SHARP BOUNDS FOR T-HAAR MULTIPLIERS ON L^2

OLEKSANDRA BEZNOSOVA, JEAN CARLO MORAES, AND MARÍA CRISTINA PEREYRA

ABSTRACT. We show that if a weight $w \in C_{2t}^d$ and there is q > 1such that $w^{2t} \in A_q^d$, then the L^2 -norm of the t-Haar multiplier of complexity (m, n) associated to w depends on the square root of the C_{2t}^d -characteristic of w times the square root A_q^d -characteristic of w^{2t} times a constant that depends polynomially on the complexity. In particular, if $w \in C_{2t}^d \cap A_\infty^d$ then $w^{2t} \in A_q^d$ for some q > 1.

1. INTRODUCTION

Recently Tuomas Hytönen settled the A_2 -conjecture [H]: for all Calderón-Zygmund integral singular operators T in \mathbb{R}^N , weights $w \in A_p$, there is $C_{p,N,T} > 0$ such that,

$$||Tf||_{L^p(w)} \le C_{p,N,T}[w]_{A_p}^{\max\{1,\frac{1}{p-1}\}} ||f||_{L^p(w)}.$$

In his proof he developed and used a representation valid for any Calderón-Zygmund operator as an average of Haar shift operators of arbitrary complexity, paraproducts and their adjoints. See [L1, P4] for surveys of the A_2 -conjecture. An important and hard part of the proof was to obtain bounds for Haar shifts operators that depended linearly in the A_2 -characteristic and at most polynomially in the complexity.

In this paper we show that if a weight $w \in C_{2t}^d \cap A_{\infty}^d$, then the L^2 -norm of the *t*-Haar multiplier of complexity (m, n) associated to w depends on the square root of the C_{2t}^d -characteristic of w times the square root A_q^d -characteristic of w^{2t} for some q > 1 depending on $t \in \mathbb{R}$ times a constant that depends polynomially on the complexity.

For $t \in \mathbb{R}$, $m, n \in \mathbb{N}$, and a weight w, the *t*-Haar multiplier of complexity (m, n) was introduced in [MoP], and is defined formally by

$$T_{t,w}^{m,n}f(x) = \sum_{L \in \mathcal{D}} \sum_{I \in \mathcal{D}_m(L), J \in \mathcal{D}_n(L)} c_{I,J}^L \frac{w^{\iota}(x)}{(m_L w)^t} \langle f, h_I \rangle h_J(x),$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 42C99; Secondary 47B38.

Key words and phrases. A_p -weights, Haar multipliers, complexity.

The first author was supported by fellowship CAPES/FULBRIGHT, 2918-06/4.

where $|c_{I,J}^L| \leq \sqrt{|I| |J|/|L|}$, \mathcal{D} denotes the dyadic intervals, |I| the length of interval I, $\mathcal{D}_m(L)$ denotes the dyadic subintervals of L of length $2^{-m}|L|$, h_I is a Haar function associated to |I|, and $\langle f, g \rangle$ denotes the L^2 -inner product.

When (m, n) = (0, 0) we denote the corresponding Haar multiplier by T_w^t , and, if in addition t = 1, simply T_w . The Haar multipliers T_w are closely related to the resolvent of the dyadic paraproduct [P1], and appeared in the study of Sobolev spaces on Lipschitz curves [P3].

A necessary condition for the boundedness of $T_{w,t}^{m,n}$ on $L^2(\mathbb{R})$, when $c_{I,J}^L = \sqrt{|I| |J|}/|L|$, is that $w \in C_{2t}^d$, see [MoP], that is,

$$[w]_{C_{2t}^d} := \sup_{I \in \mathcal{D}} \Big(\frac{1}{|I|} \int_I w^{2t}(x) dx \Big) \Big(\frac{1}{|I|} \int_I w(x) dx \Big)^{-2t} < \infty.$$

This condition is sufficient for t < 0 and $t \ge 1/2$ and for all t-Haar multipliers $T_{w,t}^{m,n}$. Notice that for $0 \le t < 1/2$ the condition C_{2t}^d is always fulfilled; in this case, boundedness of $T_{w,t}^{m,n}$ is known when $w \in$ A_{∞}^d [MoP, KP]. The first author showed in [Be, Chapter 5], that if $w \in C_{2t}^d$ and $w^{2t} \in A_q^d$ then the L^2 -norm of T_w^t , is bounded by a constant times $[w]_{C_{2t}}^{1/2} [w^{2t}]_{A_q^d}^{1/2}$. Here we present a different proof of this result that holds for t-Haar multipliers of complexity (m, n) with polynomial dependence on the complexity.

Theorem 1.1. Let $w \in C_{2t}^d$ and assume there is q > 1 such that $w^{2t} \in A_q^d$, then there is a constant $C_q > 0$ depending only on q, such that

$$||T_{t,w}^{m,n}f||_2 \le C_q (m+n+2)^3 [w]_{C_{2t}^d}^{\frac{1}{2}} [w^{2t}]_{A_q^d}^{\frac{1}{2}} ||f||_2.$$

When $w^{2t} \in A_2^d$, this was proved in [MoP].

Using known properties of weights we can replace the condition $w^{2t} \in A^d_q$, by what may seem to be a more natural condition $w \in C^d_{2t} \cap A^d_\infty$.

Theorem 1.2. Let $w \in C_{2t}^d \cap A_{\infty}^d$, then

(i) if $0 \le 2t < 1$, there is q > 1 such that $w \in A_q^d$, then $w^{2t} \in A_q^d$, and

$$\|T_{t,w}^{m,n}f\|_{2} \leq C_{q}(m+n+2)^{3}[w^{2t}]_{A_{q}^{d}}^{\frac{1}{2}}\|f\|_{2} \leq C_{q}(m+n+2)^{3}[w]_{A_{q}^{d}}^{t}\|f\|_{2}.$$
(ii) If $2t \geq 1$ and $w \in A_{p}^{d}$ then for $q = 2t(p-1)+1$, $w^{2t} \in A_{q}^{d}$, and

 $\|T_{t,w}^{m,n}f\|_{2} \le C_{q}(m+n+2)^{3}[w]_{C_{2t}^{d}}^{\frac{1}{2}}[w^{2t}]_{A_{q}^{d}}^{\frac{1}{2}}\|f\|_{2} \le C_{p}(m+n+2)^{3}[w]_{C_{2t}^{d}}[w]_{A_{p}^{d}}\|f\|_{2}.$

(iii) If t < 0 then for q = 1 - 2t, $w^{2t} \in A_q^d$, and the bound becomes linear in the C_{2t}^d characteristic of w,

$$||T_{t,w}^{m,n}f||_2 \le C(m+n+2)^3 [w]_{C_{2t}^d} ||f||_2.$$

The result was known to be optimal when $t = \pm 1/2$ [Be, P2]. The bound in (ii) is not optimal since for t = 1, the L^2 norm of T_w is bounded by a constant times $[w]_{C_2^d}D(w)$, where D(w) is the doubling constant of w, see [P2]. Here we get the larger norm $C[w]_{C_2^d}[w]_{A_n^d}$.

To prove this theorem we modify the argument in [MoP] that works when $w \in A_2^d$ (p = 2). In particular we need a couple of new A_p weight lemmas that are proved using Bellman function techniques: the A_p -Little Lemma, and the $\alpha\beta$ -Lemma.

A few open questions remain. In case (i) 0 < 2t < 1, is $w^{2t} \in A^d_{\infty}$ a necessary condition for the boundedness of $T^{m,n}_{tw}$? Here we show is sufficient. Is it possible to get an estimate independent of q > 1such that $w^{2t} \in A_q^d$? More specifically, can we replace $C_q[w^{2t}]_{A_q^d}^{1/2}$ by $C[w^{2t}]_{A_{\infty}^{d}}$? or even better by CD(w)? Similarly in case (ii).

The paper is organized as follows. In Section 2 we provide the basic definitions and basic results that are used through-out this paper. In Section 3 we prove the lemmas that are essential for the main result. In Section 4 we prove the main estimate for the *t*-Haar multipliers with complexity (m, n). In the Appendix we prove the A_p -Little Lemma.

2. Preliminaries

2.1. Weights, maximal function and dyadic intervals. A weight w is a locally integrable function in \mathbb{R} positive almost everywhere. The w-measure of a measurable set E, denoted by w(E), is w(E) = $\int_E w(x)dx$. For a measure σ , $\sigma(E) = \int_E d\sigma$, and |E| stands for the Lebesgue measure of E. We define $m_E^{\sigma}f$ to be the integral average of f on E, with respect to σ ,

$$m_E^{\sigma}f := \frac{1}{\sigma(E)} \int_E f(x) d\sigma.$$

When $dx = d\sigma$ we simply write $m_E f$, when $d\sigma = v \, dx$ we write $m_E^v f$. Given a weight w, a measurable function $f : \mathbb{R}^N \to \mathbb{C}$ is in $L^p(w)$ if and only if $||f||_{L^p(w)} := \left(\int_{\mathbb{R}} |f(x)|^p w(x) dx\right)^{1/p} < \infty.$

For a weight v we define the weighted maximal function of f by

$$(M_v f)(x) = \sup_{I:x \in I} m_I^v |f|$$

where I is a cube in \mathbb{R}^N with sides parallel to the axis. The operator M_v is bounded in $L^p(v)$ for all p > 1 and furthermore

(2.1)
$$\|M_v f\|_{L^p(v)} \le Cp' \|f\|_{L^q(v)},$$

where p' is the dual exponent of p, that is 1/p + 1/p' = 1. A proof of this fact can be found in [CrMPz1]. When v = 1, M_v is the usual Hardy-Littlewood maximal function, which we will denote by M. It is well-known that M is bounded in $L^p(w)$ if and only if $w \in A_p$ [Mu].

The collection of all dyadic intervals, \mathcal{D} , is given by: $\mathcal{D} = \bigcup_{n \in \mathbb{Z}} \mathcal{D}_n$, where $\mathcal{D}_n := \{I \subset \mathbb{R} : I = [k2^{-n}, (k+1)2^{-n}), k \in \mathbb{Z}\}$. For a dyadic interval L, let $\mathcal{D}(L)$ be the collection of its dyadic subintervals, $\mathcal{D}(L) := \{I \subset L : I \in \mathcal{D}\}$, and let $\mathcal{D}_n(L)$ be the n^{th} -generation of dyadic subintervals of L, $\mathcal{D}_n(L) := \{I \in \mathcal{D}(L) : |I| = 2^{-n}|L|\}$.

For every dyadic interval $I \in \mathcal{D}_n$ there is exactly one $\widehat{I} \in \mathcal{D}_{n-1}$, such that $I \subset \widehat{I}$, \widehat{I} is called the parent of I. Each dyadic interval I in \mathcal{D}_n has two children in \mathcal{D}_{n+1} , the right and left halves, denoted I_+ and I_- respectively.

A weight w is dyadic doubling if $w(\widehat{I})/w(I) \leq C$ for all $I \in \mathcal{D}$. The smallest constant C is called the doubling constant of w and is denoted by D(w). Note that $D(w) \geq 2$, and that in fact the ratio between the length of a child and the length of its parent is comparable to one, more precisely, $D(w)^{-1} \leq w(I)/w(\widehat{I}) \leq 1 - D(w)^{-1}$.

2.2. **Dyadic** A_p^d , reverse Hölder RH_p^d and C_s^d classes. A weight w is said to belong to the *dyadic Muckenhoupt* A_p^d -class if and only if

$$[w]_{A_p^d} := \sup_{I \in \mathcal{D}} (m_I w) (m_I w^{\frac{-1}{p-1}})^{p-1} < \infty, \quad \text{for} \quad 1 < p < \infty,$$

where $[w]_{A_p^d}$ is called the A_p^d -characteristic of the weight. If a weight is in A_p^d then it is dyadic doubling. These classes are nested, $A_p^d \subset A_q^d$ for all $p \leq q$. The class A_{∞}^d is defined by $A_{\infty}^d := \bigcup_{p>1} A_p^d$.

A weight w is said to belong to the *dyadic reverse Hölder* RH_p^d -class if and only if

$$[w]_{RH_p^d} := \sup_{I \in \mathcal{D}} (m_I w^p)^{\frac{1}{p}} (m_I w)^{-1} < \infty, \qquad \text{for} \quad 1 < p < \infty,$$

where $[w]_{RH_p^d}$ is called the RH_p^d -characteristic of the weight. If a weight is in RH_p^d then it is not necessarily dyadic doubling (in the non-dyadic setting reverse Hölder weights are always doubling). Also these classes are nested, $RH_p^d \subset RH_q^d$ for all $p \ge q$. The class RH_1^d is defined by $RH_1^d := \bigcup_{p>1} RH_p^d$. In the non-dyadic setting $A_{\infty} = RH_1$. In the dyadic setting the collection of dyadic doubling weights in RH_1^d is A_{∞}^d , hence A_{∞}^d is a proper subset of RH_1^d . See [BeRez] for some recent and very interesting results relating these classes.

The following are well-known properties of weights (see [JN]) for (ii)):

Lemma 2.1. The following hold

- If $0 \leq s \leq 1$ and $w \in A^d_{\infty}$ then $w^s \in A_{\infty}$. More precisely, if p > 1 and $w \in A^d_p$ then $w^s \in A_p$, and $[w^s]_{A^d_p} \leq [w]^s_{A^d_p}$.
- If s, q > 1 then $w \in RH_s^d \cap A_q^d$ if and only if $w^s \in A_{s(q-1)+1}$. Moreover $[w^s]_{A_{s(q-1)+1}} \leq [w]_{RH_s^d}^s [w]_{A_q^d}^s$, $[w]_{A_q^d}^s \leq [w^s]_{A_{s(q-1)+1}}$, and $[w]_{RH_s^d}^s \leq [w^s]_{A_{s(q-1)+1}}$.
- If p > 1, and 1/p + 1/p' = 1, then $w \in A_p^d$ if and only if $w^{-1/p-1} \in A_{p'}$. Moreover $[w]_{A_p^d} = [w^{-1/p-1}]_{A_{n'}^d}^{p-1}$.

The following property can be found in [GaRu],

Lemma 2.2. If $w \in RH_s^d \cap A_q^d$ then for all $E \subset B$,

$$(|E|/|B|)^{q}[w]_{A_{q}^{d}}^{-1} \le w(E)/w(B) \le (|E|/|B|)^{1-\frac{1}{s}}[w]_{RH_{s}^{d}}.$$

In particular $D(w) \leq 2^q [w]_{A^d_q}$.

A weight w satisfies the C_s^d -condition, for $s \in \mathbb{R}$, if

$$[w]_{C_s^d} := \sup_{I \in \mathcal{D}} \left(m_I w^s \right) \left(m_I w \right)^{-s} < \infty.$$

The quantity defined above is called the C_s^d -characteristic of w. The class of weights C_s^d was defined in [KP]. Let us analyze this definition. For $0 \le s \le 1$, we have that any weight satisfies the condition with C_s^d -characteristic 1, this is just a consequence of Hölder's Inequality (for s = 0, 1 is trivial). When s > 1, the condition is analogous to the dyadic reverse Hölder condition and $[w]_{C_s^d}^{1/s} = [w]_{RH_s^d}$. For s < 0, we have that $w \in C_s^d$ if and only if $w \in A_{1-1/s}^d$, moreover $[w]_{C_s^d} = [w]_{A_{1-1/s}^d}^{-s}$.

Lemma 2.3. If $w \in C_s^d \cap A_\infty^d$ then the following hold

- For all $0 \le s \le 1$, there is a p > 1 such that $w^s \in A_p$.
- If s > 1 then there is q > 1 such that $w^s \in A_{s(q-1)+1}$.
- If s < 0 then $w^s \in A_{1-s}$.

The proof of this lemma is a direct application of Lemma 2.1 item by item.

2.3. Weighted Haar functions. For a given weight v and an interval I define the *weighted Haar function* as

(2.2)
$$h_{I}^{v}(x) = \frac{1}{v(I)} \left(\sqrt{\frac{v(I_{-})}{v(I_{+})}} \chi_{I_{+}}(x) - \sqrt{\frac{v(I_{+})}{v(I_{-})}} \chi_{I_{-}}(x) \right),$$

where $\chi_I(x)$ is the characteristic function of the interval *I*.

If v is the Lebesgue measure on \mathbb{R} , we will denote the *Haar function* simply by h_I . It is a simple exercise to verify that the weighted and unweighted Haar functions are related linearly as follows,

Proposition 2.4. For any weight v, there are numbers α_I^v , β_I^v such that

$$h_I(x) = \alpha_I^v h_I^v(x) + \beta_I^v \chi_I(x) / \sqrt{|I|}$$

where (i) $|\alpha_{I}^{v}| \leq \sqrt{m_{I}v}$, (ii) $|\beta_{I}^{v}| \leq |\Delta_{I}v|/m_{I}v, \Delta_{I}v := m_{I_{+}}v - m_{I_{-}}v$.

The family $\{h_I^v\}_{I\in\mathcal{D}}$ is an orthonormal system in $L^2(v)$, with inner product $\langle f, g \rangle_v := \int_{\mathbb{R}} f(x) \overline{g(x)} v(x) dx$.

2.4. Carleson sequences. If v is a weight, a positive sequence $\{\alpha_I\}_{I \in \mathcal{D}}$ is called a v-Carleson sequence with intensity B if for all $J \in \mathcal{D}$,

(2.3)
$$\frac{1}{|J|} \sum_{I \in \mathcal{D}(J)} \lambda_I \le B \ m_J v.$$

When v = 1 we call a sequence satisfying (2.3) for all $J \in \mathcal{D}$ a Carleson sequence with intensity B.

Proposition 2.5. Let v be a weight, $\{\lambda_I\}_{I \in \mathcal{D}}$ and $\{\gamma_I\}_{I \in \mathcal{D}}$ be two v-Carleson sequences with intensities A and B respectively then for any c, d > 0 we have that

- (i) $\{c\lambda_I + d\gamma_I\}_{I \in \mathcal{D}}$ is a v-Carleson sequence with intensity cA + dB.
- (ii) $\{\sqrt{\lambda_I}\sqrt{\gamma_I}\}_{I\in\mathcal{D}}$ is a v-Carleson sequence with intensity \sqrt{AB} .
- (iii) $\{(c\sqrt{\lambda_I} + d\sqrt{\gamma_I})^2\}_{I \in \mathcal{D}}$ is a *v*-Carleson sequence with intensity $2c^2A + 2d^2B$.

The proof of these statements is quite simple, see [MoP].

3. Main tools

In this section, we state the lemmas and theorems necessary to get the estimate for the *t*-Haar multipliers of complexity (m, n). 3.1. Carleson Lemmas. The Weighted Carleson Lemma we present here is a variation in the spirit of other weighted Carleson embedding theorems that appeared before in the literature [NV, NTV1]. You can find a proof in [MoP].

Lemma 3.1 (Weighted Carleson Lemma). Let v be a weight, then $\{\alpha_L\}_{L \in \mathcal{D}}$ is a v-Carleson sequence with intensity B if and only if for all non-negative v-measurable functions F on the line,

(3.1)
$$\sum_{L \in \mathcal{D}} \alpha_L \inf_{x \in L} F(x) \le B \int_{\mathbb{R}} F(x) v(x) \, dx$$

The following lemma we view as a finer replacement for Hölder's inequality: $1 \leq (m_I w) (m_I w^{-1/(p-1)})^{p-1}$.

Lemma 3.2 (A_p -Little Lemma). Let v be a weight, such that $v^{-1/(p-1)}$ is a weight as well, and let $\{\lambda_I\}_{I\in\mathcal{D}}$ be a Carleson sequence with intensity Q then $\{\lambda_I/(m_Iv^{-1/(p-1)})^{p-1}\}_{I\in\mathcal{D}}$ is a v-Carleson sequence with intensity 4Q, that is for all $J \in \mathcal{D}$,

$$\frac{1}{|J|} \sum_{I \in \mathcal{D}(J)} \frac{\lambda_I}{(m_I v^{-1/(p-1)})^{p-1}} \le 4Q \ m_J v.$$

For p = 2 this was proved in [Be, Proposition 3.4], or [Be1, Proposition 2.1], using the same Bellman function as in the proof we present in the Appendix.

Lemma 3.3 ([NV]). Let v be a weight such that $v^{-1/(p-1)}$ is also a weight. Let $\{\lambda_J\}_{J\in\mathcal{D}}$ be a Carleson sequence with intensity B. Let F be a non-negative measurable function on the line. Then

$$\sum_{J \in \mathcal{D}} \frac{\lambda_J}{(m_J v^{-1/(p-1)})^{p-1}} \inf_{x \in J} F(x) \le C \ B \int_{\mathbb{R}} F(x) v(x) \, dx$$

Lemma 3.3 is an immediate consequence of Lemma 3.2, and the Weighted Carleson Lemma 3.1. Note that Lemma 3.2 can be deduced from Lemma 3.3 with $F(x) = \chi_J(x)$.

The following lemma, for $v = w^{-1}$, and for $\alpha = 1/4$ appeared in [Be], and for $0 < \alpha < 1/2$, in [NV]. With small modification in their proof, using the Bellman function $B(x, y) = x^{\alpha}y^{\beta}$ with domain of definition the first quadrant x, y > 0, we can accomplish the result below, for a complete proof see [Mo].

Lemma 3.4. $(\alpha\beta$ -Lemma) Let u, v be weights. Then for any $J \in \mathcal{D}$ and any $\alpha, \beta \in (0, 1/2)$

(3.2)
$$\frac{1}{|J|} \sum_{I \in \mathcal{D}(J)} \frac{|\Delta_I u|^2}{(m_I u)^2} |I| (m_I u)^{\alpha} (m_I v)^{\beta} \le C_{\alpha,\beta} (m_J u)^{\alpha} (m_J v)^{\beta}.$$

The constant $C_{\alpha,\beta} = 36/\min\{\alpha - 2\alpha^2, \beta - 2\beta^2\}.$

From this lemma we immediately deduce the following,

Lemma 3.5. Let $1 < q < \infty$, $w \in A_q^d$, then $\{\mu_I^{q,\alpha}\}_{I \in \mathcal{D}}$, where

$$\mu_I^{q,\alpha} := (m_I w)^{\alpha} (m_I w^{\frac{-1}{q-1}})^{\alpha(q-1)} |I| \left(\frac{|\Delta_I w|^2}{(m_I w)^2} + \frac{|\Delta_I w^{\frac{-1}{q-1}}|^2}{(m_I w^{\frac{-1}{q-1}})^2} \right),$$

is a Carleson sequence with Carleson intensity at most $C_{\alpha}[w]_{A_q}^{\alpha}$ for any $\alpha \in (0, \max\{1/2, 1/2(q-1)\})$. Moreover, $\{\nu_I^q\}_{I \in \mathcal{D}}$, where

$$\nu_I^q := (m_I w) (m_I w^{\frac{-1}{q-1}})^{(q-1)} |I| \left(\frac{|\Delta_I w|^2}{(m_I w)^2} + \frac{|\Delta_I w^{\frac{-1}{q-1}}|^2}{(m_I w^{\frac{-1}{q-1}})^2} \right)$$

is a Carleson sequence with Carleson intensity at most $C[w]_{A_a}$.

Proof. Set u = w, $v = w^{-\frac{1}{q-1}}$, $\beta = \alpha(q-1)$. By hypothesis $0 < \alpha < 1/2$ and also $0 < \alpha < 1/2(q-1)$ which implies that $0 < \beta < 1/2$, we can now use Lemma 3.4 to show that $\mu_I^{q,\alpha}$ is a Carleson sequence with intensity at most $c_{\alpha}[w]_{A_q^d}^{\alpha}$. For the second statement suffices to notice that $\nu_I^q \leq \mu_I^{q,\alpha}[w]_{A_q^d}^{1-\alpha}$ for all $I \in \mathcal{D}$, for some $\alpha \in (0, \max\{1/2, 1/2(q-1)\})$

A proof of this lemma for q = 2 that works on geometric doubling metric spaces can be found in [NV1, V]. In those papers $\alpha = 1/4$ can be used, and in that case the constant C_{α} can be replaced by 288.

3.2. Lift Lemma. Given a dyadic interval L, and weights u, v, we introduce a family of stopping time intervals ST_L^m such that the averages of the weights over any stopping time interval $K \in ST_L^m$ are comparable to the averages on L, and $|K| \ge 2^m |L|$. This construction appeared in [NV] for the case $u = w, v = w^{-1}$. We also present a lemma that lifts w-Carleson sequences on intervals to w-Carleson sequences on "m-stopping time intervals". This was used in [NV] for a very specific choice of m-stopping time intervals ST_L^m .

Lemma 3.6 (Lift Lemma [NV]). Let u and v be weights, L be a dyadic interval and m, n be fixed positive integers. Let ST_L^m be the collection of maximal stopping time intervals $K \in \mathcal{D}(L)$, where the stopping criteria are either (i) $|\Delta_K u|/m_K u + |\Delta_K v|/m_K v \ge 1/m + n + 2$, or (ii) $|K| = 2^{-m}|L|$. Then for any stopping interval $K \in ST_L^m$, $e^{-1}m_L u \le m_K u \le$ $e m_L u$, and hence also $e^{-1}m_L v \le m_K v \le e m_L v$. Note that the roles of m and n can be interchanged and we get the family ST_L^n using the same stopping condition (i) and condition (ii) replaced by $|K| = 2^{-n}|L|$. Notice that ST_L^m is a partition of L in dyadic subintervals of length at least $2^{-m}|L|$. The following lemma lifts a w-Carleson sequence to m-stopping time intervals with comparable intensity. For the particular m-stopping time ST_L^m given by the stopping criteria (i) and (ii) in Lemma 3.6, and w = 1, this appeared in [NV].

Lemma 3.7. For each $L \in \mathcal{D}$ let ST_L^m be a partition of L in dyadic subintervals of length at least $2^{-m}|L|$. Assume $\{\nu_I\}_{I\in\mathcal{D}}$ is a w-Carleson sequence with intensity at most A, let $\nu_L^m := \sum_{K\in ST_L^m} \nu_K$, then $\{\nu_L^m\}_{L\in\mathcal{D}}$ is a w-Carleson sequence with intensity at most (m + 1)A.

For proofs you can see [MoP].

3.3. Auxiliary quantities. For a weight v, and a locally integrable function ϕ we define the following quantities,

(3.3)
$$P_L^m \phi := \sum_{I \in \mathcal{D}_m(L)} |\langle \phi, h_I \rangle| \sqrt{|I|/|L|},$$

(3.4)
$$S_L^{v,m}\phi := \sum_{J \in \mathcal{D}_m(L)} |\langle \phi, h_J^v \rangle_v | \sqrt{m_J v} \sqrt{|J|/|L|},$$

(3.5)
$$R_L^{v,m}\phi := \sum_{J \in \mathcal{D}_m(L)} \frac{|\Delta_J v|}{m_J v} m_J(|\phi|v) |J|/\sqrt{|L|},$$

Let $w \in A_q^d$, ST_L^m be an *m*-stopping time family of subintervals of L, $0 < \alpha < \max\{1/2, 1/2(q-1)\}$, and $\{\mu_K^q = \mu_K^{q,\alpha}\}_{K \in \mathcal{D}}$ be the Carleson sequence with intensity $C_{\alpha}[w]_{A_q^d}$ defined in Lemma 3.5. For each m > 0, we introduce another sequence $\{\mu_L^m\}$, which is Carleson by Lemma 3.7:

$$\mu_L^m := \sum_{K \in \mathcal{ST}_L^m} \mu_K^q \quad \text{with intensity} \quad C_\alpha(m+1)[w]_{A_q^d}.$$

We will use the following estimates for $S_L^{v,m}\phi$ and $R_L^{v,m}\phi$, where 1 will be dictated by the proof of the theorem.

(3.6)
$$S_L^{v,m}\phi \leq \Big(\sum_{J\in\mathcal{D}_m(L)} |\langle\phi,h_J^v\rangle_v|^2\Big)^{\frac{1}{2}} (m_L v)^{\frac{1}{2}},$$

(3.7)

$$R_L^{v,m}\phi \le C C_m^n (m_L v^{\frac{-1}{q-1}})^{\frac{-(q-1)}{2}} (m_L v)^{\frac{1}{2}} \inf_{x \in L} \left(M_{w^{-1}}(|g|^p)(x) \right)^{\frac{1}{p}} \sqrt{\mu_L^m},$$

See [NV] for the proof when q = 2, slight modification of their argument gives the estimate for $R_L^{v,m}\phi$. Estimating $P_L^n\phi$ is very simple:

$$(3.8) \quad (P_L^m \phi)^2 \le \sum_{I \in \mathcal{D}_m(L)} |I| / |L| \sum_{I \in \mathcal{D}_m(L)} |\langle \phi, h_I \rangle|^2 = \sum_{I \in \mathcal{D}_m(L)} |\langle \phi, h_I \rangle|^2.$$

Remark 3.8. In [NV1], Nazarov and Volberg extend the results that they had in [NV] for Haar shifts to metric spaces with geometric doubling. Following the same modifications in the argument made from [NV] to [NV1], one could obtain the same result as in Theorem 4.1 on a metric space with geometric doubling, see [Mo1].

4. HAAR MULTIPLIERS

For a weight $w, t \in \mathbb{R}$, and $m, n \in \mathbb{N}$, a *t*-Haar multiplier of complexity (m, n) is the operator defined as

(4.1)
$$T_{t,w}^{m,n}f(x) := \sum_{L \in \mathcal{D}} \sum_{I \in \mathcal{D}_n(L); J \in \mathcal{D}_m(L)} c_{I,J}^L \left(\frac{w(x)}{m_L w}\right)^t \langle f, h_I \rangle h_J(x),$$

where $|c_{I,J}^L| \leq \sqrt{|I||J|}/|L|$. In [MoP] it is shown that $w \in C_{2t}^d$ is a necessary condition for boundedness of $T_{w,t}^{m,n}$ in $L^2(\mathbb{R})$ when $c_{I,J}^L = \sqrt{|I||J|}/|L|$. It is also shown that the C_{2t}^d -condition is sufficient for a t-Haar multiplier of complexity (m, n) to be bounded in $L^2(\mathbb{R})$ for most t; this was proved in [KP] for the case m = n = 0. Here we are concerned not only with the boundedness but also with the dependence of the operator norm on the C_{2t}^d -constant . For T_w^t and $t = 1, \pm 1/2$ this was studied in [P2]. The first author [Be] was able to obtain estimates, under the additional condition on the weight $w^{2t} \in A_q^d$ for some q > 1, for T_w^t and for all $t \in \mathbb{R}$. Her results were generalized for $T_{w,t}^{m,n}$ for all t when $w^{2t} \in A_2^d$, see [MoP]. We will show that:

Theorem 4.1. Let t be a real number and w a weight such that $w^{2t} \in A_q^d$ for some q > 1 (i.e. $w^{2t} \in A_{\infty}^d$), then

$$||T_{t,w}^{m,n}f||_2 \le C_q (m+n+2)^3 [w]_{C_{2t}^d}^{\frac{1}{2}} [w^{2t}]_{A_q^d}^{\frac{1}{2}} ||f||_2.$$

Using Lemmas 2.1 and 2.3 we can refine the result as follows:

Theorem 4.2. Let $t \in \mathbb{R}$, $w \in C^{2t}$, and $C_m^n = n + m + 2$, then (i) If 0 < 2t < 1 and $w \in A_p^d$ then

$$||T_{t,w}^{m,n}f||_2 \le C_p (C_m^n)^3 [w^{2t}]_{A_p^d}^{\frac{1}{2}} ||f||_2 \le C_p (C_m^n)^3 [w]_{A_p^d}^{t} ||f||_2.$$

(ii) If t > 1 and $w \in A_p^d$ then if q = 2t(p-1) + 1 $\|T_{t,w}^{m,n}f\|_2 \le C_p(C_m^n)^3 [w]_{C_{2t}^d}^{\frac{1}{2}} [w^{2t}]_{A_q^d}^{\frac{1}{2}} \|f\|_2 \le C_p(C_m^n)^3 [w]_{C_{2t}^d} [w]_{A_p^d}^t.$ (iii) If t < 0 then $\|T_{t,w}^{m,n}f\|_2 \le C(C_m^n)^3 [w]_{C_{2t}^d} \|f\|_2 = C(C_m^n)^3 [w]_{A_{1-1/2t}^d}^{-2t} \|f\|_2.$

Remark 4.3. Throughout the proof a constant C_q will be a numerical constant depending only on the parameter q > 1 that may change from line to line.

Proof of Theorem 4.2. By Lemma 2.3 if $w \in C_{2t}^d \cap A_{\infty}^d$ then there is q > 1 such that $w^{2t} \in A_q^d$, matching cases perfectly. Now use Theorem 4.1.

Proof of Theorem 4.1. Fix $f, g \in L^2(\mathbb{R})$. By duality, it is enough to show that

$$\langle T_{t,w}^{m,n}f,g\rangle| \le C(m+n+2)^3 [w]_{C_{2t}^d}^{\frac{1}{2}} [w^{2t}]_{A_q^d}^{\frac{1}{2}} ||f||_2 ||g||_2.$$

The inner product on the left-hand-side can be expanded into a double sum, that we now estimate,

$$|\langle T_{t,w}^{m,n}f,g\rangle| \leq \sum_{L\in\mathcal{D}}\sum_{I\in\mathcal{D}_n(L);J\in\mathcal{D}_m(L)}\frac{\sqrt{|I||J|}}{|L|}\frac{|\langle f,h_I\rangle|}{(m_Lw)^t} |\langle gw^t,h_J\rangle|.$$

Write h_J as a linear combination of a weighted Haar function and a characteristic function, $h_J = \alpha_J h_J^{w^{2t}} + \beta_J \chi_J / \sqrt{|J|}$, where $\alpha_J = \alpha_J^{w^{2t}}$, $\beta_J = \beta_J^{w^{2t}}$, $|\alpha_J| \leq \sqrt{m_J w^{2t}}$, and $|\beta_J| \leq |\Delta_J(w^{2t})| / m_J w^{2t}$. Now break into two terms to be estimated separately so that,

$$|\langle T_{t,w}^{m,n}f,g\rangle| \le \Sigma_1^{m,n} + \Sigma_2^{m,n},$$

where

$$\Sigma_{1}^{m,n} := \sum_{L \in \mathcal{D}} \sum_{I \in \mathcal{D}_{n}(L); J \in \mathcal{D}_{m}(L)} \frac{\sqrt{|I| |J|}}{|L|} \frac{\sqrt{m_{J}(w^{2t})}}{(m_{L}w)^{t}} |\langle f, h_{I} \rangle| |\langle gw^{t}, h_{J}^{w^{2t}} \rangle|,$$

$$\Sigma_{2}^{m,n} := \sum_{L \in \mathcal{D}} \sum_{I \in \mathcal{D}_{n}(L); J \in \mathcal{D}_{m}(L)} \frac{|J|\sqrt{|I|}}{|L|(m_{L}w)^{t}} \frac{|\Delta_{J}(w^{2t})|}{m_{J}(w^{2t})} |\langle f, h_{I} \rangle| m_{J}(|g|w^{t}).$$

Let $p = 2 - (C_n^m)^{-1}$ (note that 2 > p > 1, in fact is getting closer to 2 as m and n increase), and define as in (3.3), (3.4) and (3.5), the quantities $P_L^m \phi$, $S_L^{v,n} \phi$ and $R_L^{v,n} \phi$, we will use here the case $v = w^{2t}$, for appropriate ϕ s and corresponding estimates. Note that 1 . The sequence $\{\eta_I\}_{I\in\mathcal{D}}$ where

$$\eta_I := (m_I w^{2t}) (m_I w^{\frac{-2t}{q-1}})^{(q-1)} \Big(\frac{|\Delta_I(w^{2t})|^2}{|m_I w^{2t}|^2} + \frac{|\Delta_I(w^{-2t/(q-1)})|^2}{|m_I w^{-2t/(q-1)}|^2} \Big) |I|,$$

is a Carleson sequence with intensity $C_q[w^{2t}]_{A_q^d}$ by Lemma 3.5. The sequence $\{\eta_L^m\}_{I\in\mathcal{D}}$ where

$$\eta_L^m := \sum_{I \in \mathcal{ST}_L^m} \eta_I,$$

and the stopping time \mathcal{ST}_L^m is defined as in Lemma 3.6 but with respect to the weights $u = w^{2t}$, $v = w^{-2t/(q-1)}$, is a Carleson sequence with intensity $C_q(m+1)[w^{2t}]_{A_q^d}$ by Lemma 3.7, .

Observe that on the one hand $\langle gw^t, h_J^{w^{2t}} \rangle = \langle gw^{-t}, h_J^{w^{2t}} \rangle_{w^{2t}}$, and on the other $m_J(|g|w^t) = m_J(|gw^{-t}|w^{2t})$. Therefore,

$$\Sigma_1^{m,n} = \sum_{L \in \mathcal{D}} (m_L w)^{-t} S_L^{w^{2t},n} (gw^{-t}) P_L^m f,$$

$$\Sigma_2^{m,n} = \sum_{L \in \mathcal{D}} (m_L w)^{-t} R_L^{w^{2t},n} (gw^{-t}) P_L^m f.$$

Estimates (3.6) and (3.7) hold for $S_L^{w^{2t},m}(gw^{-t})$ and $R_L^{w^{2t},m}(gw^{-t})$ with v and ϕ replaced by w^{2t} and gw^{-t} :

$$S_{L}^{w^{2t},n}(gw^{-t}) \leq (m_{L}w^{2t})^{\frac{1}{2}} \Big(\sum_{J \in \mathcal{D}_{m}(L)} |\langle gw^{-t}, h_{J}^{w^{2t}} \rangle_{w^{2t}}|^{2} \Big)^{\frac{1}{2}},$$

$$R_{L}^{w^{2t},n}(gw^{-t}) \leq C C_{m}^{n}(m_{L}w^{2t})^{\frac{1}{2}}(m_{L}w^{\frac{2t}{q-1}})^{\frac{-(q-1)}{2}} F^{\frac{1}{2}}(x) \sqrt{\eta_{L}^{m}},$$

where $F(x) = \inf_{x \in L} \left(M_{w^{2t}}(|gw^{-t}|^p)(x) \right)^{\frac{2}{p}}$.

Estimating $\Sigma_1^{m,n}$: Plug in the estimates for $S_L^{w^{2t},n}(gw^{-t})$ and $P_L^m f$, observe that $(m_L w^{2t})^{\frac{1}{2}}/(m_L w)^t \leq [w]_{C_{2t}^d}^{\frac{1}{2}}$, use the Cauchy-Schwarz inequality, to get,

$$\begin{split} \Sigma_{1}^{m,n} &\leq \sum_{L \in \mathcal{D}} [w]_{C_{2t}^{d}}^{\frac{1}{2}} \Big(\sum_{J \in \mathcal{D}_{n}(L)} |\langle gw^{-t}, h_{J}^{w^{2t}} \rangle_{w^{2t}} |^{2} \Big)^{\frac{1}{2}} \Big(\sum_{I \in \mathcal{D}_{m}(L)} |\langle f, h_{I} \rangle |^{2} \Big)^{\frac{1}{2}} \\ &\leq [w]_{C_{2t}^{d}}^{\frac{1}{2}} \|f\|_{2} \Big(\sum_{L \in \mathcal{D}} \sum_{J \in \mathcal{D}_{n}(L)} |\langle gw^{-t}, h_{J}^{w^{2t}} \rangle_{w^{2t}} |^{2} \Big)^{\frac{1}{2}} \\ &\leq [w]_{C_{2t}^{d}}^{\frac{1}{2}} \|f\|_{2} \|gw^{-t}\|_{L^{2}(w^{2t})} = [w]_{C_{2t}^{d}}^{\frac{1}{2}} \|f\|_{2} \|g\|_{2}. \end{split}$$

12

Estimating $\Sigma_2^{m,n}$: Plug in the estimates for $R_L^{w^{2t},n}(gw^{-t})$ and $P_L^m f$, where $F(x) = \left(M_{w^{2t}}(|gw^{-t}|^p)(x)\right)^{2/p}$, use the Cauchy-Schwarz inequality and $(m_L w^{2t})^{\frac{1}{2}}/(m_L w)^t \leq [w]_{C_{2t}^d}^{\frac{1}{2}}$ to get

$$\Sigma_2^{m,n} \le C C_m^n [w]_{C_{2t}^d}^{\frac{1}{2}} \|f\|_2 \Big(\sum_{L \in \mathcal{D}} (\eta_L^m / (m_L w^{\frac{-2t}{q-1}})^{q-1}) \inf_{x \in L} F(x) \Big)^{\frac{1}{2}}.$$

Now using Weighted Carleson Lemma 3.1 with $\alpha_L = \eta_L^m / (m_L w^{\frac{-2t}{q-1}})^{q-1}$ (which by Lemma 3.2 is a w^{2t} -Carleson sequence with intensity no larger than $C_q(m+1)[w]_{A_q^d}$, $F(x) = (M_{w^{2t}}|gw^{-t}|^p(x))^{2/p}$, and $v = w^{2t}$,

$$\Sigma_{2}^{m,n} \leq C_{q}(C_{m}^{n})^{2} [w]_{C_{2t}^{d}}^{\frac{1}{2}} [w^{2t}]_{A_{q}^{d}}^{\frac{1}{2}} ||f||_{2} \left\| M_{w^{2t}}(|gw^{-t}|^{p}) \right\|_{L^{\frac{2}{p}}(w^{2t})}^{\frac{1}{p}}.$$

Using (2.1), that is the boundedness of $M_{w^{2t}}$ in $L^{\frac{2}{p}}(w^{2t})$ for 2/p > 1,

$$\begin{split} \Sigma_{2}^{m,n} &\leq C_{q}(C_{m}^{n})^{2}(2/p)'[w]_{C_{2t}^{d}}^{\frac{1}{2}}[w^{2t}]_{A_{q}^{d}}^{\frac{1}{2}}\|f\|_{2}\left\|\|gw^{-t}\|^{p}\right\|_{L^{\frac{2}{p}}(w^{2t})}^{\frac{1}{p}} \\ &\leq C_{q}(C_{m}^{n})^{3}[w]_{C_{2t}^{d}}^{\frac{1}{2}}[w^{2t}]_{A_{q}^{d}}^{\frac{1}{2}}\|f\|_{2}\|g\|_{2}, \end{split}$$

Since $(2/p)' = 2/(2-p) = 2C_m^n$. The theorem is proved.

Appendix

Proof of Lemma 3.2. We will show this inequality using a Bellman function type method. Consider $B(u, v, l) := u - 1/(v^{p-1}(1+l))$ defined on the domain $\mathbb{D} = \{(u, v, l) \in \mathbb{R}^3, u > 0, v > 0, uv^{p-1} > 1$ and $0 \le l \le 1\}$. Note that \mathbb{D} is convex. Note that

(4.2)
$$0 \le B(u, v, l) \le u$$
 for all $(u, v, l) \in \mathbb{D}$

and

(4.3)
$$(\partial B/\partial l)(u,v,l) \ge 1/4v^{p-1}$$
 for all $(u,v,l) \in \mathbb{D}$.

and also $-(du, dv, dl)d^2B(du, dv, dl)^t$ is non-negative because, it equals

$$-(du, dv, dl) \begin{pmatrix} 0 & 0 & 0 \\ 0 & p(1-p)\frac{v^{-p-1}}{1+l} & (1-p)\frac{v^{-p}}{(l+1)^2} \\ 0 & (1-p)\frac{v^{-p}}{(l+1)^2} & -2\frac{v^{1-p}}{(l+1)^3} \end{pmatrix} \begin{pmatrix} du \\ dv \\ dl \end{pmatrix}$$
$$= p(p-1)\frac{v^{-p-1}}{1+l}(du)^2 + 2(p-1)\frac{v^{-p}}{(l+1)^2}dudv + 2\frac{v^{1-p}}{(l+1)^3}(dv)^2 \ge 0,$$

since all terms are positive for p > 1.

Now let us show that if (u_-, v_-, l_-) and (u_+, v_+, l_+) are in \mathbb{D} and we define $(u_0, v_0, l) \in \mathbb{D}$ where l is in between l_+ and l_- , $u_0 = (u_- + u_+)/2$, $v_0 = (v_- + v_+)/2$, and $l_0 = (l_- + l_+)/2$, then

$$B(u_0, v_0, l) - \left(B(u_-, v_-, l_-) + B(u_+, v_+, l_+)/2 \ge |l - l_0|/4v_0^{p-1}\right)$$

Write for $-1 \leq t \leq 1$, $u(t) = [(t+1)u_+ + (1-t)u_-]/2$, $v(t) = [(t+1)v_+ + (1-t)v_-]/2$, and $l(t) = [(t+1)l_+ + (1-t)l_-]/2$. Define b(t) := B(u(t), v(t), l(t)), then $b(0) = B(u_0, v_0, l_0)$, $b(1) = B(u_+, v_+, l_+)$, $b(-1) = B(u_-, v_-, l_-)$, $du/dt = (u_+ - u_-)/2$, $dv/dt = (v_+ - v_-)/2$ and $dl/dt = (l_+ - l_-)/2$. If (u_+, v_+, l_+) and (u_-, v_-, l_-) are in \mathbb{D} then (u(t), v(t), l(t)) is also in \mathbb{D} for all $|t| \leq 1$, since \mathbb{D} is convex. It is a calculus exercise to show that

(4.4)
$$b(0) - \frac{b(1) + b(-1)}{2} = \frac{-1}{2} \int_{-1}^{1} (1 - |t|) b''(t) dt$$

Also it is easy to check that $-b''(t) = -\left(\frac{du}{dt}, \frac{dv}{dt}, \frac{dl}{dt}\right) d^2 B\left(\frac{du}{dt}, \frac{dv}{dt}, \frac{dl}{dt}\right)^t$. By the Mean Value Theorem and (4.4),

$$B(u_0, v_0, l) - \frac{B(u_-, v_-, l_-) + B(u_+, v_+, l_+)}{2}$$

= $(l - l_0) \frac{\partial B}{\partial l}(u_0, v_0, l') - \frac{1}{2} \int_{-1}^{1} (1 - |t|) b''(t) dt \ge \frac{l - l_0}{4v_0^{p-1}}$

where l' is a point between l and $l_0 = (l_- + l_+)/2$.

Now we can use the Bellman function argument. Let $u_{+} = m_{J_{+}}w$, $u_{-} = m_{J_{-}}w$, $v_{+} = m_{J_{+}}w^{\frac{-1}{p-1}}$, $v_{-} = m_{J_{-}}v^{\frac{-1}{p-1}}$, $l_{+} = \frac{1}{|J_{+}|Q}\sum_{I\in\mathcal{D}(J_{+})}\lambda_{I}$ and $l_{-} = \frac{1}{|J_{-}|Q}\sum_{I\in\mathcal{D}(J_{-})}\lambda_{I}$. Thus $(u_{-}, v_{-}, l_{-}), (u_{+}, v_{+}, l_{+}) \in \mathbb{D}$ and $u_{0} = m_{J}w, v_{0} = m_{J}w^{\frac{-1}{p-1}}$, and $l_{0} = \frac{1}{|J|Q}\sum_{I\in\mathcal{D}(J)}\lambda_{I}$. Thus $(u_{0}, v_{0}, l_{0}) - ((u_{-} + u_{+})/2, (v_{-} + v_{+})/2, (l_{-} + l_{+})/2) = (0, 0, \lambda_{J}/Q|J|)$. Then we can run the usual induction on scale arguments using the properties of the Bellman function,

$$J|m_J w \ge |J|B(u_0, v_0, l_0)$$

$$\ge |J|\frac{B(u_+, v_+, l_+)}{2} + |J|\frac{B(u_-, v_-, l_-)}{2} + \lambda_J/4Q(m_J w_{p-1}^{-1})^{p-1}$$

$$= |J_+|B(u_+, v_+, l_+) + |J_-|B(u_-, v_-, l_-) + \lambda_J/4Q(m_J w_{p-1}^{-1})^{p-1}$$

Iterating, we get

$$m_J w \ge \frac{1}{4Q|J|} \sum_{I \in \mathcal{D}(J)} \frac{\lambda_I}{(m_I w^{-1/p-1})^{p-1}}.$$

References

- [Be] O. Beznosova, Bellman functions, paraproducts, Haar multipliers and weighted inequalities. PhD. Dissertation, University of New Mexico (2008).
- [Be1] O. Beznosova, Linear bound for the dyadic paraproduct on weighted Lebesgue space $L^2(w)$. J. Func. Anal. **255** (2008), 994 –1007.
- [BeRez] O. Beznosova, A. Reznikov, Sharp estimates involving A_{∞} and LlogL constants, and their applications to PDE. ArXiv:1107.1885
- [CrMPz1] D. Cruz-Uribe, J. M. Martell, C. Pérez, Weights, extrapolation and the theory of Rubio the Francia. Birkhäuser, 2011.
- [GaRu] J. García Cuerva, J. L. Rubio de Francia, Weighted norm inequalities and related topics. North Holland Math. Studies 116. North Holland, 1985.
- [H] T. Hytönen, The sharp weighted bound for general Calderón-Sygmund operators. Ann. Math. 175 (2012), 1473-1506.
- [JN] R. Johnson, C.J. Neugebauer, Change of variable results for A_p- and reverse Holder RH-classes. Trans. Amer. Math. Soc. 328 (1991), no. 2, 639666.
- [KP] N. H. Katz, M. C. Pereyra, Haar multipliers, paraproducts and weighted inequalities. Analysis of Divergence, 10, 3, (1999), 145-170.
- [L1] M. T. Lacey, The linear bound in A₂ for Calderón-Zygmund operators: A survey. Submitted to the Proceedings of the Józef Marcinkiewicz Centenary Conference, Poznan, Poland. ArXiv:1011.5784
- [Mo] J. C. Moraes, Weighted estimates for dyadic operators with complexity. PhD Dissertation, University of New Mexico, 2011.
- [Mo1] J. C. Moraes, Weighted estimates for dyadic operators with complexity in geometrically doubling spaces. In preparation.
- [MoP] J. C. Moraes, M. C. Pereyra, Weighted estimates for dyadic paraproducts and t-Haar multipliers with complexity (m, n). Submitted to Pub. Mat.
- [Mu] B. Muckenhoupt, Weighted norm inequalities for theHardy-Littlewood maximal function. Trans. Amer. Math. Soc. 165 (1972), 207–226.
- [NRezV] F. Nazarov, A. Reznikov, A. Volberg, The proof of A₂ conjecture in a geometrically doubling metric space. ArXiv:1106.1342
- [NV] F. Nazarov, A. Volberg, Bellman function, polynomial estimates of weighted dyadic shifts, and A₂ conjecture. Preprint (2011).
- [NV1] F. Nazarov, A. Volberg, A simple sharp weighted estimate of the dyadic shifts on metric spaces with geometric doubling. ArXiv: 11044893v2.
- [NTV1] F. Nazarov, S. Treil and A. Volberg, Two weight inequalities for individual Haar multipliers and other well localized operators. Math. Res. Lett. 15 (2008), no.3, 583-597.
- [P1] M. C. Pereyra, On the resolvents of dyadic paraproducts. Rev. Mat. Iberoamericana 10, 3, (1994), 627-664.
- [P2] M. C. Pereyra, *Haar multipliers meet Bellman function*. Rev. Mat. Iberoamericana 25, 3, (2009), 799-840.
- [P3] M. C. Pereyra, Sobolev spaces on Lipschitz curves. Pacific J. Math. 172 (1996), no. 2, 553–589.
- [P4] M. C. Pereyra, Dyadic harmonic analysis and weighted inequalities. Chapter in "Excursions in Harmonic Analysis: The February Fourier Talks at the Norbert Wiener Center", Edited by T. Andrews, R. Balan, W. Czaja, K. Okoudjou, J. Benedetto. Springer 2012.

- [V] A. Volberg, Bellman function technique in Harmonic Analysis. Lectures of INRIA Summer School in Antibes, June 2011. Preprint (2011) available at arXiv:1106.3899
- [W] J. Wittwer, A sharp estimate on the norm of the martingale transform. Math. Res. Letters, 7 (2000), 1–12.

DEPARTMENT OF MATHEMATICS, BAYLOR UNIVERSITY, ONE BEAR PLACE #97328,
WACO, TX 76798-7328, USA

 ${\it E-mail\ address:\ \tt Oleksandra_Beznosova@baylor.edu}$

UNIVERSIDADE FEDERAL DE PELOTAS - UFPEL, CENTRO DE ENGENHARIAS - CENG, ALMIRANTE BARROSO 1734, SALA 16, PELOTAS, RS, BRASIL *E-mail address*: jmoraes@unm.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, 1 UNIVERSITY OF NEW MEXICO, ALBUQUERQUE, NM 87131-001, USA

E-mail address: crisp@math.unm.edu

16