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AND MARÍA CRISTINA PEREYRA

Abstract. We show that if a weight w ∈ Cd
2t and there is q > 1

such that w2t ∈ Ad
q , then the L2-norm of the t-Haar multiplier of

complexity (m, n) associated to w depends on the square root of the
Cd

2t-characteristic of w times the square root Ad
q-characteristic of

w2t times a constant that depends polynomially on the complexity.
In particular, if w ∈ Cd

2t ∩Ad
∞ then w2t ∈ Ad

q for some q > 1.

1. Introduction

Recently Tuomas Hytönen settled the A2-conjecture [H]: for all
Calderón-Zygmund integral singular operators T in RN , weights w ∈
Ap, there is Cp,N,T > 0 such that,

‖Tf‖Lp(w) ≤ Cp,N,T [w]
max{1, 1

p−1
}

Ap
‖f‖Lp(w).

In his proof he developed and used a representation valid for any
Calderón-Zygmund operator as an average of Haar shift operators of
arbitrary complexity, paraproducts and their adjoints. See [L1, P4] for
surveys of the A2-conjecture. An important and hard part of the proof
was to obtain bounds for Haar shifts operators that depended linearly
in the A2-characteristic and at most polynomially in the complexity.

In this paper we show that if a weight w ∈ Cd
2t ∩ Ad∞, then the

L2-norm of the t-Haar multiplier of complexity (m,n) associated to
w depends on the square root of the Cd

2t-characteristic of w times the
square root Adq-characteristic of w2t for some q > 1 depending on t ∈ R
times a constant that depends polynomially on the complexity.

For t ∈ R, m,n ∈ N, and a weight w, the t-Haar multiplier of
complexity (m,n) was introduced in [MoP], and is defined formally by

Tm,nt,w f(x) =
∑
L∈D

∑
I∈Dm(L),J∈Dn(L)

cLI,J
wt(x)

(mLw)t
〈f, hI〉hJ(x),
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where |cLI,J | ≤
√
|I| |J |/|L|, D denotes the dyadic intervals, |I| the

length of interval I, Dm(L) denotes the dyadic subintervals of L of
length 2−m|L|, hI is a Haar function associated to |I|, and 〈f, g〉 denotes
the L2-inner product.

When (m,n) = (0, 0) we denote the corresponding Haar multiplier
by T tw, and, if in adittion t = 1, simply Tw. The Haar multipliers Tw
are closely related to the resolvent of the dyadic paraproduct [P1], and
appeared in the study of Sobolev spaces on Lipschitz curves [P3].

A necessary condition for the boundedness of Tm,nw,t on L2(R), when

cLI,J =
√
|I| |J |/|L|, is that w ∈ Cd

2t, see [MoP], that is,

[w]Cd
2t

:= sup
I∈D

( 1

|I|

∫
I

w2t(x)dx
)( 1

|I|

∫
I

w(x)dx
)−2t

<∞.

This condition is sufficient for t < 0 and t ≥ 1/2 and for all t-Haar
multipliers Tm,nw,t . Notice that for 0 ≤ t < 1/2 the condition Cd

2t is
always fulfilled; in this case, boundedness of Tm,nw,t is known when w ∈
Ad∞ [MoP, KP]. The first author showed in [Be, Chapter 5], that
if w ∈ Cd

2t and w2t ∈ Adq then the L2-norm of T tw, is bounded by

a constant times [w]
1/2
C2t

[w2t]
1/2

Ad
q

. Here we present a different proof of

this result that holds for t-Haar multipliers of complexity (m,n) with
polynomial dependence on the complexity.

Theorem 1.1. Let w ∈ Cd
2t and assume there is q > 1 such that

w2t ∈ Adq, then there is a constant Cq > 0 depending only on q, such
that

‖Tm,nt,w f‖2 ≤ Cq(m+ n+ 2)3[w]
1
2

Cd
2t

[w2t]
1
2

Ad
q
‖f‖2.

When w2t ∈ Ad2, this was proved in [MoP].
Using known properties of weights we can replace the condition w2t ∈

Adq , by what may seem to be a more natural condition w ∈ Cd
2t ∩ Ad∞.

Theorem 1.2. Let w ∈ Cd
2t ∩ Ad∞, then

(i) if 0 ≤ 2t < 1, there is q > 1 such that w ∈ Adq, then w2t ∈ Adq,
and

‖Tm,nt,w f‖2 ≤ Cq(m+ n+ 2)3[w2t]
1
2

Ad
q
‖f‖2 ≤ Cq(m+ n+ 2)3[w]tAd

q
‖f‖2.

(ii) If 2t ≥ 1 and w ∈ Adp then for q = 2t(p− 1) + 1, w2t ∈ Adq, and

‖Tm,nt,w f‖2 ≤ Cq(m+n+2)3[w]
1
2

Cd
2t

[w2t]
1
2

Ad
q
‖f‖2 ≤ Cp(m+n+2)3[w]Cd

2t
[w]Ad

p
‖f‖2.
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(iii) If t < 0 then for q = 1 − 2t, w2t ∈ Adq, and the bound becomes

linear in the Cd
2t characteristic of w,

‖Tm,nt,w f‖2 ≤ C(m+ n+ 2)3[w]Cd
2t
‖f‖2.

The result was known to be optimal when t = ±1/2 [Be, P2]. The
bound in (ii) is not optimal since for t = 1, the L2 norm of Tw is
bounded by a constant times [w]Cd

2
D(w), where D(w) is the doubling

constant of w, see [P2]. Here we get the larger norm C[w]Cd
2
[w]Ad

p
.

To prove this theorem we modify the argument in [MoP] that works
when w ∈ Ad2 (p = 2). In particular we need a couple of new Ap-
weight lemmas that are proved using Bellman function techniques: the
Ap-Little Lemma, and the αβ-Lemma.

A few open questions remain. In case (i) 0 < 2t < 1, is w2t ∈ Ad∞
a necessary condition for the boundedness of Tm,ntw ? Here we show
is sufficient. Is it possible to get an estimate independent of q > 1

such that w2t ∈ Adq? More specifically, can we replace Cq[w
2t]

1/2

Ad
q

by

C[w2t]Ad
∞

? or even better by CD(w)? Similarly in case (ii).
The paper is organized as follows. In Section 2 we provide the basic

definitions and basic results that are used through-out this paper. In
Section 3 we prove the lemmas that are essential for the main result.
In Section 4 we prove the main estimate for the t-Haar multipliers with
complexity (m,n). In the Appendix we prove the Ap-Little Lemma.

2. Preliminaries

2.1. Weights, maximal function and dyadic intervals. A weight
w is a locally integrable function in R positive almost everywhere.
The w-measure of a measurable set E, denoted by w(E), is w(E) =∫
E
w(x)dx. For a measure σ, σ(E) =

∫
E
dσ, and |E| stands for the

Lebesgue measure of E. We define mσ
Ef to be the integral average of

f on E, with respect to σ,

mσ
Ef :=

1

σ(E)

∫
E

f(x)dσ.

When dx = dσ we simply write mEf , when dσ = v dx we write mv
Ef .

Given a weight w, a measurable function f : RN → C is in Lp(w) if

and only if ‖f‖Lp(w) :=
(∫

R |f(x)|pw(x)dx
)1/p

<∞.
For a weight v we define the weighted maximal function of f by

(Mvf)(x) = sup
I:x∈I

mv
I |f |
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where I is a cube in RN with sides parallel to the axis. The operator
Mv is bounded in Lp(v) for all p > 1 and furthermore

(2.1) ‖Mvf‖Lp(v) ≤ Cp′‖f‖Lq(v),

where p′ is the dual exponent of p, that is 1/p + 1/p′ = 1. A proof
of this fact can be found in [CrMPz1]. When v = 1, Mv is the usual
Hardy-Littlewood maximal function, which we will denote by M . It is
well-known that M is bounded in Lp(w) if and only if w ∈ Ap [Mu].

The collection of all dyadic intervals, D, is given by: D = ∪n∈ZDn,
where Dn := {I ⊂ R : I = [k2−n, (k + 1)2−n), k ∈ Z}. For a
dyadic interval L , let D(L) be the collection of its dyadic subintervals,
D(L) := {I ⊂ L : I ∈ D}, and let Dn(L) be the nth-generation of
dyadic subintervals of L, Dn(L) := {I ∈ D(L) : |I| = 2−n|L|}.

For every dyadic interval I ∈ Dn there is exactly one Î ∈ Dn−1, such

that I ⊂ Î, Î is called the parent of I. Each dyadic interval I in Dn
has two children in Dn+1, the right and left halves, denoted I+ and I−
respectively.

A weight w is dyadic doubling if w(Î)/w(I) ≤ C for all I ∈ D. The
smallest constant C is called the doubling constant of w and is denoted
by D(w). Note that D(w) ≥ 2, and that in fact the ratio between the
length of a child and the length of its parent is comparable to one, more

precisely, D(w)−1 ≤ w(I)/w(Î) ≤ 1−D(w)−1.

2.2. Dyadic Adp, reverse Hölder RHd
p and Cd

s classes. A weight w

is said to belong to the dyadic Muckenhoupt Adp-class if and only if

[w]Ad
p

:= sup
I∈D

(mIw)(mIw
−1
p−1 )p−1 <∞, for 1 < p <∞,

where [w]Ad
p

is called the Adp-characteristic of the weight. If a weight is

in Adp then it is dyadic doubling. These classes are nested, Adp ⊂ Adq for

all p ≤ q. The class Ad∞ is defined by Ad∞ :=
⋃
p>1A

d
p.

A weight w is said to belong to the dyadic reverse Hölder RHd
p -class

if and only if

[w]RHd
p

:= sup
I∈D

(mIw
p)

1
p (mIw)−1 <∞, for 1 < p <∞,

where [w]RHd
p

is called the RHd
p -characteristic of the weight. If a weight

is in RHd
p then it is not necessarily dyadic doubling (in the non-dyadic

setting reverse Hölder weights are always doubling). Also these classes
are nested, RHd

p ⊂ RHd
q for all p ≥ q. The class RHd

1 is defined by

RHd
1 :=

⋃
p>1RH

d
p . In the non-dyadic setting A∞ = RH1. In the

dyadic setting the collection of dyadic doubling weights in RHd
1 is Ad∞,
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hence Ad∞ is a proper subset of RHd
1 . See [BeRez] for some recent and

very interesting results relating these classes.
The following are well-known properties of weights (see [JN]) for (ii)):

Lemma 2.1. The following hold

• If 0 ≤ s ≤ 1 and w ∈ Ad∞ then ws ∈ A∞. More precisely, if
p > 1 and w ∈ Adp then ws ∈ Ap, and [ws]Ad

p
≤ [w]s

Ad
p
.

• If s, q > 1 then w ∈ RHd
s ∩ Adq if and only if ws ∈ As(q−1)+1.

Moreover [ws]As(q−1)+1
≤ [w]s

RHd
s
[w]s

Ad
q
, [w]s

Ad
q
≤ [ws]As(q−1)+1

, and

[w]s
RHd

s
≤ [ws]As(q−1)+1

.

• If p > 1, and 1/p + 1/p′ = 1, then w ∈ Adp if and only if

w−1/p−1 ∈ Ap′. Moreover [w]Ad
p

= [w−1/p−1]p−1

Ad
p′

.

The following property can be found in [GaRu],

Lemma 2.2. If w ∈ RHd
s ∩ Adq then for all E ⊂ B,(

|E|/|B|
)q

[w]−1
Ad

q
≤ w(E)/w(B) ≤

(
|E|/|B|

)1− 1
s [w]RHd

s
.

In particular D(w) ≤ 2q[w]Ad
q
.

A weight w satisfies the Cd
s -condition, for s ∈ R, if

[w]Cd
s

:= sup
I∈D

(
mIw

s
) (
mIw

)−s
<∞.

The quantity defined above is called the Cd
s -characteristic of w. The

class of weights Cd
s was defined in [KP]. Let us analyze this definition.

For 0 ≤ s ≤ 1, we have that any weight satisfies the condition with
Cd
s -characteristic 1, this is just a consequence of Hölder’s Inequality

(for s = 0, 1 is trivial). When s > 1, the condition is analogous to

the dyadic reverse Hölder condition and [w]
1/s

Cd
s

= [w]RHd
s
. For s < 0, we

have that w ∈ Cd
s if and only if w ∈ Ad1−1/s, moreover [w]Cd

s
= [w]−s

Ad
1−1/s

.

Lemma 2.3. If w ∈ Cd
s ∩ Ad∞ then the following hold

• For all 0 ≤ s ≤ 1, there is a p > 1 such that ws ∈ Ap.
• If s > 1 then there is q > 1 such that ws ∈ As(q−1)+1.
• If s < 0 then ws ∈ A1−s.

The proof of this lemma is a direct application of Lemma 2.1 item
by item.
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2.3. Weighted Haar functions. For a given weight v and an interval
I define the weighted Haar function as

(2.2) hvI(x) =
1

v(I)

(√
v(I−)

v(I+)
χI+(x)−

√
v(I+)

v(I−)
χI−(x)

)
,

where χI(x) is the characteristic function of the interval I.
If v is the Lebesgue measure on R, we will denote the Haar function

simply by hI . It is a simple exercise to verify that the weighted and
unweighted Haar functions are related linearly as follows,

Proposition 2.4. For any weight v, there are numbers αvI , β
v
I such that

hI(x) = αvI h
v
I(x) + βvI χI(x)/

√
|I|

where (i) |αvI | ≤
√
mIv, (ii) |βvI | ≤ |∆Iv|/mIv, ∆Iv := mI+v −mI−v.

The family {hvI}I∈D is an orthonormal system in L2(v), with inner

product 〈f, g〉v :=
∫

R f(x) g(x) v(x)dx.

2.4. Carleson sequences. If v is a weight, a positive sequence {αI}I∈D
is called a v-Carleson sequence with intensity B if for all J ∈ D,

(2.3)
1

|J |
∑

I∈D(J)

λI ≤ B mJv.

When v = 1 we call a sequence satisfying (2.3) for all J ∈ D a Carleson
sequence with intensity B.

Proposition 2.5. Let v be a weight, {λI}I∈D and {γI}I∈D be two v-
Carleson sequences with intensities A and B respectively then for any
c, d > 0 we have that

(i) {cλI +dγI}I∈D is a v-Carleson sequence with intensity cA+dB.

(ii) {
√
λI
√
γI}I∈D is a v-Carleson sequence with intensity

√
AB.

(iii) {(c
√
λI + d

√
γI)

2}I∈D is a v-Carleson sequence with intensity
2c2A+ 2d2B.

The proof of these statements is quite simple, see [MoP].

3. Main tools

In this section, we state the lemmas and theorems necessary to get
the estimate for the t-Haar multipliers of complexity (m,n).
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3.1. Carleson Lemmas. The Weighted Carleson Lemma we present
here is a variation in the spirit of other weighted Carleson embedding
theorems that appeared before in the literature [NV, NTV1]. You can
find a proof in [MoP].

Lemma 3.1 (Weighted Carleson Lemma). Let v be a weight, then
{αL}L∈D is a v-Carleson sequence with intensity B if and only if for
all non-negative v-measurable functions F on the line,

(3.1)
∑
L∈D

αL inf
x∈L

F (x) ≤ B

∫
R
F (x) v(x) dx.

The following lemma we view as a finer replacement for Hölder’s
inequality: 1 ≤ (mIw)(mIw

−1/(p−1))p−1.

Lemma 3.2 (Ap-Little Lemma). Let v be a weight, such that v−1/(p−1)

is a a weight as well, and let {λI}I∈D be a Carleson sequence with
intensity Q then {λI/(mIv

−1/(p−1))p−1}I∈D is a v-Carleson sequence
with intensity 4Q, that is for all J ∈ D,

1

|J |
∑

I∈D(J)

λI
(mIv−1/(p−1))p−1

≤ 4Q mJv.

For p = 2 this was proved in [Be, Proposition 3.4], or [Be1, Proposi-
tion 2.1], using the same Bellman function as in the proof we present
in the Appendix.

Lemma 3.3 ([NV]). Let v be a weight such that v−1/(p−1) is also a
weight. Let {λJ}J∈D be a Carleson sequence with intensity B. Let F
be a non-negative measurable function on the line. Then∑

J∈D

λJ
(mJv−1/(p−1))p−1

inf
x∈J

F (x) ≤ C B

∫
R
F (x) v(x) dx.

Lemma 3.3 is an immediate consequence of Lemma 3.2, and the
Weighted Carleson Lemma 3.1. Note that Lemma 3.2 can be deduced
from Lemma 3.3 with F (x) = χJ(x).

The following lemma , for v = w−1, and for α = 1/4 appeared in [Be],
and for 0 < α < 1/2, in [NV]. With small modification in their proof,
using the Bellman function B(x, y) = xαyβ with domain of definition
the first quadrant x, y > 0, we can accomplish the result below, for a
complete proof see [Mo].

Lemma 3.4. (αβ-Lemma) Let u, v be weights. Then for any J ∈ D
and any α, β ∈ (0, 1/2)

(3.2)
1

|J |
∑

I∈D(J)

|∆Iu|2

(mIu)2
|I|(mIu)α(mIv)β ≤ Cα,β(mJu)α(mJv)β.
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The constant Cα,β = 36/min{α− 2α2, β − 2β2}.

From this lemma we immediately deduce the following,

Lemma 3.5. Let 1 < q <∞, w ∈ Adq, then {µq,αI }I∈D, where

µq,αI := (mIw)α(mIw
−1
q−1 )α(q−1)|I|

(
|∆Iw|2

(mIw)2
+
|∆Iw

−1
q−1 |2

(mIw
−1
q−1 )2

)
,

is a Carleson sequence with Carleson intensity at most Cα[w]αAq
for any

α ∈
(
0,max{1/2, 1/2(q − 1)}

)
. Moreover, {νqI}I∈D, where

νqI := (mIw)(mIw
−1
q−1 )(q−1)|I|

(
|∆Iw|2

(mIw)2
+
|∆Iw

−1
q−1 |2

(mIw
−1
q−1 )2

)
is a Carleson sequence with Carleson intensity at most C[w]Aq .

Proof. Set u = w, v = w−
1

q−1 , β = α(q − 1). By hypothesis 0 <
α < 1/2 and also 0 < α < 1/2(q − 1) which implies that 0 < β <
1/2, we can now use Lemma 3.4 to show that µq,αI is a Carleson
sequence with intensity at most cα[w]α

Ad
q
. For the second statement

suffices to notice that νqI ≤ µq,αI [w]1−α
Ad

q
for all I ∈ D, for some α ∈(

0,max{1/2, 1/2(q − 1)}
)

�

A proof of this lemma for q = 2 that works on geometric doubling
metric spaces can be found in [NV1, V]. In those papers α = 1/4 can
be used, and in that case the constant Cα can be replaced by 288.

3.2. Lift Lemma. Given a dyadic interval L, and weights u, v, we in-
troduce a family of stopping time intervals ST mL such that the averages
of the weights over any stopping time interval K ∈ ST mL are compara-
ble to the averages on L, and |K| ≥ 2m|L|. This construction appeared
in [NV] for the case u = w, v = w−1. We also present a lemma that
lifts w-Carleson sequences on intervals to w-Carleson sequences on “m-
stopping intervals”. This was used in [NV] for a very specific choice of
m-stopping time intervals ST mL .

Lemma 3.6 (Lift Lemma [NV]). Let u and v be weights, L be a dyadic
interval and m,n be fixed positive integers. Let ST mL be the collection of
maximal stopping time intervals K ∈ D(L), where the stopping criteria
are either (i) |∆Ku|/mKu+ |∆Kv|/mKv ≥ 1/m+ n+ 2, or (ii) |K| =
2−m|L|. Then for any stopping interval K ∈ ST mL , e−1mLu ≤ mKu ≤
emLu, and hence also e−1mLv ≤ mKv ≤ emLv.
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Note that the roles of m and n can be interchanged and we get the
family ST nL using the same stopping condition (i) and condition (ii)
replaced by |K| = 2−n|L|. Notice that ST mL is a partition of L in
dyadic subintervals of length at least 2−m|L|. The following lemma
lifts a w-Carleson sequence to m-stopping time intervals with compa-
rable intensity. For the particular m-stopping time ST mL given by the
stopping criteria (i) and (ii) in Lemma 3.6, and w = 1, this appeared
in [NV].

Lemma 3.7. For each L ∈ D let ST mL be a partition of L in dyadic
subintervals of length at least 2−m|L|. Assume {νI}I∈D is a w-Carleson
sequence with intensity at most A, let νmL :=

∑
K∈ST m

L
νK, then {νmL }L∈D

is a w-Carleson sequence with intensity at most (m+ 1)A.

For proofs you can see [MoP].

3.3. Auxiliary quantities. For a weight v, and a locally integrable
function φ we define the following quantities,

Pm
L φ :=

∑
I∈Dm(L)

|〈φ, hI〉|
√
|I|/|L|,(3.3)

Sv,mL φ :=
∑

J∈Dm(L)

|〈φ, hvJ〉v|
√
mJv

√
|J |/|L|,(3.4)

Rv,m
L φ :=

∑
J∈Dm(L)

|∆Jv|
mJv

mJ(|φ|v) |J |/
√
|L|,(3.5)

Let w ∈ Adq , ST mL be an m-stopping time family of subintervals of L,
0 < α < max{1/2, 1/2(q − 1)}, and {µqK = µq,αK }K∈D be the Carleson
sequence with intensity Cα[w]Ad

q
defined in Lemma 3.5. For each m > 0,

we introduce another sequence {µmL }, which is Carleson by Lemma 3.7:

µmL :=
∑

K∈ST m
L

µqK with intensity Cα(m+ 1)[w]Ad
q
.

We will use the following estimates for Sv,mL φ and Rv,m
L φ, where 1 <

p < 2 will be dictated by the proof of the theorem.

(3.6) Sv,mL φ ≤
( ∑
J∈Dm(L)

|〈φ, hvJ〉v|2
) 1

2
(mLv)

1
2 ,

(3.7)

Rv,m
L φ ≤ C Cn

m(mLv
−1
q−1 )

−(q−1)
2 (mLv)

1
2 inf
x∈L

(
Mw−1(|g|p)(x)

) 1
p
√
µmL ,
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See [NV] for the proof when q = 2, slight modification of their argument
gives the estimate for Rv,m

L φ. Estimating P n
Lφ is very simple:

(3.8) (Pm
L φ)2 ≤

∑
I∈Dm(L)

|I|/|L|
∑

I∈Dm(L)

|〈φ, hI〉|2 =
∑

I∈Dm(L)

|〈φ, hI〉|2.

Remark 3.8. In [NV1], Nazarov and Volberg extend the results that
they had in [NV] for Haar shifts to metric spaces with geometric dou-
bling. Following the same modifications in the argument made from
[NV] to [NV1], one could obtain the same result as in Theorem 4.1 on
a metric space with geometric doubling, see [Mo1].

4. Haar Multipliers

For a weight w, t ∈ R, and m,n ∈ N, a t-Haar multiplier of com-
plexity (m,n) is the operator defined as

(4.1) Tm,nt,w f(x) :=
∑
L∈D

∑
I∈Dn(L);J∈Dm(L)

cLI,J

(
w(x)

mLw

)t
〈f, hI〉hJ(x),

where |cLI,J | ≤
√
|I| |J |/|L|. In [MoP] it is shown that w ∈ Cd

2t is

a necessary condition for boundedness of Tm,nw,t in L2(R) when cLI,J =√
|I| |J |/|L|. It is also shown that the Cd

2t-condition is sufficient for
a t-Haar multiplier of complexity (m,n) to be bounded in L2(R) for
most t; this was proved in [KP] for the case m = n = 0. Here we are
concerned not only with the boundedness but also with the dependence
of the operator norm on the Cd

2t-constant . For T tw and t = 1,±1/2 this
was studied in [P2]. The first author [Be] was able to obtain estimates,
under the additional condition on the weight w2t ∈ Adq for some q > 1,
for T tw and for all t ∈ R. Her results were generalized for Tm,nw,t for all t

when w2t ∈ Ad2, see [MoP]. We will show that:

Theorem 4.1. Let t be a real number and w a weight such that w2t ∈
Adq for some q > 1 (i.e. w2t ∈ Ad∞), then

‖Tm,nt,w f‖2 ≤ Cq(m+ n+ 2)3[w]
1
2

Cd
2t

[w2t]
1
2

Ad
q
‖f‖2.

Using Lemmas 2.1 and 2.3 we can refine the result as follows:

Theorem 4.2. Let t ∈ R, w ∈ C2t, and Cn
m = n+m+ 2, then

(i) If 0 < 2t < 1 and w ∈ Adp then

‖Tm,nt,w f‖2 ≤ Cp(C
n
m)3[w2t]

1
2

Ad
p
‖f‖2 ≤ Cp(C

n
m)3[w]tAd

p
‖f‖2.
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(ii) If t > 1 and w ∈ Adp then if q = 2t(p− 1) + 1

‖Tm,nt,w f‖2 ≤ Cp(C
n
m)3[w]

1
2

Cd
2t

[w2t]
1
2

Ad
q
‖f‖2 ≤ Cp(C

n
m)3[w]Cd

2t
[w]tAd

p
.

(iii) If t < 0 then

‖Tm,nt,w f‖2 ≤ C(Cn
m)3[w]Cd

2t
‖f‖2 = C(Cn

m)3[w]−2t
Ad

1−1/2t

‖f‖2.

Remark 4.3. Throughout the proof a constant Cq will be a numerical
constant depending only on the parameter q > 1 that may change from
line to line.

Proof of Theorem 4.2. By Lemma 2.3 if w ∈ Cd
2t∩Ad∞ then there is q >

1 such that w2t ∈ Adq , matching cases perfectly. Now use Theorem 4.1.
�

Proof of Theorem 4.1. Fix f, g ∈ L2(R). By duality, it is enough to
show that

|〈Tm,nt,w f, g〉| ≤ C(m+ n+ 2)3[w]
1
2

Cd
2t

[w2t]
1
2

Ad
q
‖f‖2‖g‖2.

The inner product on the left-hand-side can be expanded into a double
sum, that we now estimate,

|〈Tm,nt,w f, g〉| ≤
∑
L∈D

∑
I∈Dn(L);J∈Dm(L)

√
|I| |J |
|L|

|〈f, hI〉|
(mLw)t

|〈gwt, hJ〉|.

Write hJ as a linear combination of a weighted Haar function and a
characteristic function, hJ = αJh

w2t

J + βJχJ/
√
|J |, where αJ = αw

2t

J ,

βJ = βw
2t

J , |αJ | ≤
√
mJw2t, and |βJ | ≤ |∆J(w2t)|/mJw

2t. Now break
into two terms to be estimated separately so that,

|〈Tm,nt,w f, g〉| ≤ Σm,n
1 + Σm,n

2 ,

where

Σm,n
1 :=

∑
L∈D

∑
I∈Dn(L);J∈Dm(L)

√
|I| |J |
|L|

√
mJ(w2t)

(mLw)t
|〈f, hI〉| |〈gwt, hw

2t

J 〉|,

Σm,n
2 :=

∑
L∈D

∑
I∈Dn(L);J∈Dm(L)

|J |
√
|I|

|L|(mLw)t
|∆J(w2t)|
mJ(w2t)

|〈f, hI〉| mJ(|g|wt).

Let p = 2 − (Cm
n )−1 (note that 2 > p > 1, in fact is getting closer

to 2 as m and n increase), and define as in (3.3), (3.4) and (3.5), the
quantities Pm

L φ, Sv,nL φ and Rv,n
L φ, we will use here the case v = w2t, for

appropriate φs and corresponding estimates. Note that 1 < p < 2.
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The sequence {ηI}I∈D where

ηI := (mIw
2t) (mIw

−2t
q−1 )(q−1)

( |∆I(w
2t)|2

|mIw2t|2
+
|∆I(w

−2t/(q−1))|2

|mIw−2t/(q−1)|2
)
|I|,

is a Carleson sequence with intensity Cq[w
2t]Ad

q
by Lemma 3.5. The

sequence {ηmL }I∈D where

ηmL :=
∑

I∈ST m
L

ηI ,

and the stopping time ST mL is defined as in Lemma 3.6 but with respect
to the weights u = w2t, v = w−2t/(q−1), is a Carleson sequence with
intensity Cq(m+ 1)[w2t]Ad

q
by Lemma 3.7, .

Observe that on the one hand 〈gwt, hw2t

J 〉 = 〈gw−t, hw2t

J 〉w2t , and on
the other mJ(|g|wt) = mJ(|gw−t|w2t). Therefore,

Σm,n
1 =

∑
L∈D

(mLw)−tSw
2t,n

L (gw−t) Pm
L f,

Σm,n
2 =

∑
L∈D

(mLw)−tRw2t,n
L (gw−t) Pm

L f.

Estimates (3.6) and (3.7) hold for Sw
2t,m

L (gw−t) and Rw2t,m
L (gw−t) with

v and φ replaced by w2t and gw−t:

Sw
2t,n

L (gw−t) ≤ (mLw
2t)

1
2

( ∑
J∈Dm(L)

|〈gw−t, hw2t

J 〉w2t|2
) 1

2
,

Rw2t,n
L (gw−t) ≤ C Cn

m(mLw
2t)

1
2 (mLw

2t
q−1 )

−(q−1)
2 F

1
2 (x)

√
ηmL ,

where F (x) = infx∈L
(
Mw2t(|gw−t|p)(x)

) 2
p .

Estimating Σm,n
1 : Plug in the estimates for Sw

2t,n
L (gw−t) and Pm

L f ,

observe that (mLw
2t)

1
2/(mLw)t ≤ [w]

1
2

Cd
2t

, use the Cauchy-Schwarz in-

equality, to get,

Σm,n
1 ≤

∑
L∈D

[w]
1
2

Cd
2t

( ∑
J∈Dn(L)

|〈gw−t, hw2t

J 〉w2t |2
) 1

2
( ∑
I∈Dm(L)

|〈f, hI〉|2
) 1

2

≤ [w]
1
2

Cd
2t
‖f‖2

(∑
L∈D

∑
J∈Dn(L)

|〈gw−t, hw2t

J 〉w2t|2
) 1

2

≤ [w]
1
2

Cd
2t
‖f‖2‖gw−t‖L2(w2t) = [w]

1
2

Cd
2t
‖f‖2‖g‖2.
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Estimating Σm,n
2 : Plug in the estimates for Rw2t,n

L (gw−t) and Pm
L f ,

where F (x) =
(
Mw2t(|gw−t|p)(x)

)2/p
, use the Cauchy-Schwarz inequal-

ity and (mLw
2t)

1
2/(mLw)t ≤ [w]

1
2

Cd
2t

to get

Σm,n
2 ≤ C Cn

m[w]
1
2

Cd
2t
‖f‖2

(∑
L∈D

(ηmL /(mLw
−2t
q−1 )q−1) inf

x∈L
F (x)

) 1
2
.

Now using Weighted Carleson Lemma 3.1 with αL = ηmL /(mLw
−2t
q−1 )q−1

(which by Lemma 3.2 is a w2t-Carleson sequence with intensity no

larger than Cq(m+ 1)[w]Ad
q
, F (x) =

(
Mw2t |gw−t|p(x)

)2/p
, and v = w2t,

Σm,n
2 ≤ Cq(C

n
m)2[w]

1
2

Cd
2t

[w2t]
1
2

Ad
q
‖f‖2

∥∥∥Mw2t(|gw−t|p)
∥∥∥ 1

p

L
2
p (w2t)

.

Using (2.1), that is the boundedness of Mw2t in L
2
p (w2t) for 2/p > 1,

Σm,n
2 ≤ Cq(C

n
m)2(2/p)′[w]

1
2

Cd
2t

[w2t]
1
2

Ad
q
‖f‖2

∥∥∥|gw−t|p∥∥∥ 1
p

L
2
p (w2t)

≤ Cq(C
n
m)3[w]

1
2

Cd
2t

[w2t]
1
2

Ad
q
‖f‖2‖g‖2,

Since (2/p)′ = 2/(2− p) = 2Cn
m. The theorem is proved. �

Appendix

Proof of Lemma 3.2. We will show this inequality using a Bellman
function type method. Consider B(u, v, l) := u − 1/(vp−1(1 + l)) de-
fined on the domain D = {(u, v, l) ∈ R3, u > 0, v > 0, uvp−1 >
1 and 0 ≤ l ≤ 1}. Note that D is convex. Note that

(4.2) 0 ≤ B(u, v, l) ≤ u for all (u, v, l) ∈ D

and

(4.3) (∂B/∂l)(u, v, l) ≥ 1/4vp−1 for all (u, v, l) ∈ D.

and also −(du, dv, dl)d2B(du, dv, dl)t is non-negative because, it equals

−(du, dv, dl)

 0 0 0

0 p(1− p)v−p−1

1+l
(1− p) v−p

(l+1)2

0 (1− p) v−p

(l+1)2
−2 v1−p

(l+1)3


 du

dv
dl


= p(p− 1)

v−p−1

1 + l
(du)2 + 2(p− 1)

v−p

(l + 1)2
dudv + 2

v1−p

(l + 1)3
(dv)2 ≥ 0,

since all terms are positive for p > 1.



14 O. BEZNOSOVA, J.C. MORAES, AND M.C. PEREYRA

Now let us show that if (u−, v−, l−) and (u+, v+, l+) are in D and we
define (u0, v0, l) ∈ D where l is in between l+ and l−, u0 = (u− + u+)/2,
v0 = (v− + v+)/2, and l0 = (l− + l+)/2, then

B(u0, v0, l)−
(
B(u−, v−, l−) +B(u+, v+, l+

)
/2 ≥ |l − l0|/4vp−1

0

Write for −1 ≤ t ≤ 1, u(t) = [(t+ 1)u+ + (1− t)u−]/2, v(t) =
[(t+ 1)v+ + (1− t)v−]/2, and l(t) = [(t+ 1)l+ + (1− t)l−]/2,. Define
b(t) := B(u(t), v(t), l(t)), then b(0) = B(u0, v0, l0), b(1) = B(u+, v+, l+),
b(−1) = B(u−, v−, l−), du/dt = (u+ − u−)/2, dv/dt = (v+ − v−)/2
and dl/dt = (l+ − l−)/2. If (u+, v+, l+) and (u−, v−, l−) are in D then
(u(t), v(t), l(t)) is also in D for all |t| ≤ 1, since D is convex. It is a
calculus exercise to show that

(4.4) b(0)− b(1) + b(−1)

2
=
−1

2

∫ 1

−1

(1− |t|)b′′(t)dt

Also it is easy to check that −b′′(t) = −
(
du
dt
, dv
dt
, dl
dt

)
d2B

(
du
dt
, dv
dt
, dl
dt

)t
. By

the Mean Value Theorem and (4.4),

B(u0, v0, l)−
B(u−, v−, l−) +B(u+, v+, l+)

2

= (l − l0)
∂B

∂l
(u0, v0, l

′)− 1

2

∫ 1

−1

(1− |t|)b′′(t)dt ≥ l − l0
4vp−1

0

,

where l′ is a point between l and l0 = (l− + l+)/2.
Now we can use the Bellman function argument. Let u+ = mJ+w,

u− = mJ−w, v+ = mJ+w
−1
p−1 , v− = mJ−v

−1
p−1 , l+ = 1

|J+|Q
∑

I∈D(J+) λI

and l− = 1
|J−|Q

∑
I∈D(J−) λI . Thus (u−, v−, l−), (u+, v+, l+) ∈ D and

u0 = mJw, v0 = mJw
−1
p−1 , and l0 = 1

|J |Q
∑

I∈D(J) λI . Thus

(u0, v0, l0)−
(
(u− + u+)/2, (v− + v+)/2, (l− + l+)/2

)
=
(
0, 0, λJ/Q|J |

)
.

Then we can run the usual induction on scale arguments using the
properties of the Bellman function,

|J |mJw ≥ |J |B(u0, v0, l0)

≥ |J |B(u+, v+, l+)

2
+ |J |B(u−, v−, l−)

2
+ λJ/4Q

(
mJw

−1
p−1
)p−1

= |J+|B(u+, v+, l+) + |J−|B(u−, v−, l−) + λJ/4Q
(
mJw

−1
p−1
)p−1

Iterating, we get

mJw ≥
1

4Q|J |
∑

I∈D(J)

λI
(mIw−1/p−1)p−1

.

�
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