

One can immediately conclude that the inequality (4.8) implies that b is in BMOd for u =
v = 1 (Lebesgue space). Thus, one can view the condition b ∈ BMOd as a testing condition
for the boundedness of the paraproduct on L2(R), in the same way that the conditions
T1, T ∗1 ∈ BMO in the celebrated T1 Theorem are testing conditions.

For the weighted Lebesgue space, we have the following corollary.

Corollary 4.5. For 1 < p <∞ , b ∈ L2
loc(R), if πb is bounded from Lp(v) into itself and v is

an Adp weight, then b belongs to BMOd. Moreover, ‖b‖BMOd ≤ 2‖πb‖Lp(v)→Lp(v)[v]
1/p

Adp
.

Proof. For any I ∈ D, we have∫
I
|b(x)−mIb| dx =

∫
I
|b(x)−mIb|v

1
p (x)v

− 1
p (x) dx

≤
(∫

I
|b(x)−mIb|pv(x) dx

) 1
p
(∫

I
v
− p
′
p (x) dx

) 1
p′

≤ C1/p
p

(∫
Î
v(x) dx

) 1
p
(∫

Î
v
− p
′
p (x) dx

) 1
p′

(4.10)

= C
1
p
p |Î|

(
1

|Î|

∫
Î
v(x) dx

) 1
p
(

1

|Î|

∫
Î
v
− 1
p−1 (x) dx

) p−1
p

(4.11)

≤ 2‖πb‖Lp(v)→Lp(v)[v]
1
p

Adp
|I| .

Here the inequality (4.10) holds due to (4.8) with v = u . �

Notice that b ∈ BMO implies that b ∈ Lploc(R) for all 1 ≤ p < ∞ by the John-Nirenberg
inequality.

For the two weight case, in order to show that (4.11) is bounded, we need (v, u) ∈ Ap
which is totally different from (u, v) ∈ Ap. Thus, we cannot conclude anything more than
(4.8) for the two weight situation.

To finish this section, we give a relation between BMOd and Carlv,v.
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Corollary 4.6. If v ∈ Ad2 then

BMOd = Carlv,v ∩ L2
loc(R).

Proof. In Section 2.3, we observed that BMOd ⊂ Carlv,v for any weight v such that v−1 is
also a weight. Also recall that by the John-Nirenberg theorem if b ∈ BMO then b ∈ L2

loc(R).

Thus, to complete the proof, we need to show that if v ∈ Ad2 and b ∈ Carlv,v ∩ L2
loc(R) then

b ∈ BMOd . If v ∈ Ad2 then in particular v ∈ RHd
1 . By Theorem 2.8, it follows that, for every

dyadic interval J , we have

(4.12)
1

|J |
∑

I∈D(J)

|∆Iv|2mI(v
−1)|I| 6 [v]Ad2

1

|J |
∑

I∈D(J)

|∆Iv|2

mIv
|I| 6 C[v]Ad2

[v]RHd
1
mJv .

Since v ∈ Ad2 and b ∈ Carlv,v, all conditions of Theorem 1.1 are satisfied, and we know that
the dyadic paraproduct, πb, is bounded from L2(v) into L2(v). Thus, by Corollary 4.5, b
must belong to BMOd . �

Similar one weight results are shown by Isralowitz, Kwon, and Pott [IKP] in the much
more general matrix Ap context.

4.4. Carlu,v vs Bloom’s BMO. There are other weighted bounded mean oscillation spaces

in the literature. The weighted BMO space for a weight µ in Rd, denoted BMOd(µ) in
[HoLWic1, Section 2.6], consists of all locally integrable functions b such that

‖b‖BMOd(µ) := sup
Q

1

µ(Q)

∫
Q
|b(x)−mQb| dx <∞,

where the supremum is taken over all cubes with sides parallel to the axes. In that paper,
it is pointed out that when the weight is in A∞ (hence, in particular, is a doubling weight),
one can replace the L1 with Lp norm provided the integration with respect to the Lebesgue

measure is replaced by σ dx where σ = µ
−1
p−1 is the conjugate weight.

When u, v ∈ Ad2, let µ := u1/2v−1/2, the corresponding weighted BMOd(µ) is Bloom’s
BMO [Bl]. In [HoLWic1, Theorem 4.1] it is shown that the following are equivalent condi-
tions.

(i) b ∈ BMOd(µ).

(ii) b ∈ BMOd2(µ) meaning sup
I∈D

1

µ(I)

∫
I
|b(x)−mIb|2µ−1(x) dx <∞.

(iii) sup
I∈D

1

u(I)

∫
I
|b(x)−mIb|2v(x) dx <∞.

(iv) sup
I∈D

1

v−1(I)

∫
I
|b(x)−mIb|2u−1(x) dx <∞.

(v) πb is bounded from L2(u) into L2(v).
(vi) π∗b from L2(u) into L2(v).

Theorem 4.7. Assume u, v ∈ Ad2 and let µ = u1/2v−1/2. Then b ∈ Carlu,v if and only if

b ∈ Carlv−1,u−1 if and only if b ∈ BMOd(µ−1).
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Proof. First we will show that Carlu,v ∪ Carlv−1,u−1 ⊂ BMOd(µ−1). Assume b ∈ Carlu,v ∪
Carlv−1,u−1 . By assumption there is C > 0 such that for all J ∈ D

(a)
∑

I∈D(J)

b2I
mIv

≤ Cu−1(J), or (b)
∑

I∈D(J)

b2I
mIu−1

≤ Cv(J).

When w ∈ Ad2 the dyadic square function Sd obeys an inverse estimate ‖f‖L2(w) ≤
C[w]

1/2

Ad2
‖Sdf‖L2(w). In case (a), since v−1 ∈ Ad2 we can use the inverse estimate for Sd

in L2(v−1) and get, for all J ∈ D, the estimate

‖(b−mJb)1J‖2L2(v−1)≤C[v]Ad2
‖Sd

(
(b−mJb)1J

)
‖2L2(v−1)

=C[v]Ad2

∑
I∈D(J)

b2ImIv
−1

≤C[v]2
Ad2

∑
I∈D(J)

b2I
mIv

≤C[v]2
Ad2
u−1(J)

Hence we conclude that sup
I∈D

1

u−1(I)

∫
I
|b(x)−mIb|2v−1(x) dx <∞.

Similarly if we assume (b), we will conclude sup
I∈D

1

v(I)

∫
I
|b(x)−mIb|2u(x) dx <∞, using

this time that u ∈ Ad2. These integral conditions are each separately equivalent to b ∈
BMO(µ−1) when u, v ∈ Ad2 by the results in [HoLWic1, Theorem 4.1].

Assume now that b ∈ BMO(µ−1) and u, v ∈ Ad2. We will show that b ∈ Carlu,v ∩
Carlv−1,u−1 . The assumption implies that

‖(b−mJb)1J‖2L2(v−1) ≤ Cu
−1(J) and ‖(b−mJb)1J‖2L2(u) ≤ Cv(J).

Both u, v ∈ Ad2 so are u−1, v−1 ∈ Ad2, also 1 ≤ mIvmIv
−1, and the dyadic square function

is bounded in L2(w) for w ∈ Ad2, moreover ‖Sd
(
(b − bJ)1J

)
‖2L2(w) =

∑
I∈D(J) |bI |2mIw. We

therefore conclude that∑
I∈D(J)

|bI |2

mIv
≤

∑
I∈D(J)

|bI |2mIv
−1 ≤ C[v]2

Ad2
‖(b−mJb)1J‖2L2(v−1) ≤ Cu

−1(J),

∑
I∈D(J)

|bI |2

mIu−1
≤

∑
I∈D(J)

|bI |2mIu ≤ C[u]2
Ad2
‖(b−mJb)1J‖2L2(u) ≤ Cv(J).

Hence b ∈ Carlu,v ∪ Carlv−1,u−1 .

All together we have shown Carlu,v ∪ Carlv−1,u−1 ⊂ BMO(µ−1) ⊂ Carlu,v ∩ Carlv−1,u−1

which implies that Carlu,v = BMO(µ−1) = Carlv−1,u−1 when u, v ∈ Ad2.
�

We just showed that when u, v ∈ Ad2 and the dyadic paraproduct πb is bounded from L2(u)
into L2(v) then b ∈ Carlv,u. Compare to Corollary 4.9 where only v ∈ Ad2 and the pair
(u, v) is in joint A2, but we assume b ∈ Carlu,v (note that the roles of u and v have been
interchanged, and in general Carlu,v 6= Carlv,u).
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When we assume only v ∈ Ad2 then πb is bounded from L2(u) into L2(v) iff (3.7), that is

B2(u, v) := sup
I∈D

1

u−1(I)

∑
J∈D(I)

b2JmJ(u−1)2mJv <∞.

Lemma 4.8. If (u, v) ∈ Ad2 and b ∈ Carlu,v with intensity Bu,v then B2(u, v) <∞. Moreover

B2(u, v) ≤ [u, v]2Ad2
Bu,v.

Proof. The result follows immediately using first the joint A2 condition and then the Carlu,v
condition, ∑

J∈D(I)

b2JmJ(u−1)2mJv ≤ [u, v]2Ad2

∑
J∈D(I)

b2J
mJv

≤ [u, v]2Ad2
Bu,vu−1(I).

This implies B2(u, v) ≤ [u, v]2Ad2
Bu,v <∞ as required. �

Using the results in [HoLWic2] we will conclude that

Corollary 4.9. If (u, v) ∈ Ad2, v ∈ Ad2, and b ∈ Carlu,v then πb is bounded from L2(u) into
L2(v).

As observed in [M] if (u, v) ∈ Ad2, v ∈ Ad2 (or u ∈ Ad2), and b ∈ BMOd then the bounded-
ness of the paraproduct reduces to one weight boundedness on L2(v) (or on L2(u)). The
observation being that joint A2 implies, by the Lebesgue Differentiation Theorem, that

v(x) ≤ [u, v]Ad2
u(x) for a.e. x, and therefore ‖g‖L2(v) ≤ [u, v]

1/2

Ad2
‖g‖L2(u). If v ∈ Ad2 then

by Beznosova’s one weight linear bound for the paraproduct in L2(v) [Be1] one has

‖πbf‖L2(v) ≤ C[b]BMOd [v]Ad2
‖f‖L2(v) ≤ C[b]BMOd [v]Ad2

[u, v]
1/2

Ad2
‖f‖L2(u).

Likewise if u ∈ Ad2, then

‖πbf‖L2(v) ≤ [u, v]
1/2

Ad2
‖πbf‖L2(u) ≤ C[b]BMOd [u]Ad2

[u, v]
1/2

Ad2
‖f‖L2(u),

where we used Beznosova’s result in the last inequality. Using this observation we can deduce
Corollary 4.9 without using the machinery of [HoLWic2] if we can prove that (u, v) ∈ Ad2,
v ∈ Ad2, and b ∈ Carlu,v imply b ∈ BMOd.

Lemma 4.10. If (u, v) ∈ Ad2, v ∈ Ad2, and b ∈ Carlu,v ∩ L2
loc(R) then b ∈ BMOd.

Proof. Suffices to show that b ∈ Carlv,v. Notice that the Cauchy-Schwarz inequality and the

joint A2 condition imply 1
v−1(J)

≤ v(J) ≤
[u,v]Ad2
u−1(J)

, therefore

1

v−1(J)

∑
I∈D(J)

b2I
mIv

≤
[u, v]Ad2
u−1(J)

∑
I∈D(J)

b2I
mIv

≤ [u, v]Ad2
Bu,v.

We conclude that b ∈ Carlv,v ∩ L2
loc(R) = BMOd by Corollary 4.6. �

It may be worth to point out that when u = v ∈ A2, the condition B2(v, v) <∞ coincides
with b ∈ Carlv,v. The reason being that now we do have the lower bound as well as the
upper bound 1 ≤ mIvmI(v

−1) ≤ [v]A2 .
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Lemma 4.11. if w ∈ A2 then b ∈ Carlw,w if and only if B2(w) <∞, where

B2(w) := B2(w,w) = sup
J∈D

1

w−1(J)

∑
I∈D(J)

m2
I(w

−1)|bI |2mIw.

5. The maximal and the square functions

In this section we relate the boundedness of the square function with the boundedness of
the Maximal function from L2(u) into L2(v). The main result of this section states that if
the weight v is in RHd

1 and the Maximal function is bounded then the square function is also
bounded. This result is an adaptation of Buckley’s proof [Bu], for the fact that if w ∈ Ad2
then Sd is bounded on L2(w). The last author proved a similar result, in [P], for the weighted
maximal function and the weighted square function in Lq(R) and 1 < q <∞.

Theorem 5.1. Let (u, v) be a pair of weights such that v ∈ RHd
1 and the Maximal function

M is bounded from L2(u) into L2(v) with bound Mu,v then there exist C > 0 such that

‖Sdf‖L2(v) ≤ CMu,v(1 + [v]
1/2

RHd
1
)‖f‖L2(u) .

As an immediate Corollary of Theorem 5.1 and Theorem 3.4 we get,

Corollary 5.2. Assume (u, v) ∈ Ad2, u−1 ∈ RHd
1 , and v ∈ RHd

1 , then

‖Sdf‖L2(v) ≤ C
(
[u, v]Ad2

[u−1]RHd
1

)1/2
(1 + [v]

1/2

RHd
1
)‖f‖L2(u).

Note that this estimate does not recover the linear estimate in the one weight case u = v ∈
A2, it is off by a factor of the form [v]

1/2
RH1

, unlike the estimate we will present in Theorem 6.1.

Proof of Theorem 5.1. Given real-valued f ∈ L2(u) we have

‖Sdf‖2L2(v) =
∑
I∈D
|〈f, hI〉|2mIv =

1

2

∑
I∈D
|mIf −mÎf |

2v(Î)

=
1

2

∑
I∈D

(
m2
If −m2

Î
f
)
v(Î) := Σ1 .

Adding and subtracting 2v(I)m2
If in the sum and rearranging

Σ1 =
∑
I∈D

(
2v(I)m2

If − v(Î)m2
Î
f
)

+
∑
I∈D

(
v(Î)− 2v(I)

)
m2
If =: Σ2 + Σ3 .

Therefore, it is enough to check that for all f ∈ L2(u):

|Σi| ≤ CM2
u,v(1 + [v]

1/2

RHd
1
)2‖f‖2L2(u) for i = 2 , 3.

Estimating Σ2: First, let am :=
∑

I∈Dm 2v(I)m2
If = 2

∫
(Emf(x))2v(x)dx where Emf(x) :=

mIf for x ∈ I ∈ Dm and Dm is the collection of all dyadic intervals with length 2−m. Then

Σ2 :=
∑
I∈D

(
2v(I)m2

If − v(Î)m2
Î
f
)

=

∞∑
m=−∞

(am − am−1) .
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Using the fact that Emf(x) ≤Mf(x) for all x ∈ R we can bound each am by

|am| ≤ 2

∫
R
|Mf(x)|2v(x)dx = 2‖Mf‖2L2(v) ≤ CM

2
u,v‖f‖2L2(u) .

The last inequality follows since M is assumed to be bounded from L2(u) to L2(v). Let
sn :=

∑
|m|≤n(am − am−1), the partial sum sequence of Σ2. Since this is a telescoping sum

we have sn = (an − a−n−1) for all n ∈ N. Therefore |sn| ≤ 2CM2
u,v‖f‖2L2(u) for all n ∈ N

which leads us to the better than desired estimate

|Σ2| ≤ CM2
u,v‖f‖2L2(u) .

Estimating Σ3: Since every interval has two children, switching the sum over I to a sum
over the parents J = Î we have the following cancellation,∑

I∈D

(
v(Î)− 2v(I)

)
m2
Î
f =

∑
J∈D

(
v(J)− 2v(J+) + v(J)− 2v(J−)

)
m2
Jf = 0 .

Hence we can write

Σ3 =
∑
I∈D

(
v(Î)− 2v(I)

)(
m2
If −m2

Î
f
)
.

Applying the Cauchy-Schwarz inequality,

|Σ3| ≤
(∑
I∈D

(
v(Î)− 2v(I)

)2
v(Î)

(mIf +mÎf)2

)1/2(∑
I∈D

v(Î)(mIf −mÎf)2

)1/2

=
√

Σ4Σ1 ≤
Σ4 + Σ1

2
,

where Σ4 :=
∑

I∈D

(
v(Î)−2v(I)

)2
v(Î)

(mIf +mÎf)2. Thus,

Σ1 ≤ |Σ2|+ |Σ3| ≤ CM2
u,v‖f‖2L2(u) +

Σ4 + Σ1

2
.

Subtracting
Σ1

2
from both sides of this inequality and multiplying by 2 give us

(5.1) Σ1 ≤ 2CM2
u,v‖f‖2L2(u) + Σ4 .

Estimating Σ4: Note that mIf ≤ 2mÎf . Switching the sum over I to a sum over the parents

J = Î gives

Σ4 ≤ 32
∑
J∈D

|∆Jv|2

mJv
|J |m2

Jf.

Thus

Σ4 .
∑
I∈D

|∆Iv|2

mIv
|I|m2

If .
∑
I∈D

|∆Iv|2

mIv
|I| inf

x∈I
M2f(x)

. [v]RHd
1

∫
R
M2f(x)v(x)dx = [v]RHd

1
‖Mf‖2L2(v) ≤ [v]RHd

1
M2

u,v‖f‖2L2(u) .

Note that in the third inequality we use the fact that if v ∈ RHd
1 then, by Theorem 2.8,

{|∆Iv|2|I|/mIv}I∈D is a v-Carleson sequence with intensity [v]RHd
1
. This estimate together
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with (5.1) give us the desired estimate for real-valued functions. Using this estimate for the
real and complex parts of f ∈ L2(v) we will conclude that

‖Sdf‖L2(v) ≤ CMu,v(1 + [v]
1/2

RHd
1
)‖f‖L2(u) .

�

Even though not explicitly we are still assuming that (u, v) ∈ Ad2, since we assumed that
M : L2(u)→ L2(v) which implies (u, v) ∈ A2

d, see [GF].

Remark 5.3. In the last theorem we are providing a connection between the boundedness of
the square function and the boundedness of the Maximal function. Another novelty of this
result is that we have an estimate on how the norm of the square function depends on [v]RHd

1

and the norm of the Maximal function.

As a consequence of Theorem 5.1 and Theorem 3.6, we can show that the boundeness of
the Maximal function from L2(u) into L2(v) together with the assumption that v ∈ RHd

1 will
imply the boundedness of the martingale transform.

Theorem 5.4. Let (u, v) be a pair of weights such that v ∈ RHd
1 and the Maximal function

M is bounded from L2(u) into L2(v) then the martingale transforms Tr are uniformly bounded
from L2(u) into L2(v) .

Proof. Let us consider a pair of weights (u, v) satisfying the assumptions. By Theorem 5.1
the dyadic square function is bounded, and by Theorem 3.6 the pair of weights (u, v) satisfies

(i) (u, v) ∈ Ad2
(ii) {|∆Iu

−1|2mIv|I|}I∈D is a u−1-Carleson sequence.

Let us denote the intensity of the u−1-Carleson sequence in (ii) by Du,v. To prove the
boundedness of the martingale transform Tr, we need to show that (u, v) also satisfies the
last two conditions in Theorem 3.6

(iii) {|∆Iv|2mI(u
−1)|I|}I∈D is a v-Carleson sequence.

(iv) The operator T0 is bounded from L2(u) into L2(v).

For condition (iii), we use the assumption v ∈ RHd
1 , Theorem 2.8(b), and (u, v) ∈ Ad2.

More precisely, for any J ∈ D,∑
I∈D
|∆Iv|2mI(u

−1)|I| =
∑

I∈D(J)

|∆Iv|2

mIv
mIvmI(u

−1)|I|

≤ [u, v]Ad2

∑
I∈D(J)

|∆Iv|2

mIv
|I| ≤ C[u, v]Ad2

[v]RHd
1
v(J) .

We now need to check condition (iv), which for any positive f ∈ L2(u−1) and g ∈ L2(v) is
equivalent to

|〈T0(fu−1), gv〉| ≤ C‖f‖L2(u−1)‖g‖L2(v) .

Thus, it suffices to verify the estimate

(5.2)
∑
I∈D

mI(|f |u−1)mI(|g|v)
|∆Iv|
mIv

|∆Iu
−1|

mI(u−1)
|I| ≤ C‖f‖L2(u−1)‖g‖L2(v) .
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To see that (5.2) holds, we use the Cauchy-Schwarz inequality:∑
I∈D

mI(|f |u−1)mI(|g|v)
|∆Iv|
mIv

|∆Iu
−1|

mI(u−1)
|I|

≤
(∑
I∈D

(
mI(|f |u−1)

mI(u−1)

)2

|∆Iu
−1|2mIv|I|

)1/2(∑
I∈D

(
mI(|g|v)

mIv

)2 |∆Iv|2

mIv
|I|
)1/2

≤
(∑
I∈D
|∆Iu

−1|2mIv|I| inf
x∈I

M2
u−1f(x)

)1/2(∑
I∈D

|∆Iv|2

mIv
|I| inf

x∈I
M2
v g(x)

)1/2

.

Since |∆Iu
−1|2mIv|I| is a u−1-Carleson sequence with intensity Du,v and |∆Iv|2

mIv
|I| is a v-

Carleson sequence with intensity [v]RHd
1
, by condition (ii) and Theorem 2.8(b) respectively,

we have that∑
I∈D

mI(|f |u−1)mI(|g|v)
|∆Iv|
mIv

|∆Iu
−1|

mI(u−1)
|I| ≤

√
Du,v[v]RHd

1
‖Mu−1f‖L2(u−1)‖Mvg‖L2(v)

≤ 8
√
Du,v[v]RHd

1
‖f‖L2(u−1)‖g‖L2(v) ,

the last inequality by Theorem 3.2. �

As an immediate consequence of Theorem 5.4 and Corollary 5.2 we get the following
corollary.

Corollary 5.5. If (u, v) ∈ Ad2, u−1 ∈ RHd
1 and v ∈ RHd

1 then the martingale transforms Tr
are uniformly bounded L2(u) into L2(v).

6. The sharp quantitative estimate for the dyadic square function

Our last theorem provides the dependence of the operator norm ‖Sd‖L2(u)→L2(v) on the

joint A2 characteristic of the weights and [u−1]RHd
1
. This extends results of Beznosova [Be2],

and we follow the template of her original proof.

Theorem 6.1. Let (u, v) be a pair of weights such that (u, v) ∈ Ad2 and u−1 ∈ RHd
1 . Then

there is a constant such that

‖Sd‖L2(u)→L2(v) ≤ C[u, v]
1/2

Ad2

(
1 + [u−1]

1/2

RHd
1

)
.

Proof. We can write the square of the norm ‖Sdf‖L2(v) as:

‖Sdf‖2L2(v) =

∫ ∑
I∈D
|〈f, hI〉|2

1I(x)

|I|
v(x)dx =

∑
I∈D
|〈f, hI〉|2mIv.

We decompose hI in a slightly different way. For any weight u−1, we can write hI as

hI(x) =
1√
|I|

(
Hu−1

I (x) +Au
−1

I 1I(x)
)

where Au
−1

I =
∆Iu

−1

2mI(u−1)
.

The family {u−1/2Hu−1

I }I∈D is orthogonal in L2(dx) with norms satisfying the inequality

‖u−1/2Hu−1

I ‖L2(R) ≤
√
|I|mI(u−1).
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Hence by Bessel’s inequality we have that for all f ∈ L2(u) (recall that f ∈ L2(u) if and only

if fu1/2 ∈ L2(R)), ∑
I∈D

|〈f,Hu−1

I 〉|2

|I|mI(u−1)
≤ ‖fu1/2‖2L2(R) = ‖f‖2L2(u) .

Since mIv ≤ [u, v]Ad2
/mI(u

−1) we conclude that for all f ∈ L2(u),

(6.1)
∑
I∈D

∣∣∣∣〈f, Hu−1

I√
|I|

〉∣∣∣∣2mIv ≤ [u, v]Ad2
‖f‖2L2(u) .

We claim that

(6.2)
∑
I∈D

∣∣∣∣〈f, Au−1

I 1I√
|I|

〉∣∣∣∣2mIv ≤ C[u, v]Ad2
[u−1]RH1

d
‖f‖2L2(u) .

Using estimates (6.1) and (6.2) and the Cauchy-Schwarz inequality we conclude that∑
I∈D
|〈f, hI〉|2mIv ≤ C

(
[u, v]Ad2

+ 2[u, v]A2
d
[u−1]

1/2

RHd
1

+ [u, v]A2
d
[u−1]RHd

1

)
‖f‖2L2(u) ,

which completes the proof.
Let us return to our claim. The left hand side of (6.2) can be written as∑

I∈D

∣∣∣∣〈f, Au−1

I 1I√
|I|

〉∣∣∣∣2mIv =
1

4

∑
I∈D
|mIf |2

(
∆Iu

−1

mI(u−1)

)2

|I|mIv .

By our assumptions: (u, v) ∈ Ad2 and u−1 ∈ RHd
1 , for any J ∈ D, we have

1

|J |
∑

I∈D(J)

(
∆Iu

−1

mI(u−1)

)2

|I|m2
I(u
−1)mIv≤

[u, v]Ad2
|J |

∑
I∈D(J)

(
∆Iu

−1

mI(u−1)

)2

|I|mI(u
−1)

≤ [u, v]Ad2
[u−1]RHd

1
mJ(u−1) ,(6.3)

The last inequality (6.3) is an application of Lemma 2.8(b). Therefore the sequence {αI :=(
∆Iu

−1

mI(u−1)

)2|I|m2
I(u
−1)mIv}I∈D is a u−1-Carleson sequence with intensity [u, v]Ad2

[u−1]RHd
1
.

We now can prove the claimed estimate (6.2) ,∑
I∈D
|mIf |2

(
∆Iu

−1

mI(u−1)

)2

|I|mIv =
∑
I∈D

(
|mIf |
mI(u−1)

)2( ∆Iu
−1

mI(u−1)

)2

|I|m2
I(u
−1)mIv

≤
∑
I∈D

(
mu−1

I (|f |u)
)2
(

∆Iu
−1

mI(u−1)

)2

|I|m2
I(u
−1)mIv

≤
∑
I∈D

inf
x∈I

M2
u−1(fu)(x)

(
∆Iu

−1

mI(u−1)

)2

|I|m2
I(u
−1)mIv.

Finally using Lemma 2.5 with F (x) = M2
u−1(fu)(x) and the u−1-Carleson sequence {αI}I∈D

with intensity [u, v]Ad2
[u−1]RHd

1
, will give us that∑

I∈D
|mIf |2

(
∆Iu

−1

mI(u−1)

)2

|I|mIv ≤ C[u, v]Ad2
[u−1]RHd

1
‖Mu−1(fu)‖2L2(u−1)



26 O. BEZNOSOVA, D. CHUNG, J.C. MORAES, AND M.C. PEREYRA

≤ C[u, v]Ad2
[u−1]RHd

1
‖fu‖2L2(u−1)

= C[u, v]Ad2
[u−1]RHd

1
‖f‖2L2(u) .

�

Analyzing carefully the proof above we realize that if instead of assuming u−1 ∈ RHd
1 we

assume that {|∆Iu
−1|2mIv is a u−1-Carleson sequence with intensity Cu,v the argument will

go through and we will recover the Lacey-Li estimate.

Theorem 6.2. Let (u, v) be a pair of weights such that (u, v) ∈ Ad2 and {|∆Iu
−1|2mIv}I∈D

is a u−1-Carleson sequence with intensity Cu,v. Then there is a constant C > 0 such that

‖Sd‖L2(u)→L2(v) ≤ C
(
[u, v]Ad2

+ Cu,v
)1/2

.

We leave the details of the proof to the reader.
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