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ABSTRACT

This manuscript gives a construction of divergence-free multiwavelets which combines the Hardin-Marasovich (HM)
construction with a recipe of Strela for increasing or decreasing regularity of biorthogonal wavelets. Strela’s process
preserves symmetry of the HM wavelets. This enables the divergence-free wavelets to be suitably adapted to the
analysis of divergence-free vector fields whose boundary traces are tangent vectors.
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1. INTRODUCTION

When modelling physical phenomena using elementary “building block” functions, it is reasonable to require that
the building blocks live in the same space as the phenomena they are being used to model. Wavelets and variations
thereof have been used for turbulence modelling and solving Navier-Stokes equations which govern the velocity of
an incompressible fluid.! The wavelets should be divergence-free to reflect incompressibility of the fluid and such
wavelets have been utilized in work of Federbush? and of Urban® among others. Orthogonal, divergence-free wavelets
were invented by Battle and Federbush.? The Battle-Federbush wavelets were used by Federbush/Cannone to build
solutions of Navier-Stokes in three space dimensions, provided the initial data lies in an amenable function space.
One key aspect of this work involved expressing the Leray projection in terms of the wavelets. Those wavelets have
exponential decay but not compact support. In fact, it is impossible for orthogonal, divergence-free wavelets to
have compact support as Lemarié showed®.% Fortunately, Lemarié¢” found a way to build biorthogonal wavelets with
compact support such that the reconstructing wavelet family is divergence-free. Modifications and extensions of this
approach have been carried out by Urban,® where such wavelets have also been used to solve Navier-Stokes equations,
including finding solutions on bounded domains. In fact, our future plan is to use the wavelets developed herein to
solve initial-boundary value problems for Navier-Stokes for corresponding function spaces on bounded domains. In
this case compact support of the wavelets will be crucial. The fact that the wavelets must then be biorthogonal may
pose nontrivial issues because the Galerkin projection onto the divergence-free component will not exactly correspond
to the Leray projection. These issues, however, will be addressed in later work.

The main goal of the present work is to develop a family of divergence-free wavelets, more specifically, mul-
tiwavelets, possessing what we regard to be the best possible tradeoffs between localization, smoothness, and so
forth when it comes to numerical implementation and modelling of fluids. The main properties that are desired
of wavelets are short support, vanishing moments, and smoothness. The competition between these properties is
well-documented. The DGHM multiwavelets® are in some sense optimal as regards these properties, at least in
circumstances where Lipschitz continuity is adequate. Furthermore, the DGHM wavelets are symmetrical, and so
provide a simple way of getting at boundary behavior compared to standard wavelets. The divergence-free wavelets
here are built by adapting Lemarié’s notion of MRA’s related by differentiation to the setting of a class of DGHM-
type biorthogonal multiwavelets whose properties were investigated by Hardin and Marasovich.? The key tool is a
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result in Strela’s thesis.!® We then use tensor products to factor in the divergence-free property. This means that
certain combinations of the wavelets are smoothed in specific coordinates. Tensor products are a good way of building
vanishing moments into multidimensional wavelets. The tradeoff is the issue of dimensionality. The divergence-free
vector field basis that we construct in two dimensions has twelve wavelet mothers. In three dimensions there would be
112. In other words, we must implement the cascade algorithm a large number of times to compute the divergence-
free projection defined by the wavelets. While this sounds bad, in terms of modelling it really is not. As one can
see in Figure 6, the various mother wavelet vector fields have outstanding characteristics regarding tradeoff between
spatial localization and spatial orientation. Consequently we are optimistic that these wavelet fields will provide a
significant processing gain relative to other techniques as regards tracking of vortices and their interactions.

2. HARDIN-MARASOVICH WAVELETS
2.1. Dual families and coefficients

In the work of Geronimo Hardin and Massopust, and later of Hardin and Marasovich,? scaling vectors were con-
structed based on fractal interpolation techniques. Biorthogonal multiresolution analyses could then be constructed
essentially by using a biorthogonal Gram-Schmidt process. We will use the HM multiwavelets to build biorthogonal
divergence-free wavelets. More information about the construction of the wavelets and how it can be generalized, as
well as the smoothing and roughening process that gives rise to the divergence-free wavelets, can be found in [11].
Here we will summarize the construction.

We will use the notation 1®(2) = " Cy®(z — k) and 1 ¥(%) = 3 D, ®(x — k) to denote the fundamental scaling
and wavelet equations. The scaling vector is ®(z) = [¢1(z), ¢2(z)]T and the wavelet vector is ¥(z) = [11(x), ¥2(z)]7.
The coefficients Cy and Dy, are two-by-two matrices. When one imposes among the HM family the constraint that
the scaling functions and wavelets should be symmetric, as we do here, the coefficients for the HM scaling and wavelet
filters will depend on a parameter s. Furthermore, the parameter § that is used to denote the biorthogonal MRA
will be related to the parameter s for the original MRA by

1+ 2s
5s—2°

s =

Continuity and approximation properties of the scaling/wavelet vectors depend on the values of s. The scaling
filter, or transfer function, is a matrix with polynomial entries Hy(z) = 3 Ck(s)z* where the Cj are the two-by-
two scaling matrices with entries depending on the parameter s. The corresponding high pass or wavelet filter
has the form Fy(z) = 3 Dy(s)z*. Everything is set up so that the filters for the scaling and wavelet functions in
the multiresolution analysis biorthogonal to that generated by H,(z) have the form Hjz(z) and Fj3(z) respectively.
Because we want to build differentiation into this scale of biorthogonal multiresolution analyses, we shall choose our
filter coefficients with a normalization slightly different from that given in [9]. The coefficients are listed in Table 2.1.

I Table 2.1: HM scaling and wavelet coefficients |

J scaling coefficient C;(s) wavelet coefficient D;(s)
5 L]0 —(1+28)V2 L]0 —(1+28)V2
2|0 0 ] 24| 0 —(2+4s) ]
) 1 [ —2+8s (5-25)V2 | 1 [ —2+8s (5—25)v2 ]
24| 0 0 ] 24| 2(—2+8s) 10-—4s
0 1|12 (5-25)V2 1 -12 (5-2s)V2
410 8+44s ] 210 4s — 10 ]
L[ 2+8s —1+25)vV2 ] | 1 | —2+8s —(1+25)V2 |
21| 8v/2(1—5s) 8+4s 1122 vV2(2-8s) 2+4s

In Figures 1-3 we plot the HM scaling functions and wavelets (shifted by two units) for a few values of the
parameter s. Notice that they are piecewise linear when s = 0. In general, those functions are Lipschitz continuous
of order a if |s| < 27%, but can be discontinuous for |s| > 1. They become piecewise smooth as s — 2/5~ but their



duals, while still having compact support, become distributions of increasingly higher order. The orthogonal cases
correspond to s = 1 and s = —1/5: the DGHM case. The functions are not continuous when s = 1 though they are
piecewise linear in that case. In what follows we shall always assume that |s| < 1/2 and we will usually take s = 0.

2.2. Filters and Biorthogonality

With the coefficients in Table 2.1, the biorthogonal scaling and wavelet filters then have the respective forms:

Ho(z) = 1 [12z2+(83—2)(z+z3) \/5[(5—23)(z+z2)—(1+2s)(1+z3)]]
y 2422 8v/2(1—5)2° (8 +45) (22 + 2°)
Hi(s) = 2 [ (s+2+ §+21—2s+2%) ZV2(s—1) ]
s sy | 3v2(Rs—f-%5-3s) (1+1) 2(15—-1)(1+1)
F(z) = L[(85—2)(z+z3)—12z2 V2[(5 = 2s) (z + 22) — (1+2s)(1+z3)]]
T 22| V2852 (2—2%) (4s—10) (22 —2)+ (24 4s) (2 — 1)
Fr(2) 22 [ (654+12) (£ + &) + (24 — 60s) V2(s+2)(§-5) ]
s 24(5s—2) | G+ %) (Ts—4)V2-9s5(1+ 5)V2 18s(F-1)+(42s-24)(L - %) |

Here, L*(z) = LT(1/z). Tt is well-known that the condition that the scaling functions and wavelets give rise to
biorthogonl MRA'’s can be encoded completely in terms of the filters (see Strela'®). These conditions are summarized
in Table 2.2. They are best checked with the aid of a symbolic computational tool such as Maple.

Table 2.2: Conditions of Biorthogonality
H,(2)H;(2) + Hy(2)Hi (—2) = I

F(:)F: (2) + Fu()FF (—2) =1
Hy(2)Fg(2) + Hs(2)F5(=2) = 0
Fs(2)Hi(2) + Fy(2)Hi(=2) = 1

3. SMOOTHING AND ROUGHENING

3.1. Two-scale transform

Lemarié” showed that given a pair of biorthogonal scalar MRAs — that is, ones generated by a single scaling function
as opposed to multiple ones — with sufficient regularity, one could build from these another pair such that the
derivatives of the new wavelets are essentially the original wavelets. In his thesis, Strela found a technique that
amounts to the multiwavelet version of Lemarié’s technique. In the scalar case the trick is to add a zero to the dual
low pass filter at z = —1. This is equivalent to multiplying the dual low pass filter by 1+Z . In the multiwavelet setup
the low-pass filter is vector-valued and the analogous procedure amounts to adding an elgenvalue zero to the low pass
filter at z = —1 in an appropriate manner. As is typical of multiwavelets, there is some flexibility in carrying out
this extension of Lemarié’s method. The method is encoded in Strela’s two-scale transform. It amounts to finding
a suitable transition matriz M and then forming the new low pass filter H, (z) = ;M *(22)H(2)M*~1(2). Thereby,
M accomplishes a transition between a pair of two-scale MRAs. In the scalar MRA case, the role of M* is played
by 1 — z; the property desired of M* is that it has a simple eigenvalue zero at z = 1 whose eigenvector is shared
with the unit eigenvalue of H (1). Existence of the latter is guaranteed by the scaling property of H. Further issues
in the design of M include preservation of symmetries and compact support. These issues are discussed in Strela’s
thesis!® and some recent work of the authors'!; for example, the fact that the smoothing and roughening operators
in Table 3.1 are related by taking adjoints depends on symmetry. Those considerations led to the particular choice
of M that we use below. Actually, our particular normalization of the HM wavelets allows us to use a single matrix



I Table 3.1: Smoothened and roughened MRAs |

smoothened scaling | Hy (z) = tM*(22)H(z)M*~(2) | £, (z) = —Tu-®(z)
roughened scaling H_(2) =2M '(2*)H(2) M (2) L&(z) = Ty®_(z)

smoothened wavelet Fy(z) = sF(x)M*1(2) Ly, (z) = —T(2)
roughened wavelet F_(2) =2F(2)M(2) LY(z) =T _(z)

M for any value of the HM parameter s. Table 3.1 summarizes the procedure for forming the new families of dual
MRA’s. It also records the relationships between the smoothed and roughened filters.

It is a simple matter to check that the conditions of biorthogonality are preserved. For example, one has

*

H, (2)H" (2) [%M*(zz)ﬁ(z)M*_l(z)] [2M 1 (z2)H (2) M ()]

= M*(A)HE)H (2)M*1(2?)

so that, H(z)H*(z) + H(—z)H*(—z) = I implies

Hy(2)H (2) + Hy(—2)H (~2) = M*(2%) [H(2)H" () + H(=2) B (=2)| M* (2% = T
The other conditions are similarly verified. The operator Ths+ is an an operator-valued matrix whose entries are
polynomials in the shift operator. Its symbol is M*. So at the level of wavelets this process really amounts to

integrating or differentiating the wavelet components!

3.2. Eigenvectors and the Transition matrix

The matrix H,(1) = % \/%(—; 2_85) \/Z(i_; 5) has eigenvalues s and 1. For A = 1 the corresponding eigenvector
1

is] @ B ]T =a[l V2 ]T independent of s. One easily checks that for the matrix M*(z) = [ 2\0/5 _ll A ],
z

[1 V2 ]T generates the kernel for M*(1) so Strela’s eigenvector criterion is satisfied. Up to multiplication by z*
this is the unique transition matrix that preserves symmetry and increases the support of the HM scaling vector —
that is, the sum of the supports of its components — by one.

3.3. Smoothed and roughened HM filters

We emphasize here that the smoothing transition is applied to the § filter while the roughening transition is applied
to the s filter. Then the recipe for smoothing and roughening the filters yields:

%M*(f)ﬂg(z)M**l(z)

T ) 1o 1 (s—1)
= ol IR U [ 0 1 ] +2| Y )
8 8(5s—2) 4 ~8 8(5s—2)
H, (2) = 2M '(2*)H,(2)M(z)
_ 1 {—%—s §+s T2l3 —a410s [T |0 7+ 2s
T1222 3|3 4-10s i -3—8 —3-s
+ [—3 0s—4 |77 135 1is



3.4. Smoothed and roughened wavelets
Here we use the recipe Fy (z) = 2F(2)M*~1(2) and F(2) = LF_(2)M~*(z) to obtain

Fo(z) = 1 —11—6‘/725 (z2 — 1) lé—z (z2s +222 — 1025 + 422 + s+ 2) 5;/_52
2 lz 2241 —=(s+2)&=
P B 11—2\/§(z2 +92225— 6241+ 23) zzgl \[(205 8)(z+z3)+(1+2s)(1+z4)+(4s 34)2°
_(Z) _1 (Z _ 1)2 2225422 +4zs 4z4+2s+1 182z—20z5—82% +202 s 1-—2s+2%422%s
6 %

Figure 4 shows shifted versions of the smoothed and roughened dual scaling functions and wavelets for the special
case where s = 0. In reality, the first components of the smoothed and roughened filters are symmetric about = 0
whereas the second components are both antisymmetric about z = 0. It is not obvious from the filter equations that
the scaling supports should all have length two: this ultimately depends on some subtle cancellation properties among
the components. It is, however, easy to see that the differentiation property holds, especially that the derivatives of
the s = 0 wavelets really are what we are calling the roughened wavelets. In Table 3.4, k is running from k = —2 in
the top row to k = 2 in the bottom row.

|| Table 3.4: Smoothed and roughened scaling and wavelet coefficients ||

smooth scaling C; (s) | smooth wavelet D (s) | rough scaling C} (s) rough wavelet Dj (s)
0 0 0 0 1 —% — s % + s 1425 -2 2
_0 0_ _0 0 12_—5—8 §+S_ 12 I -2 2 ]
= 5 - .
i 4555,3;2) Z 2 2+2 L [3 —4+10s N [ 6v2 /2(20s —8) ]
4—s 1 1 542 12 — -
% 8(55—2) 16 E(; —2) | 3 4+10s | 12 40s — 16
3 0 0 —35v2 1 [ 7T+2s 0 1|0 V2(4s — 34)
|0 1] -+ 0 ] 1210 7+ 2s | 1218 —-20 0 |
=i - -
1 4553_)2) _13_22 gﬁm 2 1 [3 4-10s n [ —6v2 /2(20s — 8) ]
—5 s+ 12 — — 12 —
i ~3 sk | B — iy | | -3 10s—4 | 12 16 — 40s
0 0 0 0 1 —%—8 —%—8 (142s) \/i \/5
0 0 0 0 2] 345 Z+s 2] -2 -2

4. BASES FOR H{}[0,1]

4.1. Localized MRAs

By H}[0,1] we mean the Sobolev subspace of L?[0,1] defined by the closure of C§°[0,1] with respect the norm
NF1% = I1£ 15>+ £']1%2 - As mentioned, the HM wavelets ® = ¥, are Lipschitz continuous provided —1/2 < s < 0,'!
hence those wavelets supported in [0, 1] belong to Hj[0, 1]. But the symmetry properties of the wavelets give us extra
leverage, ultimately showing that an appropriate subfamily of the HM wavelets forms an unconditional basis for
H}[0,1]. This fact persists for the smoothed wavelets as well but the details are a little different.!* In contrast, here
we will argue directly from the symmetry properties to show that one can get such a basis without requiring added
smoothing. However, we do make reference to the roughened wavelets. The Lipschitz property is crucial because it
guarantees that the roughened wavelets will still form a Riesz basis, so we shall assume that s € [-1/2,0] is fixed
and let ®, = [¢1, #2]7 be the HM scaling vector and ¥, = [¢)1,1)2]7 the corresponding wavelet vector.

As is evident from Figures 1-3, for any value of s, ¢; is supported in [—1, 1] and is symmetric with respect to z = 0
while ¢2 is supported in [0, 1] and is symmetric with respect to = 1/2. For the wavelets, both 1; are supported in
[—1,1], but ¢; is symmetric with respect to z = 0 while ¢ is antisymmetric. Since § € [— 1 /2,0] when s is, the same
can be said for the &, and ¥, components. To begin, recall that the functions ¢;jx(z) = 29/2¢;(27z — k) form a basis



for the multiresolution space V; as i = 1,2 and k € Z while ¢;;x (x) = 27/2¢;(27z — k) form a basis for the detail
space W; asi=1,2 and k € Z. The multiresolution setup allows us to conclude that L*(R) = Vj, & (®;>;, W;) for
any integer jo where the direct sum is obligue (not necessarily orthogonal) in this case. The same holds for the dual
MRA.

In contrast, we want to define a multiresolution expansion of functions restricted to [0, 1]. To do so, we will add
some new notation:

90 k( ) - 2¢l.7k( ) 0 1]('7:)7 i= ]-7 k ='072j (symmetric)
@2‘;}9( z) = ¢ijr(x),i=1,2, k=1,..,27 — 1 ori =2,k =0 (interior)

and we take )
(x) = 2055k (%) X[0,1)(2), 1 =1, k= 0,27 (symmetric)
(a:) = 20ijr () X0, (%), @ =2, k = 0,27 (antisymmetric)

2}‘2( z) = Yie(x),i=1,2, k=1,..,27 — 1 (interior)

and the letters ‘e’ and ‘0’ stand for ‘even’ and ‘odd’. In a sense there are two natural multiresolution subspaces for
[0,1] at each level: the first is built from the interior and symmetric elements, the second is build from the interior
and antisymmetric elements. All of these functions are normalized and truncated if need be to live inside of [0, 1].
We will use the abbreviated notation w;j; when it is clear to which restricted wavelets we are referring. For the
multiresolution spaces, we let V;. denote the span of the elements of V; that are either interior to [0,1] or the
restrictions of ones symmetric at the endpoints, suitably normalized, while W; . denotes the corresponding wavelet
subspace elements. We can define the antisymmetric spaces V;, and Wj;, as the span of the scaling and wavelet
elements in V; and W; respectively that are either interior to [0,1] or the restrictions of ones antisymmetric at the
endpoints, suitably normalized.

A remark about biorthogonality is in order. We can define the biorthogonal spaces V;, and W,, but the

biorthogonality is really something to be checked. In other words we must check that, for example, W; , and ij,o

are indeed biorthogonal. Obviously there is no problem for the w;;‘}c( z) and iF %1 () because this case goes back to

the analysis on L?(R). The only conceivable problem is when both functions live at one endpoint, for example, i = 2
and k = k' = 0. But then if <¢12-0,1ﬁ12-,0> = 0 then since both terms are antisymmetric it must be that <w;-’0, Q;-’,O> =0.
In fact, we have:

PROPOSITION 4.1. L?[0,1] is the oblique direct sum of the span of Vi ,
together with the W;j ,,j = 1,2, ... In fact, one has

> (f e wﬁ‘éJrZ > (hefbhert+ > (e 1)
@i EViso Wi EW;0 Wi €W

with

1A~ S Kaemdl+3 | S (el + Y [Khapl (2)

pint €V, J=1 Wi €W Wi €Wi o

Proof. The idea is quite simple. First one can take the L?(R) expansion of f supported in [0,1] in terms of the
oblique projections onto Vi and the sum of the projections onto Wj,5 = 1,2,.... That is, f = Py, f + Z;’il Py, f as
an element of L?(R). The interior terms of this expansion are identical with the interior terms of the expansion in
the Proposition. The only difference lies in the terms in this expansion which overlap the boundary. For example,
in principle the projection of f onto Vi will live in [—1/2,3/2] even though f itself lives in [0,1]. In contrast,
Py f=5 oint vy, < 7 go‘l’l‘@ ¢t is supported in [0, 1]. We just focus on behavior at the left endpoint z = 0 here. At
each level j > 1 there are two wavelet terms in Py, f which straddle the point z = 0, one of which is symmetric, the
other is antisymmetric. Because f lives in [0, 1] and because of the supports of the wavelets, these are the only W;
terms that can contribute to f outside of [0, 1]. Consequently, the sum of the antisymmetric wavelet terms straddling



x = 0 must cancel the sum of the V; and W; symmetric terms that straddle x = 0 outside of [0,1] and must equal
the sum of the Vp and W; symmetric terms that straddle z = 0 inside of [0,1]. This verifies the expansion (1).
The norm equivalence (2) follows simply from (i) the equivalence of the L?(R) norm of f and the sum of squares
of coefficients in the usual wavelet expansion together with (ii) the fact that the energy encoded in the symmetric
straddling terms equals the energy encoded in the antisymmetric straddling terms, and (iii) the biorthogonality of
those terms. This proves the proposition. O

4.2. Convergence in H}[0,1]

We could have equally well expanded f in terms of the symmetric and interior terms alone; however to describe
H[0,1] it is necessary to expand in terms of wavelets that vanish at the endpoints, which indeed happens when one
uses the antisymmetric restrictions. Nevertheless, the symmetric restrictions will also play a role in boundary value
problems.

COROLLARY 4.2. The expansion (1) persists for H}[0,1] for which one has the norm equivalence

o0
12~ S (e Z @+2%) Y [(f,0k)]

<Pﬁtk€V1,o wijk €EWj o

Proof. The expansion persists because we are using the antisymmetric terms which all vanish at the endpoints.
What is crucial here is that we can also differentiate the expansion to get:

df L N
i > (e d 902?2 + 22] S F@ik) wig,
PRt Vo j=1  wijkEWjo
where w;;,,— denotes the normalized restriction to [0, 1] of the corresponding ¢;;x—. Now one just uses the fact that

the d%gomc and w;jr— also form a Riesz basis for their span — which follows from the biorthgonality property of the
smoothened and roughened wavelets — to verify that

I~ 3 (208 +Z221 > KnEl
Pl EV1o keWJ °
This verifies the corollary. 0O

Using similar arguments one can show that the assymetrical parts of the smoothened wavelets also give a norm
equivalence for Hi[0,1]. This becomes useful when constructing divergence-free wavelets, so we record the result
here. First we note that we can define the spaces V+ and W;r for the smoothed scaling and wavelet functions just
as we did for the HM wavelets: the smoothed mother wavelets are both supported in an interval of length two, one
is symmetric and the other is antisymmetric (see Figure 4). The only difference is that the scaling functions both
have support length two, so this time the antisymmetric scaling space also depends on the antisymmetric scaling
function, not just the internal one as in the HM case.

PRrROPOSITION 4.3. The expansion

o0
= PVﬁof + Z Z <f7 W;k—> ‘U;’k+

Jj=1 wijk+€W?:D

holds for H}[0,1] and one has the norm equivalence

o0

B~ S e P+30+29) S [(fwige)

%'ueEV{to J=1 wijk+€WJ-t-n



5. DIVERGENCE-FREE WAVELETS
5.1. Wavelets on R2

A general recipe for the divergence-free wavelets in any dimension can be found in [12] which also contains verification
that the basis that we will write presently is indeed a basis for the appropriate space of divergence-free vector fields.
We will restrict attention to two space dimensions here for the sake of illustration. There will be twelve divergence-
free vector mother wavelets. In principle they are built by first building a biorthogonal tensor product wavelet basis
for L?(R2,R?) with smoothing in appropriate components — there will 24 mother wavelet components at this level
— then obliquely projecting onto the divergence-free subspace, leaving twelve mother wavelet vector fields. We list
the result in the &, ¥ notation:

[ Table 5.1: Divergence free and dual mother wavelets |

Divergence-free wavelets dual wavelet fields
= (U5 (@) ¥, -Ts(2) 51 (»)7) | (¥s-(2)T:(y)",0)
Uy = (= ¥si (2)Tar- BF (), ¥5(2) st (1)) | (0, ¥s(2)®s (1)T)
‘I’ = (<1>5+( )¥s(y)", —Ta B5(2) 51 (1)) | (B5—(2)Ts(y)", 0)

l171

To clarify the notation, the T, are 2 x 2 matrices with values in divergence-free wavelets — recall that U is regarded
as a column vector. The component entries are the divergence-free mothers and the corresponding components of
the duals are the dual mothers. Also, ¥z () is the result of smoothing ¥z, that is, ¥5, = — f ;. Notice that the
dual wavelets are not divergence-free. The divergence-free wavelets form a basis for H°(div, R?), the divergence-free
subspace of the Sobolev space H(div, R?) whose components are in LZ(R2) with divergence in L?(R?). Notice that
the wavelet components in ‘I'3 are essentially the same as those in ‘112, but with the variables in reverse. This is why
we have only plotted eight vector fields for the divergence-free mothers in Figure 6: to visualize the ‘113 components
look at the ¥y components sideways.

5.2. Wavelets on [0,1]?

The next issue is how to build suitable bases for divergence-free spaces on domains. The spaces of immediate interest
to us in terms of solving Navier-Stokes using appropriate wavelets include the space H, ﬁ(div, [0,1]?) consisting of

those vector fields in L?[0, 1]? which are divergence-free inside the square and which have boundary traces that are
parallel to the boundary. In terms of fluid flow, the boundary condition just says that there is no fluid passing
through the boundary. The analytic definition of this space is nontrivial because one needs to specify the space in
which the traces live. We refer to Temam!? for details. What matters here is primarily that the wavelets form a basis
for the trace space and that expansions at the boundary are consistent in a simple way with expansions inside. To
provide an appropriate basis for this space we need _o restrict to appropriate divergence-free vector fields along the
boundary. We reason through this as follows. Let Fe H (dlv, [0,1]?). Along the line segment z = 0;0 < y < 1 we

want F(0,4) to be parallel to the boundary, that is, F(O, y) = (0, £(0,4)). Therefore the z-component of F should
vanish as x — 07 but the y-component is a nontrivial trace. This tells us that for those wavelet terms that straddle
the boundary we should be using restrictions to [0, 1] of the antisymmetric wavelets along the z-direction in the -
component but we should be using symmetric restrictions at = 0 in the y-component of F'. Similar considerations
apply to the other sides of the square. Fortunately, the divergence-free basis that we chose for R? is in complete
sympathy with the desired boundary modifications. Consider, for example, ¥1 = (U5, (z)¥35(y)7, —U5(z)¥54 (y)7).
The upper left component vector field is (Y154 (2)¥15(y), —¥15(x)154 (y)). The wavelet 1154 is supported on [—1,1]
and is odd at z = 0 so for the boundary terms we should replace 1154 (2) by wg, (z) = 2¢15: (x)x[0,17(x). On the
other hand, 15 is even at z = 0 so we should replace it by 2w$. Consequently, the limit as x — 07 of the wavelet
expansion of F will be completely consistent with the expansion of the boundary trace f(0,y) so long as the wavelet
coefficients are suitably normalized by the value w;:kg(O). Again, corresponding considerations apply to the other
mother wavelet vectors and the other sides of the square.



To summarize: the process of boundary modifications of smoothed HM wavelets to obtain a basis for H}[0,1] can

be coupled with the Lemarié/Strela process of manufacturing divergence-free wavelets to produce a wavelet basis

for

comp

10.
11.
12.

13

H))(div, [0,1]%) N (Hg[0,1] ®L2[0, 1], L*[0, 1] ®H;[0, 1]) in such a way that wavelet expansions on the interior are
ietely consistent with wavelet expansions of boundary traces.
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Figure 1. Plots of HM scaling functions and wavelets and their duals for s =0
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Figure 2. Plots of HM scaling functions and wavelets and their duals for s = —1
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Figure 3. Plots of HM orthogonal scaling functions: s = —1/5 (DGHM) and s =1
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Figure 4. Biorthogonal smoothed and roughened versions for s = 0
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Figure 5. Biorthogonal smoothed and roughened versions for s = —1/5 (DGHM case)
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Figure 6. Divergence free mothers components for ¥y and ¥s, supports not normalized

mother field with y-coord psiltensor psi, 2
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