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ABSTRACT. We show that there are no biorthogonal pairs of divergence-
free multi-wavelet families on R", having any regularity, such that both biorthog-
onal families have compactly supported, divergence-free generators. This main
result generalizes Lemarié’s bivariate result. In particular, our method is based
on vector-valued multiresolution analyses.

1. INTRODUCTION

We will demonstrate the nonexistence of biorthogonal (multi)-wavelets having some
regularity, such that both biorthogonal families have compactly supported, divergence-
free generators. This gives a negative answer to a question posed to us concerning
the possible use of multiwavelets to circumvent the nonexistence result of Lemarié
[3]. Actually, this fact does not impart severe obstacles to the application of wavelet-
Galerkin methods for Navier-Stokes systems [5]. Nevertheless, it clarifies the sort of
limitations that the wavelets must have, cf., [4].

The method is based on Lemarié’s bivariate result [3] which relies on a dimension-
ality trick: divergence-free vector fields in two dimensions have the form (0f /0xs, —0f /0x1)
where f : R? — R is a scalar-valued function. This trick goes a long way toward
making the analysis essentially scalar-valued, and is not available in higher dimen-
sions. Lemarié’s method is based, in turn, on his characterization of projectors onto
shift invariant spaces [2] together with a key result of DeVore, DeBoor and Ron [1].
Since Lemarié’s trick is not available in dimension three or higher, to extend his
technique requires extending results in [2] and [1] to a subspace H? = H?*(R", R") of
L?*(R", R") consisting of distributionally divergence-free vector fields. Here H stands
for Hardy. The required extensions are done here. One of the main factors that
allows the analysis to go through is the nontrivial fact that H? is preserved under
scalar-valued Fourier multipliers of L2. We restrict our wavelet analysis to the case
of two-scale dilations: more general dilations that map integers to integers can be
considered as in [2].
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imo for valuable conversations related to this work.
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2. THE MAIN THEOREM
First, we need some conventions. Unless explicitly stated, all functions of z will
map R* — R” and their values will be regarded as column vectors, their trans-
posed values as row vectors. Then f'g will be scalar-valued; in particular, the L?
inner product is (f,g) = [ f'g. But fg'will take values in the n x n matrices
M, (R). The Fourier transform is defined on integrable functions by the formula
F(€) = [ne 2™t f(z)dz € C. The integration in this case is done componentwise
on f. However, when we represent an operator K by integration against a kernel
k(x,y), the kernel will typically have values in M, (R).
Divergence-free wavelet families coming from two-scale dilations will be indexed
by sets of the form

A={A=(5,0,0,Q) : £ € {0,1}"\ {0,0},i=1,...n—1,Q € Q,a € A}

where Q denotes the collection of dyadic cubes, and A is some finite index that is
used to indicate that the wavelets are allowed to be ‘multi’-wavelets. Later, Q())
will denote the dyadic cube belonging to the index A\. By a biorthogonal pair of
wavelet bases for the space H?(R", R") we mean a pair {1, %} } xea such that any
f € H?(R",R") possesses an expansion of the form

F=> ) v IFI ~ DIl

AEA A€A

The square-integrable vector fields 1/, are divergence-free in the sense of distributions
modulo polynomials, but the 1} need not be. In fact, the main result is nothing but
the statement that under certain niceness conditions they cannot be:

Theorem 1. Under the hypotheses above, the biorthogonal families {1, ¢/} cannot
both be divergence-free, compactly supported, and Holder continuous of some positive
order.

The result does not pose obstacles to wavelet-Galerkin methods because the syn-
thesizing wavelets have the differential property built in. The only property required
of the analyzing wavelets is that they allow wavelet coefficients to be computed
rapidly.

Here is the idea of the proof: Gradients of harmonic, scalar-valued functions h
are locally square-integrable. In particular, if the 1} have compact support then the
coefficients (Vh, 1)}) are well-defined and, when V-5 = 0, they vanish via integration
by parts. As it turns out, this allows one to identify the restriction of a certain cutoff of
Vh with the restriction of its ‘V;’ multiresolution projection to a neighborhood of the
origin. If the 9/, have compact support then the space Vj turns out to be locally finite
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dimensional. Most of the work lies in verifying this. In contrast, harmonic functions
form a locally infinite dimensional space. This contradicts the local equality between
Vh and its Vy-projection. Regularity and compact support of the v} is required to
apply integration by parts; it is required of the ¢, to conclude that Vj is locally finite
dimensional.

3. SHIFT INVARIANT SUBSPACES OF H?*(R", R") AND w-LOCALIZED
PROJECTIONS

Much of this section amounts to lifting known facts about L?*(R") to the case of
H?(R™,R"). First, a closed subspace V; of H?(R",R") is said to be shift invariant if,
whenever f € Vj and k € Z™, one has f(z — k) € V5. In what follows Vj will always
be shift invariant. The operator P, that projects onto Vj is shift invariant if for all
f € H*(R*,R") one has (Pyf) (x — k) = Py (f(- — k)) (). When is V; spanned by
the translates ¢, (z — k) of a finite family {@,}aca? Such a space is said to be a finite
shift invariant (FSI) space. More particularly, when does {¢,(z — k) }aca kezn form
a Riesz basis for V7

The answer can be phrased in terms of regularity of the kernel of P,. This was
formulated for L?(R") by Lemarié. We say that P, has an w-localized kernel for H?
provided its action is given by integration against a locally integrable kernel function
p(z,y) € M,, such that V- p(z,y) = 0 in the sense that

(Pof ) // V() dydz;  (Pof,Vah) =0, he C®(RY)

where

/ / w(z —y)lp(z,y)[*dedy < oo
z€[0,1)™ JyeR?
/ / w(e —y)lp(z,y)Pdedy < .
yelo,1)n J zern

Here, |p(z,y)| = [X_7 ;1 Ipij(z, y)[P]'/2. We will need to assume that w is a symmetric
Beurling weight. This means that w is a nonegative valued function that is strictly
bounded below, has growth of at most polynomial order, w(z) = w(—z), w(z +y) <
w(z)w(y) and w™ € LY(R") and w™! * w™' < Cw™!. For a review of the properties
of Beurling weights we refer to Annexe A in [2]. We have:

Theorem 2. If Py has an w-localized kernel for H? then V, has a Riesz basis of the
form {¢,(x — k)}acarezn. The cardinality A =|.A| does not depend on the choice of

the basis. In fact,
w[ [ by dyds,  where
[0,1)™ J[0,1)™
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ﬁ(xay) = Z p(fv,y - k)

kezmr

Note that A is well defined because p is periodic and locally square-integrable.
The kernel of Py can be defined a-posteriori by the basis expansion:

p(m:y) =D > dalz —k)da(y— k)"

which is M,,-valued when ¢ is R"-valued. However, we must construct the basis given
the w-localized kernel first.

The appearance of Beurling weights in this theory might look a bit peculiar, so
we will briefly remark on their role here. The basis functions ¢, will be assembled
from certain functions in the weighted space L? which is a subspace of the Beurling
algebra. The crucial step in the assembly is a local inversion at the Fourier level,
which is made possible because elements of the Beurling algebra have absolutely
convergent Fourier transforms. In the case of Theorem 1, the Beurling weight that
arises is just (1 + |z|)™™” where p depends on the Holder regularity.

Before proceeding, it makes sense to introduce here the analogue of an additional
key idea due to DeVore, de Boor, and Ron [1] which addresses the remaining crucial
ingredient for Theorem 1: the role of compact support. In [1] a FSI space is called
local if it has compactly supported generators {¢,}. Local FSI spaces are locally
finite-dimensional. That is, given any compact set there is a finite family of functions
in the space whose restrictions to that set span the restrictions of all elements of the
space to that set. The following corresponds to Corollary 3.36 of [1]:

Theorem 3. Let V; be a finite shift invariant subspace of H?, and suppose that the
compactly supported elements of Vy are dense in V. Then Vj is local.

In the case of a multiresolution analysis and, in particular, in the setup of Theorem
1, V, can be identified with the closed linear span of the wavelets living on long scales.
Then Vj is local when the wavelets have compact support.

3.1. The correlation function. Given f,g € H*(R",R"), we define their corre-
lation function R
C(,9)(&) =D fE+k)GE+E)
kezn
which is a periodic, C-valued function. We call C(f, f) = C(f) the autocorrelation
function of f. When f, g are square-integrable their autocorrelation functions are
integrable over the unit cube [0, 1)". Hence, by Cauchy-Schwarz, C(f, g) € L*([0,1)").
The next three lemmas are just R"-valued versions of Lemmas 1-3 in section 1.1 of

[2].
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Lemma 4. The family {f(- — k)} is a Bessel family if and only if C(f) € L>(T").

Proof. The point is that C(f) can be regarded as a multiplier of L*(T"). Thus,
if {a} € I2(Z"), Plancherel’s theorem gives

[Sasc—n| = /[ .

with C independent of {cy} if and only if C(f) € L>*(T"). B
Recall that a family of functions {f,},c, is a Riesz family if whenever {a,} €
I?(K) one has ||[{ax}ll < ClI> akfell,- When K = A x Z" for a fixed, finite set
A, {feteex = {fal = k) }aeanezn = {fa(- — k)}. Then one can form the correlation
matrizc M (&) = {C(fa, fo)}oor € Ma where A = | A|. We shall write M (&) = My, (£)
when we wish to distinguish the correlations of a specific family {f4}aca from those
of another family. We want to address the issue of when {f,(-—k)} is a Riesz
basis (i.e., Bessel family and Riesz family) for V4. For any such basis there exists
a basis {f}},cx for Vj = (ker Py)* that is biorthogonal to {f,(- — k)} in the sense
that < Sonprs falo = k)> = OpaOrk- Actually, the uniqueness of this basis implies that
o k() = fa(x—k). We shall determine the functions { f5} explicitly in terms of {fa}
but first we shall use their existence to formulate a useful condition for determining
whether {f,(- — k)} is a Riesz basis:

_2m'k-£‘2 C(f)(€)de < C e}l

Lemma 5. The family {f,(- — k)} is a Riesz basis for its span if and only if M ()
€ M4(L™) and 1/ det M (£) € L™.

Proof.  First assume that {f,(- — k)} is a Riesz basis for its span and let
{fx(- — k)} be the dual basis of {f,(- — k)}. Since

f—ZXNMQ— ) for (- = k),

one has:

= SON U Fal k) e TR (E).

But, by Parseval’s formula, (fX, % (- — k)) is the k-th Fourier coefficient of C(fZ, fX),

whence

=Y CUa f) ) (©).
By a similar computation one concludes that

faifa ZC faﬂf” (fa”:fa')(g)'

o’
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On the other hand, biorthogonality implies that
CUf2: fa)€) = Y {fis Far - = B)) €727 = b

k
Therefore, (M, (€)' =M 12 (€) where the latter matrix is the correlation matrix for
the dual generators. Now the {fX(z — k)} form a Bessel family because they are also

a Riesz basis for their span. By the previous lemma, together with Cauchy-Schwarz,
it follows that both My, (§) € M4(L*®) and My« (&) € M4(L>). In particular,

1 = (det My, (¢)) (det My« (€)) < det My, (€) ||det My, ()|

so that

1
det My, (€) > '
et My, (§) > Hdeth(’;(é-)Hoo

As the right hand side is independent of £, the “only if” follows.

To prove the “if” part, assume that M(§) € M(L*®) and that det M(&) is
essentially bounded below. Since (f,g) — C(f,g)(&) is Hermitian, it follows that
M (&) is a positive definite Hermitian matrix almost everywhere. One concludes that
there exists a function () at least as large as the smallest eigenvalue of M () such
that, for any vector A = {\a},c 4, one has AT M(EA > v(€) Y-, [Aal? . On the other
hand, if A(&) is the largest eigenvalue of M (&) then

det M (&)
7€) > W.
Since A() < [AY, C(f2) (]2, v(€) is minorized by some fixed constant v > 0.
Thus, setting v4(€) = 3., Mot 2"* € and v(€) = 72 (€) € C* and applying Plancherel
yields

2

; Z )\k,afa(x - k)

= [ 7 emee e

0,1
2
O d
> VAWLE va(&)|” d€

= 1.0 Pka
« k

which shows that the family {f,(x — k)} forms a Riesz basis for its span. H

2

2

In general, one can define the correlation matrix M ({f.}, {gs})(&) between two
different families of generators {fq}ac.a and {gg}gen: once again the entries are the
correlations between the various generators. We take this approach presently because
it will give a precise description of V{) as a complemented subspace.

We say that two subspaces V, W of H? are in duality provided H? =V @ W+.
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Lemma 6. Let V and W be two closed subspaces of H? such that V has a Riesz
basis of the form { f,(x — k)} and W has a Riesz basis of the form {gg(x — k)}. Also
let {¢s}sep CV and {1, }rer € W. Then:

(a) M({65h, (1) = M({0s}, {1ZDM (U, LoD M (g3}, () where {£2}, g5}
denote the bases dual to {f.},{gs} in V, W respectively,

(b){¢s(x — k)} is a Riesz basis of V' if and only if |D| = |A| and M ({¢s},{f*}) €
M 4(L%°) with inverse in M 4(L*), . .

(c) If N(&) = [M({fa}, {£aNE) ™ and ¢o(&) = Yo Naw (&) () then the
{¢q(z — k)} forms an orthonormal basis of V.

(d) V,W are in duality if and only if |A| = [B| and M({fa},{9s}) € Ma(L>).
Moreover, the dual basis {, } of { fo} in W is calculated via v3(£) = -5 Ta,5(£)35(£)
where the matrix I' satisfies M ({f.},{9s}) "D =1.

Proof. The proof of (a) follows immediately from the fact that g/b; =>.,C(d,, f;)f;
and a similar identity represents v,. If {¢s;(x — k)} forms a Riesz basis of V' then
My, = M({¢s}, {#s}) has maximal rank |D| almost everywhere. Because one can fac-
torize My, = M({fa}, {#5}) My, M ({03}, {fa}) and one can factorize My, in terms of
{fa} similarly, maximal rank of each implies |D| = |A| = A. Using factorization to
compute determinants yields

det My, = det My, |det M({¢s}, {f2})|”

By Lemma 5, |det M ({#s}, {f%})| is minorized a.e. by a fixed constant; in particular,
M({¢s},{fx}) is uniformly invertible. The converse is immediate from Lemma 5.
This proves (b).

To verify (c) first we show that {¢,(x — k)} forms a Riesz basis of V. By (a) and
biorthogonality of {f,}, {f}, M({d,}, {fi}) (&) = N(&), hence by multiplicativity of

determinants,

oy 1
det M({¢a}’ {fa}) - \/det M({fa}’ {fa}) .

Next we wish to show that

2 oo

N =2 [T+ o)
0

has bounded coefficicients. Let A(§) and A(§) denote the smallest and largest eigen-

values of M (£). Then

(1 +°A(€)" < det(I +°M(£)) < (14 t°A(8))*

and, consequently,
C

H(I+t2M(§))_1HMA(L°°) S mv
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hence N (&) € M4(L*). This proves that {¢,(z — k)} is a Riesz basis of V. To show
that {@,(z—k)} is an orthonormal family, it is enough to show that M ({¢,},{¢s}) =
I. But, by (a),

M({#5},{¢s}) = NOM({fa}, {f)N(§) = .

This proves (c).
Finally, (d) is clear since V,W are in duality if and only if W has a Riesz basis
{va(z — k)}a such that M({fa},{75}) = [4. ®

3.2. Proof of Theorem 2. We assume here that P, has an w-localized kernel
p(z,y). The estimate just below and the proof of Lemma, 7 will rely, in turn, on prop-
erties of Beurling weights described in Lemma 12 of [2]. First, recall that p(z,y) =
> wp(x,y — k), is periodic in both z,y because of shift invariance: p(z,y — k) =
p(z + k,y). To verify local square-integrability, taking p in C"*", Cauchy-Schwarz
gives

(>

k

2

p(fv,y - k)

dvdy < / > o,y — k)P w(z —y + k) dody
[071)277, k

1
X sup | E —
(zy)el0,)2n T w(x—y+k)

e / p(ey) P w(e —y) dedy < oo
[0,1) JRn

by hypothesis on P, and definition of w. We conclude, in particular, that the operator
P on L?(]0,1)",R") defined by f +— f[O,l)n p(z,y) f(y)dy is bounded.

The next four lemmas are extensions of corresponding Lemmas 4-7 in section 1.2
of [2] to the setting of H2 versus L2. In the next lemma, even though the result will
be applied to functions in H2, the estimates just depend on the size of the functions.
We set H2 = {f = Yoo fx — k) : f € H?*}. Clearly this defines a subspace of
L2 ([0,1)",R™). We also set H2 = H?*N L2 where L2 = {f : R* - R" : | f(z)*w(z) €
L'(R™)}. We have:

Lemma 7. (i) If f € H2 then f € H2N L2 ([0,1)", R").
(i) If f € H? then Pyf € H?
(iii) If g € H? is supported in [0,1]" then Pyg = Pg.

(iv) P projects H2 onto Vy = {f f eV ﬂ’H,f,}
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Proof. To prove (i) we just note that, because w is a Beurling weight,
2

2 1
/[0,1)n ; dr < /[(),l)n;\f(x—k)| w(x—k);rx_k)dx
1 2
< C;@An|f(x)

To verify (ii) we note that Pyf € H? because of the divergence-free condition on
the kernel. To verify that Pyf € L2, using properties of Beurling weights again and
shift-invariance of p gives

[ vt | [ st f)ay

[ |S([,, emtan) " ([ vora)] w

flz —k)

2

dzx

<
< 2]/ o Bt a|[ o O ol ) e
< O | [ 0 dve] [ ek e dyde

< of [ wepPet—y dyds [ 15w)Fow

whence the claim follows from the definition of an w-localized kernel.
To prove (iii), we note that if ¢ € H? is supported in [0,1]" then g = g almost
everywhere on [0,1)". To show that Pyg = Pg:

Po(a) = /[) (e, dy—Z/ 1) dy
_ ; /m ) Bl +1,9)gly—1) dy,  since p(-y) is periodic
- ¥% /[0 =k Lty = Dy
_ zk: zl: /[0 Py =Dgly=Ddy by shit imvariance
= Zk:/np(fv —ky)g(y) dy =Y (Pog) (& — k) = Pog(x).

k
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Therefore it remains only to prove (iv). First we note that any element of H2 de-
fines a periodic, locally square-integrable divergence-free distribution. Hence any
such element g can be identified with an element of H? supported in [0, 1]", which
automatically belongs to H2 In view of (iii), therefore, it is enough to show that if
f € VoNH2 then P(f) = f. But shift invariance gives:

Pilz) = /[0 ,l)nzk:p(x’y‘ k)zl:f(y—l) dy
_ /[(),l)n;p(ﬂc-l-k,y)zl:f(y—l)d
_ zl:/m)nXk:p(ﬂk—z,y—l)f(y—o dy
_ Z / Ptk y)f) dy =Y (Rf)(+ k) = [2)

k

|
Lemma 8. dim170 = A where A is defined as in Theorem 2.

Proof.  Since p € L?([0,1)*", M,), the operator P is Hilbert- Schmidt, hence
compact. Since the unit ball B of V; is bounded it follows that P(B) is relatively
compact, so that dim Vy is finite. Now if {f,} is a basis of Vy and {f’} is the dual

~ L
basis of {f,} in (ker P0> then

A TANOTYS

a€A

so that
tr/ / p(z,y)p(y, r)] dydr = <fa, >=

This proves the lemma. B
It still needs to be shown that Vj has a Riesz basis of the desired form. We begin
with:

Lemma 9. Let {fa}aca C L*(R",R"). Then the Gram matrix of L? inner products
of the vector functions { f,} is the autocorrelation matrix M, (§)|e=o-
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Proof. A simple computation shows that <f;, E> oy C(fa, fo)(0). m
£2([0,1)™
In view of the previous lemma, the main trick to recover properties of V4 from

those of 1V} is to replace the role of £ = 0 by other £&. In particular, abusing the
meaning of the zero in Vp we define V; = {e7?™*¢f : f € Vp}. Similarly we set
Ve ={e®™¢f . f € Vi}. Then let P be the projector onto Ve paralkel to (~V§*)L
Then its kernel pe(z,y) = p(, y)e 276 @Y) is w-localized. Finally, set Ve = {f : f €
Ve Ne 2metq 2y,

Lemma 10. dim 175 = A for all €.

Proof. As P; commutes with integer translations and has an w-localized kernel,
just as before,

dim@ = tr/ / Pe(x, y)pe(y, ) dydx = A.
[0,1)* J{o,1)"

This can be seen by direct expansion in terms of p or else from dominated convergence
from which we can infer that the integral varies continuously in the parameter £. Since
it takes integer values it must be constant. B

Now we construct a Riesz basis of V; of the form {¢,(z — k)}. By the previous
lemma, for each & € [0,1)" there exist A functions {f$}aeca in Vo N H2 such that
{(e7™€ f£) ™} yeu is a basis of Vz. But the Gram matrix of {(e=27#¢ €)™}, 4 at
n € [0,1)™ is nothing other than the autocorrelation matrix M £ evaluated at n. Since
f& € L2, the coefficients of M ¢ have absolutely convergent Fourier series, hence, so
does its determinant. Thereforg, if det M P does not vanish at n = & then it remains
minorized by some (£) > 0 and the coefficients remain majorized in modulus by
1/7(€) in a neighborhood B(&,7(€)) of £&. Then by compactness of [0,1]" one can
extract a finite family B, = B(¢,,7,(£)) N[0,1)",1 < v < N that still covers [0,1)".
Set C, = B, \ U<, B, and let D, be the union of all integer shifts of C,,. Now define

N
3a(&) =D Forxn, (6).
v=1

We must show that ¢, € V;. It suffices to show that ¢, is orthogonal to each element
of the orthogonal complement of V4. First, fa"xp, € H? because X, is bounded and
scalar-valued. It follows that if g € (VO)L then, by periodicity of xp, ,

O((Boxn,) 9O = xo,@CUE. 9O
= xp,(€) D (fo(+k)g)e ™€ =0

kezn
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because <fa”(- + k), g> = 0 for all £. One concludes from this that <(f§" Xp,)"; 9> =
0 and, therefore, each ¢, € Vj. Next, since the sets D, are disjoint,

C(bar ur) Z X, Xp,, C(f&, £&) pry Fe £3).

v'=1

Hence the coefficients of the autocorrelation matrix of the {¢,} remain majorized by
max;<,<n{1/7(&,)} and the determinant remains bounded below by min;<,<n{7(§,)}
By Lemma 5, therefore, the {¢,(- — k)}aeA,kEZ” form a Riesz family in Vj.

It just remains to show that the {¢,} generate all of V;. But, if f € V5N H?2
—27ri:c-§f§u> ~

then (e~27%¢ f)~ can be expressed as a linear combination of (e whenever

¢ € C,, where the coefficients are bounded. In fact, if we call these coefficients 74, (£),
they satisfy

My, le- Paul) = C (75, f)
where the vector index runs over A. Now if Rq,(€) = 3, rau (€ + k) then fxp, =
Yoo Ra(Exp, f& so that, finally,

=X (Z Ra(€)xXo, (6)) e

which proves that the {¢,(z — k)} are complete in V. Since Vy N H2 = Py(H?2) and
H2 is dense in H? it follows that Vo N H2 is dense in V;. Hence {¢,(z — k)} form a
Riesz basis for V4. This completes the proof of Theorem 2.

3.3. Proof of Theorem 3.

Lemma 11. Ifthe finite collection {¢, }oc.4 has compact support then the correlation
matrix My (&) of {¢,} takes values in trigonometric polynomials.

Proof. Given any pair of square integrable compactly supported functions their
correlation function is a trigonometric polynomial. This follows from expanding the
correlation function in a Fourier series and using Parseval’s formula. B

Before getting to the final point, we need a little more notation. Let V' be a FSI
subspace of H? that possesses an w-localized kernel so that, in particular, Theorem
2 holds. Let {@g}pep be any finite subset of V,with |B| =

Lemma 12. The collection of vectors {{aﬁ(g + k)}kezn 1B € B} c *(z",C") is

linearly independent if and only if the correlation matrix My, (&) is nonsingular at &.
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Proof. Suppose that {Qﬂ(g—f- lc)},c , B € B are linearly dependent. Then
there are constants ag, not all zero, such that }_;asP4(§ + k) = 0. This implies
that 0 = C(Q_5as0p, 0a)(§) = D_5a5C (¢, 0a)(§). Therefore the rows of My, (§)
are linearly dependent. Conversely, suppose that the rows of M,, (&) are linearly
dependent. Then, as before, there is a nontrivial solution of 0 = C(}_;appg, p,)(§)-

Therefore the vector {Zﬂ agPs(§ + k)}k is orthogonal to each {34(€ + /-c)},c . This

can only happen if {Z 8 agPs(§ + k)} is the zero vector. In particular the vectors
k

{@ﬁ &+ k)}k are linearly dependent. B

The proof of Theorem 3 is simple now. Let {goﬂ}geg be a compactly supported
family in V4 that is maximal with respect to the property that det M,, = 0 only
on a set of measure zero. Then {@4}seps must be a finite set. In fact, {o4(- — &)}
forms a basis for the compactly supported elements of V5. Otherwise, there would
be a compactly supported element ¢, € V; independent of these. Look at the
correlation matrix of {¢g, ¥s}ses. Its determinant is a trigonometric polynomial,
hence either vanishes identically or vanishes on a set of measure zero. The latter
case would contradict maximality of {pz}ses. The former case implies that the
rows of the correlation matrix are linearly dependent, which is tantamount to say-
ing that C(pg, 5)(§) = D ag(§)C (v, vs)(€) where the functions ag (&) are trig
polynomials as well. As we saw above, this amounts to saying that {¢,(( + &)}, =
> g, ap e 2 {ﬁﬁ(§+k)}k where ag; # 0 for only finitely many [ € Z". But
this implies that ¢q(z) = >4, asips(z — 1), which contradicts independence of
{©0: 05(- — k) } ses- Therefore, the compactly supported elements of V4 are contained
in the span of {¢4(- —k)}. Since the compactly supported elements of V; are dense in
Vo, it follows that Vj is the closure of the span of {¢4(- — k}gep,rezn. This completes
the proof of Theorem 3. B

4. NONEXISTENCE

To complete the proof that no compactly supported divergence-free wavelet bases
exist, we need to apply the results above to the special case where the space in
question is generated by the long-scale wavelets. In particular, the fact that the kernel
is w-localized should be a simple corollary of the compact support of the wavelets:

Lemma 13. Under the hypotheses of Theorem 1, the projector Py onto the subspace
Vo of H? generated by {1 }ren,jo)>1 has an w-localized kernel.

Proof. First, because of biorthogonality it is clear that the kernel of P, should

have the form L
p(z.y) = Y (@i )
AEA,|Q(N)|>1
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The fact that the components of this matrix-valued kernel are w-localized follows
from precisely the same argument as in the scalar case. In particular, one can show
that |p(z,y)|m, < C(1+ |z —y|)™™ 7 where v > 0 depends on the Holder regularity
of the wavelets. But then p is w-localized with respect to w = (1 + |z|)"*? whenever
0<p<2y. 1

Corollary 14. Under the same hypotheses, the compactly supported elements of V
are dense in Vj.

Proof.  Clearly finite linear combinations of {1, }xca,jon)>1 are compactly
supported. But if f € V; then its wavelet coefficient sequence {{f,¥})},¢ AJQOYIS1
is square summable, which implies that f can be approximated in V, by compactly
supported elements. H

Now, applying Theorem 3 gives:

Corollary 15. V; is locally finite dimensional.

Proof. By Theorem 3, there is a finite collection of compactly supported
functions {(ﬁﬂ} C Vp such that Vj is the {?-closed span of {d)ﬂ(x — k)} . In particular,
the restriction of any f € Vj to a compact set K is a linear combination of the
restrictions to K of the {%(x — k)}, and only finitely many of these do not vanish
identically on K. B

Now we can use the corollary to obtain a contradiction that proves Theorem 1.
Assume that Vo = @2, W; = H? © (&FW,) where W; is generated by the families
{1, : |Q(N)| = 277}, where the v, and the dual wavelets v}, are both divergence-
free and compactly supported. Let h be a harmonic function on R" so that VA is
divergence free. Set har = Vhxyz<ary Where M is chosen such that if ¢} has support
intersecting [0,1)" and |Q(A)| < 1 then ¢} is supported in {|z| < M}. For such 7}
it follows that

[ mrvs= [ whewi=- [ nweup=o

by integration by parts together with the fact that V - ¢} = 0.

This computation shows that all wavelets ¢} such that |Q(A)| < 1 having support
intersecting [0,1)" vanish as linear functionals against Vh. We conclude that the
restriction of Po(Vhx,<ary) to [0, 1)" agrees with the restriction of VA to [0, 1)". But
the previous results show that restrictions of V4 to [0,1)" define a finite dimensional
space, whereas restrictions of VA to [0,1)" where A is harmonic form an infinite
dimensional space. This contradiction proves Theorem 1. B
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