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Abstract

Using Bellman function techniques, we obtain the optimal dependence of the op-
erator norms in L2(R) of the Haar multipliers T tw on the corresponding RHd

p or Adp
characteristic of the weight w, for t = 1,±1/2. These results can be viewed as par-
ticular cases of estimates on homogeneous spaces L2(vdσ), for σ a doubling positive
measure and v ∈ Ad2(dσ), of the weighted dyadic square function Sdσ. We show that the
operator norms of such square functions in L2(vdσ) are bounded by a linear function
of the Ad2(dσ) characteristic of the weight v, where the constant depends only on the
doubling constant of the measure σ. We also show an inverse estimate for Sdσ. Both
results are known when dσ = dx. We deduce both estimates from an estimate for the
Haar multiplier (T σv )1/2 on L2(dσ) when v ∈ Ad2(dσ), which mirrors the estimate for
T

1/2
w in L2(R) when w ∈ Ad2. The estimate for the Haar multiplier adapted to the σ

measure, (T σv )1/2, is proved using Bellman functions. These estimates are sharp in the
sense that the rates cannot be improved and be expected to hold for all σ, since the
particular case dσ = dx, v = w, correspond to the estimates for the Haar multipliers
T

1/2
w proven to be sharp.

1 Introduction

The Haar multipliers considered in these paper, are operators of the form

T twf(x) =
∑
I∈D

(
w(x)
mIw

)t
〈f, hI〉hI(x);

where D denotes the dyadic intervals; {hI}I∈D the Haar functions normalized in L2(R),
i.e. hI(x) = |I|−1/2

(
χIr(x)− χIl(x)

)
, Il, Ir the left and right halves of I; 〈·, ·〉 denotes

the inner product in L2(R); w is a weight, mIw denotes the average of w on the dyadic
interval I, and t ∈ R.
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Necessary and sufficient conditions for boundedness of T tw on Lp(R), 1 < p < ∞,
are known in most cases, see [P1], [KP], [P2].

When tp > 1, these operators are bounded in Lp(R) if and only if w satisfies the
dyadic Reverse Hölder q condition, RHd

q , where q = tp, namely, there exists a constant
C > 0 such that for all I ∈ D,(

1
|I|

∫
I
wq
)1/q

≤ C

|I|

∫
I
w.

The smallest constant on the right hand side is denoted by [w]RHd
q
, and it is called the

RHd
q -characteristic of the weight w.
When tp < 0, these operators are bounded in Lp(R) if and only if w satisfies the

following dyadic Adq condition, where q = 1− 1
pt ,

sup
I∈D

(
1
|I|

∫
I
w

)(
1
|I|

∫
I
w
− 1

q−1

)q−1

<∞.

The left-hand-side is denoted by [w]Ad
q
, and it is called the Adq-characteristic of the

weight w.
When 0 < tp ≤ 1, and if we assume that w ∈

⋃
p>1RH

d
p then the corresponding

operators are bounded in Lp(R) for 1 < p <∞.
A weight w is dyadic doubling if

sup
I∈D

w(Ĩ)
w(I)

<∞,

where Ĩ denotes the parent of I, and w(I) =
∫
I w(x) dx. The left-hand-side is denoted

by D(w), and it is called the dyadic doubling constant of the weight w.
In the classical non-dyadic theory, w ∈ Ap implies doubling, and

⋃
p>1Ap =⋃

p>1RHp, see [CF]. In the dyadic theory, w ∈ Adp implies dyadic doubling, but
w ∈ RHd

p does not. In this case,
⋃
p>1A

d
p is a strict subset of

⋃
p>1RH

d
p , however

if we consider the dyadic doubling weights that belong to
⋃
p>1RH

d
p , then we recover⋃

p>1A
d
p, see [B2], [KP].

In this paper we are interested in studying the dependence of the Lp-bounds of T tw
on the corresponding characteristic of the weight w, and sometimes also on the dyadic
doubling constant of w. We will concentrate on the cases p = 2, and t = 1, 1/2,−1/2.

This work was inspired by a string of papers that have appeared in the wake of this
milenium, where sharp linear bounds in L2(w) for classical operators (square function,
martingale transform, Beurling transform, Hilbert transform, and Riesz transforms) on
weighted Lebesgue spaces have been obtained, see [HTV], [W1], [W2], [PetW], [PetV],
[D], [DV], [Pet1], [Pet2]. Very recently the same linear bound has been proved to hold
also for the dyadic paraproduct, see [Be]. All these results use Bellman function tech-
niques introduced by Nazarov, Treil and Volberg [NT], [NTV1]. In [NTV1] necessary
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and sufficient conditions for two weighted estimates for the martingale transform (Haar
multiplier with symbol ±1) were found. These results were in turn used by J. Wit-
twer [W1] who considered one weight estimates but noticed that the Bellman function
method provided optimal (linear) estimates in terms of the A2-characteristic of the
weight. See [NTV2] for a very lucid review on the connections between the original
Bellman functions (solutions of the Bellman differential equation) in stochastic control
theory and the Bellman functions in harmonic analysis. These sharp estimates are not
just a mathematical curiosity, people use them in a variety of settings, for example in
the theory of quasiconformal maps ([AIS], [BaJ], [VN], [PetV]), and when considering
Lp-solvability of elliptic problems ([FKePi], [DiPetPi]).

We use Bellman function techniques to study the sharp dependence of the operator
norm of the Haar multipliers T±1/2

w and T 1
w in L2(R) on [w]Ad

2
and [w]RHd

2
respectively.

We will prove the following theorems,

Theorem 1. Let w ∈ Ad2 then there exists a constant C > 0 such that for all f ∈ L2(R),

‖T−1/2
w f‖L2(R) ≤ C[w]Ad

2
‖f‖L2(R).

Denote Tw = T 1
w.

Theorem 2. Let w ∈ RHd
2 and dyadic doubling, then there exists a constant C > 0

depending on the dyadic doubling constant of w such that for all f ∈ L2(R),

‖Twf‖L2(R) ≤ C[w]2
RHd

2
‖f‖L2(R).

The following theorem involves the case t = 1/2 and w ∈ Ad2.

Theorem 3. Let w ∈ Ad2 then there exists a constant C > 0 such that for all f ∈ L2(R),

‖T 1/2
w f‖L2(R) ≤ C[w]1/2

Ad
2
‖f‖L2(R).

The results are optimal in the sense that we cannot get a slower decaying function
of the corresponding characteristics of the weights.

The proof of Theorem 3 can be found embedded in the proof of an inverse estimate
for the square function that is not stated in the language of Haar multipliers [PetPot].
What is interesting, is that we can deduce Theorem 1 as a corollary of Theorem 3.
This is very much in line with the beautiful operator theory argument presented in
[PetPot].

The proof of the first two theorems will lead naturally to the study of weighted
square functions on homogeneous spaces. In fact, the results for the weighted square
functions will provide yet another proof of these results.

Verifying the boundedness of T tw in L2(R) with a particular bound is equivalent to
verifying the boundedness of its adjoint (T tw)∗ in L2(R) with the same bound. The
advantage of the adjoints is that it will be very easy to compute L2-norms. In the first
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case, t = −1/2, the L2-norm of (T−1/2
w )∗f is equal to the L2(w)-norm of the dyadic

square function Sd(w−1/2f) defined below by (3) when dσ = dx. But it has been
shown, by Hukovic, Treil and Volberg [HTV], that

‖Sdf‖L2(w) ≤ C[w]Ad
2
‖f‖L2(w), (1)

and this result is optimal. This leads to a quick proof of Theorem 1. But it could
be used, and we will, in the other direction, if we can prove Theorem 1 independently
of the square function estimate, then we will get (1), this idea was used in [PetPot,
Corollary 3.2].

It is well known, see [P1], that if w is dyadic doubling, the boundedness of Tw in
L2(R) is equivalent to the boundedness of the weighted dyadic square Sdw function in
L2(R), defined below by (3) when dσ = wdx, and either of these events happens if and
only if w ∈ RHd

2 . It will be clear from the proof of Theorem 2 that

‖Sdwf‖L2(R) ≤ C[w]2
RHd

2
‖f‖L2(R), (2)

where C depends on the dyadic doubling constant of w.
We claim that these square functions estimates, (1) and (2), are of the same nature,

to be explained subsequently.
Let σ be a positive dyadic doubling1 measure. We will say that v ∈ Ad2(dσ) if

sup
I∈D

(
1

σ(I)

∫
I
v dσ

)(
1

σ(I)

∫
I
v−1 dσ

)
<∞.

The quantity on the left hand side is denoted by [v]Ad
2(dσ). When dσ = dx we simply

write [v]Ad
2
.

Define the σ-dyadic square function by

Sdσf(x) :=

∑
j∈Z

|∆σ
j f(x)|2

1/2

, (3)

where the j-th σ-difference ∆σ
j := Eσj+1 − Eσj , and the j-th σ-expectation is given by

Eσj f(x) :=
1

σ(I)

∫
I
f dσ =: mσ

I f, x ∈ I ∈ Dj .

Define the σ-dyadic maximal function by

Md
σf(x) := sup

j∈Z
Eσj |f |(x). (4)

1A positive measure σ is called dyadic doubling if there exists C > 0 such that σ(Ĩ)/σ(I) ≤ C, for all
I ∈ D, Ĩ being I’s parent, and σ(I) =

∫
I
dσ. Denote by D(σ) the smallest such constant, which we will call

the dyadic doubling constant of σ. Note that D(σ) ≥ 2. Given a weight w let dσ = wdx, then σ is dyadic
doubling if and only if the weight w is dyadic doubling, moreover D(σ) = D(w).
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When dσ = dx we write Ej , ∆j , Sd, and Md and when dσ = wdx we write Ewj , ∆w
j ,

Sdw, and Md
w. It is well known that Md

σ and Sdσ are bounded in L2(vdσ), if and only
if v ∈ Ad2(dσ), see [CF]. In this paper we prove the following estimate that generalizes
(1),

Theorem 4. Let σ be a positive dyadic doubling measure, and v ∈ A2(dσ) then there
exists a constant C depending only on the dyadic doubling constant of σ such that for
all f ∈ L2(vdσ),

‖Sdσf‖L2(vdσ) ≤ C[v]Ad
2(dσ)‖f‖L2(vdσ).

It is clear that (1) is a corollary of this result where dσ = dx and v = w.
We claim that (2) is also a corollary of this result where this time we choose dσ =

wdx and v = w−1 . There is, apparently, a discrepancy in the nature of the constants,
until one realizes the following tautology,

w ∈ RHd
2 ⇔ w−1 ∈ Ad2(wdx), moreover [w−1]Ad

2(wdx) = [w]2
RHd

2
.

It is worth mentioning the following optimal inverse result due to S. Petermichl and
S. Pott [PetPot]: assume w ∈ Ad2, then

‖f‖L2(w) ≤ C[w]1/2
Ad

2
‖Sdf‖L2(w). (5)

Estimate (5) can be seen to be equivalent to Theorem 3, this observation can be
traced back to [PetPot]. For the Lusin square function a similar inverse estimate was
known to R. Fefferman and J. Pipher (see comment at the bottom of page 359 in [FPi]).
It is natural to conjecture that a similar lower bound to (5) can be found in the general
case, that is the content of the next theorem.

Theorem 5. Let σ be a positive doubling measure, and v ∈ Ad2(dσ), let dµ = vdσ.
There exists a constant C depending only on the dyadic doubling constant of σ, such
that for all f ∈ L2(vdσ),

‖f‖L2(vdσ) ≤ C[v]1/2
Ad

2(dσ)
‖Sdσf‖L2(vdσ).

Furthermore one can deduce this result from an appropriate dσ-analogue of Theo-
rem 3.

Theorem 6. Let σ be a positive doubling measure, and v ∈ Ad2(dσ), then there exists
a constant C depending only on the dyadic doubling constant of σ, such that for all
f ∈ L2(dσ),

‖(T σv )1/2f‖L2(dσ) ≤ C[v]1/2
Ad

2(dσ)
‖f‖L2(dσ).

Where

(T σv )1/2f :=
∑
I∈D

(
v(x)
mσ
I v

)1/2

〈f, hσI 〉σhσI (x),
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the functions {hσI }I∈D form an orthonormal basis in L2(dσ), called the weighted Haar
system, and 〈·, ·〉σ denotes the inner product in L2(dσ).

To prove Theorem 6 we follow the argument that Petermichl and Pott [PetPot] used
in the case dσ = dx. In fact we will deduce Theorem 4 as a corollary of Theorem 6.
We can also deduce as a corollary the following result for (T σv )−1/2 that is analogous
to the corresponding result stated in Theorem 1

Theorem 7. Let σ be a positive doubling measure, and v ∈ Ad2(dσ) then there exists
a constant C depending only on the dyadic doubling constant of σ, such that for all
f ∈ L2(dσ),

‖(T σv )−1/2f‖L2(dσ) ≤ C[v]Ad
2(dσ)‖f‖L2(dσ).

Where

(T σv )−1/2f :=
∑
I∈D

(
v(x)
mσ
I v

)−1/2

〈f, hσI 〉σhσI (x).

The paper is organized as follows. In Section 2 we prove Theorem 1 by showing that
it is equivalent to the dyadic square function estimate on weighted spaces. In Section 3
we prove Theorem 2, by reducing the proof to proving a precise weighted Carleson
estimate that is shown to hold in two steps: first a so called Sawyer’s estimate that
is handled using Bellman functions, and second a weighted estimate that jump-starts
the Sawyer estimate, and which turns out to be trivial in this case. This argument
works for dyadic doubling weights and the numerical constant depends linearly on
the dyadic doubling constant of w. We also prove similar estimates for the dyadic
weighted maximal function Md

w. In Section 4 we reduce Theorem 3 to proving the
Petermichl-Pott estimate (5), in fact the two estimates are equivalent. We then deduce
as corollaries of Theorem 3: Theorem 1, and the Hukovic-Treil-Volberg estimate (1).
In Section 5, we set up the scene so that it is clear one can deduce from Theorem 6
(square root estimate for (T σv )1/2) the linear estimate for (T σv )−1/2 (Theorem 7), the
linear estimate for Sdσ (Theorem 4), and the inverse estimate for Sdσ (Theorem 5),
exactly in the same way as it was done in the case dσ = dx in Section 4. In Section 6
we prove Theorem 6. The estimate is reduced to proving a weighted Carleson estimate.
To achieve that, a Sawyer’s estimate is needed, it turns out that the Bellman function
required for this estimate is the same one used in the proof of Theorem 2, but this
time the weight lemma, necessary to jump-start it, is not trivial and requires a proof,
which we achieve using again Bellman functions. In Section 7 we explain how to
prove Theorem 2 by applying a Bellman function argument directly to the adjoint
problem for Tw, and we use some homogeneity considerations to show the sharpness of
the estimate, by showing that no Bellman function with faster decay can exist. This
proof also requires w to be dyadic doubling, not only in RHd

2 . We learned about this
argument from Fedja Nazarov [N], the homogeneity trick that reduces the number of
variables of the Bellman function one is searching is an idea that appeared first in
[Burk]. In Section 8 we present some final remarks.
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2 Sharp bound for T
−1/2
w

The formal adjoints of T tw are operators of the form

(T tw)∗f(x) =
∑
I∈D

〈fwt, hI〉
(mIw)t

hI(x), (6)

hence one can compute the L2-norm of the output by a direct application of Plancherel
Theorem. More precisely,

‖(T tw)∗f‖2L2(R) =
∑
I∈D

|〈fwt, hI〉|2

(mIw)2t
. (7)

Proof Theorem 1. Set t = −1/2 in (7) to obtain,

‖(T−1/2
w )∗f‖2L2(R) =

∑
I∈D

mIw|〈w−1/2f, hI〉|2.

Remember that the dyadic square function is given by

Sdg(x) =

(∑
I∈D

|〈g, hI〉|2

|I|
χI(x)

)1/2

,

and its L2(w)-norm can be calculated directly by

‖Sdg‖2L2(w) =
∑
I∈D

mIw|〈g, hI〉|2. (8)

Hence,
‖(T−1/2

w )∗f‖2L2(R) = ‖Sd(w−1/2f)‖2L2(w).

Now we can use the sharp estimate (1) for g = w−1/2f ,

‖Sd(w−1/2f)‖L2(w) = ‖Sdg‖L2(w) ≤ C[w]Ad
2
‖g‖L2(w) = C[w]Ad

2
‖w−1/2f‖L2(w).

Finally observing that ‖w−1/2f‖L2(w) = ‖f‖L2(R), we obtain the desired inequality for
the adjoint operator and hence for the operator,

‖T−1/2
w f‖L2(R) ≤ C[w]Ad

2
‖f‖L2(R).

This result must be sharp otherwise estimate (1) for the dyadic square function would
not be sharp. In fact the two estimates are equivalent.
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3 Bounds for Tw and Sd
w

In this section we assume that w ∈ RHd
2 and that it is dyadic doubling. We denote

by D(w) the dyadic doubling constant of w. We prove that the operator norm of Tw
in L2(R) is less than or equal than a constant that depends linearly on the doubling
constant of w times [w]2

RHd
2
, more precisely there exists C > 0 such that for all f ∈

L2(R),
‖Twf‖L2(R) ≤ CD(w)[w]2

RHd
2
‖f‖L2(R). (9)

Proof of Theorem 2. By (7) in the case t = 1 we obtain that

‖T ∗wf‖2L2(R) =
∑
I∈D

∣∣∣∣〈wf, hI〉mIw

∣∣∣∣2 =
∑
I∈D

|I|
∣∣∣∣mI(fw)
mĨw

−
mĨ(fw)
mĨw

∣∣∣∣2 .
Where Ĩ is the parent of I.

The weighted dyadic square function is given by

Sdwf(x) =

(∑
I∈D

χI(x)
∣∣∣∣mI(fw)
mIw

−
mĨ(fw)
mĨw

∣∣∣∣2
)1/2

.

Notice that it coincides with Sdσf(x) given by (3) in the case dσ = wdx. Its L2-norm
is given by,

‖Sdwf‖2L2(R) =
∑
I∈D

|I|
∣∣∣∣mI(fw)
mIw

−
mĨ(fw)
mĨw

∣∣∣∣2 . (10)

It is not hard to believe now, that Tw and Sdw are bounded simultaneously in L2(R), and,
for dyadic doubling weights, this occurs if and only if w ∈ RHd

2 . See [P1] for details. We
will sketch the argument so that it becomes obvious where do we need careful estimates
to pin down the dependence on [w]RHd

2
and on D(w). Adding and subtracting mIfw

mĨw

inside the absolute value in the summands in (10), using that (a + b)2 ≤ 2(a2 + b2),

and that
(
mIfw
mIw

)2
≤ D(w)2

(
mĨfw
mĨw

)2
, we can see that

‖Sdwf‖2L2(R) ≤ 2‖T ∗wf‖2L2(R) +D2(w)Q(w, f),

where the Carleson Embedding term Q(w, f), is given by

Q(w, f) =
∑
I∈D

m2
I(fw)
m2
Iw

(
〈w, hI〉
mIw

)2

. (11)

On the other hand, see [P1, p. 654-656],

‖T ∗wf‖2L2(R) ≤ ‖M
d
wf‖2L2(R) +D2(w)Q(w, f) +D(w)Q1/2(w, f)‖T ∗wf‖L2(R),
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where Md
w is the weighted dyadic maximal function, i.e. Md

wf(x) = supj Ewj |f |(x), and

Ewj f(x) = mI(fw)
mIw

, x ∈ I ∈ Dj . We will check in Section 3.3 that

Lemma 1. If w ∈ RHd
2 then there exists a constant C > 0 such that for all f ∈ L2(R),

‖Md
wf‖L2(R) ≤ C[w]2

RHd
2
‖f‖L2(R).

All together we conclude that,

‖T ∗wf‖2L2(R) ≤ C
(
[w]4

RHd
2
‖f‖2L2(R) +D2(w)Q(w, f) +D(w)Q1/2(w, f)‖T ∗wf‖L2(R)

)
.

(12)
The Carleson Embedding term Q(w, f) is bounded by a constant depending on w

times ‖f‖2L2(R). That is sufficient to ensure the boundedness of Tw and therefore of
Sdw in L2(R) by a bootstrapping argument. However if we get control on the constant
in terms of the fourth power of the RHd

2 -characteristic of the weight w, then the
bootstrapping will give the quadratic bound for Tw.

Lemma 2 (Carleson’s Embedding Lemma). Assume w ∈ RHd
2 , then for all f ∈ L2(R),

Q(w, f) =
∑
I∈D

m2
I(fw)
m2
Iw

(
〈w, hI〉
mIw

)2

≤ 4[w]4
RHd

2
‖f‖2L2(R).

Inserting this estimate in (12) we get,

‖T ∗wf‖2L2(R) ≤ C
(
D2(w)[w]4

RHd
2
‖f‖2L2(R) +D(w)[w]2

RHd
2
‖T ∗wf‖L2(R)‖f‖L2(R)

)
.

Then bootstrapping2 the above inequality we conclude that for some other constants
c, c′ > 0, independent of w,

‖T ∗wf‖L2(R) ≤ cD(w)[w]2
RHd

2
‖f‖L2(R), and ‖Sdwf‖L2(R) ≤ c′D(w)[w]2

RHd
2
‖f‖L2(R).

This implies (9).

In Section 7 we argue about the optimality of the quadratic bound on the RHd
2 -

characteristic of the weight w. The argument presented there also features the appear-
ance of the weight’s doubling constant through the extension of the domain. At this
point it is not completely clear to the author whether one could push these arguments
without the appearance of the doubling constant. In particular, if the weight is in
RHd

2 but is not dyadic doubling, what is the optimal dependence on [w]RHd
2
? We know

2All we are doing here is using the fact that if A,B,C > 0, and A2 ≤ CB2 + CAB then A ≤ cB, for
some c > 0 depending only on C. In our case, A = ‖T ∗

wf‖L2(R), and B = D(w)[w]2
RHd

2
‖f‖L2(R).
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that Tw is bounded in that case, see [KP] for a stopping-time proof (without keeping
track of the nature of the constant) that works in the non-dyadic doubling case, unlike
the original proof in [P1] that assumes dyadic doubling, and which is the basis for the
proof in this section.

We will prove the Carleson’s Embedding (Lemma 2) in two steps, one is the so-
called Sawyer’s Estimate, the other is an appropriate weight estimate that turns out
to be trivial in this case. The weight estimate is necessary to jump-start Sawyer’s
estimate.

Lemma 3 (Sawyer’s Estimate). Given w a weight, and {λI}I∈D a sequence of positive
numbers such that there is a constant Q > 0 such that for all J ∈ D,

1
|J |

∑
I∈D(J)

m2
I(w

2)
m2
Iw

λI ≤ QmJ(w2),

then for all dyadic intervals J ,

1
|J |

∑
I∈D(J)

m2
I(fw)
m2
Iw

λI ≤ 4QmJ(f2).

Proof of Lemma 2. Choosing w ∈ RHd
2 , and λI =

(
〈w, hI〉
mIw

)2

we can jump-start Sawyer’s

Estimate with Q = [w]4
RHd

2
. In fact, the following weight estimate holds,

1
|J |

∑
I∈D(J)

m2
I(w

2)
m2
Iw

(
〈w, hI〉
mIw

)2

≤ [w]4
RHd

2

1
|J |

∑
I∈D(J)

|〈w, hI〉|2

≤ [w]4
RHd

2
mJ(w2),

where we are using the hypothesis w ∈ RHd
2 to obtain the first inequality, and the

fact that the collection of Haar functions {hI}I∈D(J) is an orthonormal set in L2(J) to
obtain the last inequality.

Applying Sawyer’s Estimate and letting J grow we conclude that

∑
I∈D

m2
I(fw)
m2
Iw

(
〈w, hI〉
mIw

)2

≤ 4[w]4
RHd

2
‖f‖2L2(R).

3.1 Sawyer’s Estimate

We will prove Sawyer’s Estimate using the technique of Bellman functions.
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Lemma 4. Suppose there exists a real-valued function of 5 variables, B(s) = B(x, y, w, v,M)
whose domain D is given by those s = (x, y, w, v,M) ∈ R5 such that

x, y, w, v,M ≥ 0,
M ≤ v,

y2 ≤ xv;

whose range is given by 0 ≤ B(s) ≤ x, s ∈ D, and such that the following convexity
property holds: for all s, s± ∈ D such that s− s++s−

2 = (0, 0, 0, 0, α) then

B(s)− B(s+) +B(s−)
2

≥ 1
4

(y
v

)2
α. (13)

Then Sawyer’s Estimate (Lemma 3) holds.

Proof. Without loss of generality can assume f ≥ 0. Fix a dyadic interval J . Let sJ =
(xJ , yJ , wJ , vJ ,MJ), where xJ = mJ(f2), yJ = mJ(fw), wJ = mJw, vJ = mJ(w2),
and

MJ =
1
Q

1
|J |

∑
I∈D(J)

(
mI(w2)
mIw

)2

λI .

Clearly for each J ∈ D, sJ belongs to the domain, these are all positive quantities, MJ ≤
vJ is the hypothesis of Lemma 3, and y2

J ≤ xJvJ is nothing more than Cauchy-Schwarz
inequality. Let now s± = sJ± ∈ D. By definition, sJ−

sJ+
+sJ−
2 = (0, 0, 0, 0, αJ), where

αJ = 1
Q|J |

(
mJ (w2)
mJw

)2
λJ .

We are assuming a function B exists, such that B(sJ) ≤ mJ(f2), and such that the
convexity property (13) is satisfied, namely

B(sJ)−
B(sJ+) +B(sJ−)

2
≥ 1

4

(
yJ
vJ

)2

αJ =
1

4Q|J |

(
mJ(fw)
mJw

)2

λJ .

Hence,

|J |mJ(f2) ≥ |J |B(sJ) ≥ 1
4Q

(
mJ(fw)
mJw

)2

λJ + |J |
B(sJ+) +B(sJ−)

2

=
1

4Q

(
mJ(fw)
mJw

)2

λJ + |J+|B(sJ+) + |J−|B(sJ−).

Applying the convexity property (13) to B(sJ±), and iterating the argument, we obtain
that

|J |mJ(f2) ≥ 1
4Q

∑
I∈D(J)

(
mI(fw)
mIw

)2

λI .

We are done proving Sawyer’s estimate, provided such function B exists.
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3.2 Existence of Bellman function

The function

B(x, y, w, v,M) = x− y2

v +M
(14)

is defined on the domain D, satisfies range property, 0 ≤ B ≤ x, and furthermore the
following differential properties hold,

∂B

∂M
≥ y2

4v2
, −d2B ≥ 0.

The boundedness and differential properties of the given function B on the domain
are left as an exercise for the reader, see Lemma 11 for similar computations.

The convexity of the domain together with the infinitesimal differential properties,
imply the discrete convexity property (13).

Notice that for s = (x, y, v, w,M), s± = (x±, y±, v±, w±,M±), and s++s−
2 = s −

(0, 0, 0, 0, α) = (x, y, v, w,M − α), by the Mean Value Theorem and the Fundamental
Theorem of Calculus,

B(s)− B(s+) +B(s−)
2

=
[
B(s)−B

(
s+ + s−

2

)]
+
[
B

(
s+ + s−

2

)
− B(s+) +B(s−)

2

]
=

∂B

∂M
(x, y, v, w,M ′)α−

∫ 1

−1
(1− |t|)b′′(t)dt, (15)

where M ′ = M(T ) = (1− T )M + T (M − α) for some 0 < T < 1, and

b(t) = B
(
s(t)

)
, s(t) =

1 + t

2
s+ +

1− t

2
s−, −1 ≤ t ≤ 1.

Notice that s(1) = s+, s(−1) = s−, and s(0) = s++s−
2 .

The differential properties together with (15) imply (notice that b′′(t) = d2B(s(t))).

B(s)− B(s+) +B(s−)
2

≥ y2

4v2
α,

which is what we wanted to prove.
We are entitled to use (15) as long as s, s± ∈ D imply that (i)

(
x, y, v, w,M(T )

)
∈ D

for all 0 ≤ T ≤ 1, and (ii) s(t) ∈ D for all −1 ≤ t ≤ 1. These are the convexity
properties that the domain must satisfy, and they are not difficult to prove. We leave
the proof as an exercise in convex analysis for the reader. Similar calculations have been
done in detail in other papers, see for example [NTV2], [HTV], [W1], [Pet1]. A similar
argument will be used in Section 6.4 and in Section 7. In the first case, the non-convex
domain is distorted according to the doubling constant D(σ) of an underlying doubling
measure σ, and the differentiability domain is enlarged by a parameter depending on
D(σ). In the second case, the domain is non-convex, and the differentiability domain
is enlarged by a parameter depending on D(w), the doubling constant of the weight w.

12



3.3 Weighted maximal function

It is well known that the dyadic weighted maximal function Md
w is bounded in Lq(R)

if and only if w ∈ RHd
p ,

1
p + 1

q = 1, see [Pz] and [P1]. We will show in this section
Lemma 1, that is the estimate,

‖Md
wf‖L2(R) ≤ C[w]2

RHd
2
‖f‖L2(R).

The following related optimal estimate for the Hardy-Littlewood maximal function
on weighted Lp-spaces due to S. Buckley (see [B1]) is well known: ‖Mf‖Lp(w) ≤

C[w]
max {1, 1

p−1
}

Ap
‖f‖Lp(w). See [Pa] and [Mo] for corresponding Lp-estimates for Mw.

Proof of Lemma 1. For the proof we will use a sharp weak boundedness result of Muck-
enhoupt [M] and Gehring’s self-improvement theorem for Reverse Hölder classes [Ge].
More precisely, Muckenhoupt proved the following weak (q, q) estimate, for 1 ≤ q <∞,
1
p + 1

q = 1,

|{x ∈ R : Mwf(x) > λ}| ≤
(

[w]RHp

λ
‖f‖Lq(R)

)q
, (16)

this estimate is sharp in the sense that φ(t) = tq, for t = [w]RHp , cannot be replaced by
a faster decaying function of t. Notice that this sharp estimate automatically gives at
least a linear bound in terms of [w]RH2 for the operator norm of the weighted maximal
function, that is it shows that if ‖Mwf‖L2(R) ≤ C[w]αRH2

‖f‖L2(R), then α ≥ 1. Same
result holds in the dyadic setting.

Gehring’s self-improvement result states that w ∈ RHp implies that there exists
an 0 < ε0 ∼ [w]−pRHp

, such that for all ε < ε0, w ∈ RHp+ε, furthermore, there exists a

constant C > 0 such that [w]RHp+ε ≤ C[w]RHp whenever ε ∼ [w]−pRHp
.

It is a simple consequence of Hölder’s inequality that if w ∈ RHp then for all
ε < p− 1, w ∈ RHp−ε, and [w]RHp−ε ≤ [w]RHp (with constant 1). Same results hold in
the dyadic setting.

We will now concentrate in the case p = 2.
We are going to interpolate Muckenhoupt’s weak bounds with end-points (q1, q1),

(q2, q2), with q1, q2 dual exponents of p1 = 2+ε, p2 = 2−ε, ε ∼ [w]−2
RHd

2
, i.e. q1 = 2+ε

1+ε <

2, q2 = 2−ε
1−ε > 2. Interpolation guarantees that if our operator obeys weak bouds of

the type

|{x ∈ R : Md
wf(x) > λ}| ≤

(
Bi
λ
‖f‖Lqi (R)

)qi
, i = 1, 2;

then Md
w is bounded in L2(R) (q1 < 2 < q2), furthermore,

‖Md
wf‖L2(R) ≤ CtB

1−t
1 Bt

2‖f‖L2(R),

where 1
2 = 1−t

q1
+ t

q2
, and C2

t = 2q2
q2−2 + 2q1

2−q1 . We can write all these variables in terms
of ε,

t =
2− ε

4
, Ct =

2
√

2√
ε
.
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We are assuming that ε ∼ [w]−2
RHd

2
, hence Ct ∼ [w]RHd

2
, and by Muckenhoupt’s weak

bounds we know that B1 = [w]RHd
2+ε

≤ C[w]RHd
2
, and B2 = [w]RHd

2−ε
≤ [w]RHd

2
. All

together we conclude that

‖Md
wf‖L2(R) ≤ C[w]2

RHd
2
‖f‖L2(R),

which is what we wanted to show.

What we have shown so far is that if ‖Mwf‖2 ≤ C[w]α
RHd

2
‖f‖L2(R), then 1 ≤ α ≤ 2.

The quadratic upper bound is the sharp bound, as Kabe Moen very recently proved
[Mo].

4 Sharp bound for T
1/2
w and corollaries

Verifying the boundedness of T 1/2
w in L2(R) is equivalent to verifying the boundedness

of its adjoint, furthermore the operator norms are the same. With this in mind, our
problem is to obtain the following estimate,

‖(T 1/2
w )∗f‖2L2(R) =

∑
I∈D

|〈w1/2f, hI〉|2

mIw
≤ C[w]Ad

2
‖f‖2L2(R). (17)

Let g = w1/2f , and observe that f ∈ L2(R) if and only if g ∈ L2(w−1), furthermore,
‖f‖L2(R) = ‖g‖L2(w−1), therefore the estimate we are seeking is equivalent to verifying
that there exists a constant C > 0 such that for all g ∈ L2(w−1)

∑
I∈D

|〈g, hI〉|2

mIw
≤ C[w]Ad

2
‖g‖2L2(w−1). (18)

This is exactly what Petermichl and Pott proved [PetPot, see equation (3.2)].
Let us first introduce some operator notation for multiplication in space, and dyadic

multiplication, the building blocks of the Haar multipliers. Denote by Mt
w, t ∈ R, w a

weight, the linear operator (possibly unbounded) of multiplication by wt, and Dt
w the

linear operator of dyadic multiplication also possible unbounded, defined by its action
on Haar functions, hI → (mIw)t hI . That is,

Mt
wf = wtf, Dt

wf =
∑
I∈D

(mIw)t〈f, hI〉hI .

When denoting an operator T followed by multiplication by wt we will often write
directly wtT instead of Mt

wT , similarly we will often write Twt instead of TMt
w when

this will not cause any confusion. Notice that with this notation, the Haar multipliers
we have been studying are given by

T tw = Mt
wD

−t
w = wtD−t

w .

14



Also notice that these operators, Mt
w and Dt

w, are positive operators, formally self-
adjoint, and formally invertible with formal inverses given by (Mt

w)−1 = M−t
w and

(Dt
w)−1 = D−t

w . Also notice that formally we can compute adjoints and inverses for
the Haar multipliers,

(T tw)∗ = D−t
w wt, (T tw)−1 = (D−t

w )−1(Mt
w)−1 = Dt

ww
−t = (T−tw )∗.

Note that if w ∈ Ad2, then both T 1/2
w and T−1/2

w are bounded operators in L2(R), so
are their adjoints, and the inverse of T 1/2

w is (T−1/2
w )∗.

To be safe when handling the possibly unbounded multiplication and dyadic mul-
tiplication operators, we consider the following truncated weights: for n ∈ N, wn(x) =
min{max{w(x), 1/n}, n}. If w ∈ Ad2, then wn ∈ Ad2 (this is true of any weight bounded
away from zero and from infinity, except that the Ad2-characteristic can depend on the
upper and lower bounds), and furthermore [wn]Ad

2
≤ C[w]Ad

2
. The multiplication and

dyadic multiplication corresponding to these truncations are positive, selfadjoint, in-
vertible and bounded operators (the inverses are also bounded), although not uniformly
on n. However the Haar multipliers T±1/2

wn will be uniformly bounded (by an appropri-
ate power of the [w]Ad

2
), and for g in the dense subspace of finite linear combinations

of Haar functions we know that T±1/2
wn g → T

±1/2
w g in L2(R), therefore by the uniform

boundedness principle this holds for all f ∈ L2(R) and moreover the same uniform
bound that works for the truncated Haar multipliers will hold for the non-truncated
Haar multipliers. We will prove all estimates with bounds independent of the trunca-
tion parameter, then take appropriate limits as n→∞. To ease the notation, we will
not write down the truncation parameter.

The following observation will be useful,

Lemma 5. Given w ∈ Ad2 then the operator w1/2SdD
−1/2
w is an isometry in L2(R).

Proof. A direct calculation shows that

‖w1/2SdD−1/2
w f‖2L2(R) =

∫
R

∑
I∈D

|〈f, hI〉|2

mIw

χI(x)
|I|

w(x) dx

=
∑
I∈D

|〈f, hI〉|2

mIw
mIw = ‖f‖2L2(R)

Assuming (5), that is the inverse estimate for the square function, we can now
present a proof of Theorem 3. In fact we will show that both estimates are equivalent.

Lemma 6 (Theorem 3 is equivalent to (5)). There exists a constant C > 0 such that
for all w ∈ Ad2,

‖T 1/2
w f‖L2(R) ≤ C[w]1/2

Ad
2
‖f‖L2(R) (19)
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if and only if there exists a constant C > 0 such that for all w ∈ Ad2,

‖f‖L2(w) ≤ C[w]1/2
Ad

2
‖Sdf‖L2(w). (20)

Proof. (⇒) The first observation is that (20) is equivalent to showing

‖g‖L2(R) ≤ C[w]1/2
Ad

2
‖w1/2Sdw−1/2g‖L2(R). (21)

Let g = T
1/2
w f , then f = (T 1/2

w )−1g = D
1/2
w w−1/2g, and substitute into (19) to get,

‖g‖L2(R) ≤ C[w]1/2
Ad

2
‖D1/2

w w−1/2g‖L2(R).

Now we use Lemma 5 to force the square function into the right hand side,

‖g‖L2(R) ≤ C[w]1/2
Ad

2
‖w1/2SdD−1/2

w D1/2
w w−1/2g‖L2(R)

= C[w]1/2
Ad

2
‖w1/2Sdw−1/2g‖L2(R).

This is exactly what we wanted to prove.

(⇐) Let f = (T 1/2
w )−1g, then g = T

1/2
w f = w1/2D

−1/2
w f , substituting into (21) we get

‖T 1/2
w f‖L2(R) ≤ C[w]1/2

Ad
2
‖w1/2Sw−1/2w1/2D−1/2

w f‖L2(R)

= C[w]1/2
Ad

2
‖w1/2SD−1/2

w f‖L2(R)

= C[w]1/2
Ad

2
‖f‖L2(R)

Where we used the isometry in Lemma 5 for the last equality.

We will now show how to deduce Theorem 1, and the Hukovic-Treil-Volberg in-
equality (1) as simple corollaries of Theorem 3. Of course at some point there should
be a proof of either the Petermichl-Pott Theorem or of Theorem 3 independent of each
other, this was done in [PetPot]. We will present a generalization of their argument
for the σ-case in Section 6.

Corollary 1 (Theorem 1). Given w ∈ Ad2 then

‖T−1/2
w f‖L2(R) ≤ C[w]Ad

2
‖f‖L2(R).

Proof. A direct calculation for the adjoint, using the fact that mIwmI(w−1) ≤ [w]Ad
2

shows that,

‖(T−1/2
w )∗f‖2L2(R) =

∑
I∈D

|〈w−1/2f, hI〉|2mIw

≤
∑
I∈D

|〈w−1/2f, hI〉|2
[w]Ad

2

mI(w−1)
.

= [w]Ad
2
‖(T 1/2

w−1)∗f‖2L2(R)

≤ C[w]2
Ad

2
‖f‖2L2(R).
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for the last inequality we used Theorem 3 applied to w−1 instead of w, and the fact that
w ∈ Ad2 implies w−1 ∈ Ad2 with the same Ad2-characteristic, [w−1]Ad

2
= [w]Ad

2
. This gives

us the estimate for the adjoint, hence the same estimate holds for the operator.

Corollary 2 (Hukovic-Treil-Volberg inequality (1)). Given w ∈ Ad2 then

‖Sdf‖L2(w) ≤ C[w]Ad
2
‖f‖L2(w).

Proof. The first observation is that what we want to prove is equivalent to showing

‖w1/2Sdw−1/2g‖L2(R) ≤ C[w]Ad
2
‖g‖L2(R).

We now estimate the left-hand side taking advantage of the isometry in Lemma 5, and
the linear estimate already proven for T−1/2

w in Corollary 1,

‖w1/2Sdw−1/2g‖L2(R) = ‖w1/2SdD−1/2
w D1/2

w w−1/2g‖L2(R)

= ‖D1/2
w w−1/2g‖L2(R)

= ‖(T−1/2
w )∗g‖L2(R)

≤ C[w]Ad
2
‖g‖L2(R).

This is exactly what we wanted to prove.

A few more observations are in order. First of all, we can verify that the following
equalities hold,

‖f‖2L2(w) = 〈Mwf, f〉, ‖Sdf‖2L2(w) = 〈Dwf, f〉.

In the language of operators we can rephrase, as Petermichl and Pott did in [PetPot],
the direct and inverse estimates for the square function as follows,

Dw ≤ C[w]2
Ad

2
Mw, Mw ≤ c[w]Ad

2
Dw,

where it is understood that for two operators, A ≤ B if and only if 〈Af, f〉 ≤ 〈Bf, f〉,
for all f ∈ L2(w). Theorem 3 or its equivalent formulation (18) can also be restated in
operator language,

D−1
w ≤ C[w]Ad

2
M−1

w .

In fact we have just shown that for this very special pair of operators, Dw and Mw

(positive, selfadjoint, invertible) that

Mw ≤ C[w]Ad
2
Dw if and only if D−1

w ≤ C[w]Ad
2
M−1

w .

This was the departure point in [PetPot]. This statement always holds for any
pair of positive, self-adjoint and invertible operators. If the operators commute this is
trivial, if they don’t, like in our case, it requires a small argument. This is a standard
result in the theory of C∗-algebras, see for example [Mur, Thm 2.2.5]), for a proof using
spectral theory, in particular the Gelfand representation.
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5 Direct and inverse bounds for Sd
σ in L2(vdσ)

In this section we will see that one can deduce Theorem 4, Theorem 5 and Theorem 7
as corollaries of Theorem 6, following the same scheme as in Section 4.

We will assume in this section that v ∈ Ad2(dσ), and σ is a doubling measure.
Recall that for a doubling measure σ, we define the σ-dyadic square function by

Sdσf(x) =

∑
j∈Z

|∆σ
j f(x)|2

1/2

=

(∑
I∈D

|mσ
I f −mσ

Ĩ
f |2χI(x)

)1/2

,

where the j-th σ-difference is ∆σ
j = Eσj+1 − Eσj , and the σ-expectation is given by

Eσj f(x) =
1

σ(I)

∫
I
f dσ = mσ

I f, x ∈ I ∈ Dj .

It is well known that Sdσ is bounded in L2(vdσ) if and only if v ∈ A2(dσ). Let
dµ = vdσ, it is easy to check that

‖Sdσf‖2L2(dµ) =
∑
I∈D

µ(I)|mσ
I f −mσ

Ĩ
f |2.

Given a doubling measure σ, one can construct Haar functions {hσI }I∈D that form
an orthonormal basis in L2(dσ), sometimes called weighted Haar system, see [CJS].
Such functions are step functions similar to the Haar functions except that the weights
on each half are different. More precisely,

hσI (x) = aσI+χI+(x)− aσI−χI−(x),

where aσI =
√

σ(I∗)

σ(I)σ(Ĩ)
, Ĩ is the parent of I, and I∗ is the sibling of I. With this choice,

it is not hard to check that,

∆σ
j f(x) = 〈f, hσ

Ĩ
〉σhσĨ (x) = mσ

I f −mσ
Ĩ
f, x ∈ I ⊂ Ĩ ∈ Dj . (22)

For dµ = vdσ, we can now compute the L2(dµ)-norm of Sdσf in terms of the system
{hσI }I∈D,

‖Sdσf‖2L2(dµ) =
∑
I∈D

µ(I)|〈f, hσ
Ĩ
〉σhσĨ (xI)|

2 =
∑
Ĩ∈D

(
µ(I)σ(I∗)
σ(Ĩ)σ(I)

+
µ(I∗)σ(I)
σ(Ĩ)σ(I∗)

)
|〈f, hσ

Ĩ
〉σ|2,

where xI denotes a point in I. But σ is doubling, and if we denote by D(σ) its doubling
constant, then D−1(σ) ≤ σ(I∗)

σ(I) ≤ D(σ), and we conclude that

D−1(σ)mσ
Ĩ
v ≤ µ(I)σ(I∗)

σ(Ĩ)σ(I)
+
µ(I∗)σ(I)
σ(Ĩ)σ(I∗)

≤ D(σ)mσ
Ĩ
v.
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Therefore

D−1(σ)
∑
I∈D

mσ
I v|〈f, hσI 〉σ|2 ≤ ‖Sdσf‖2L2(dµ) ≤ D(σ)

∑
I∈D

mσ
I v|〈f, hσI 〉σ|2. (23)

Denote by (Dσ
v )−1/2 the discrete multiplication, a possibly unbounded operator

densely defined to map hσI into (mσ
I v)

−1/2hσI .
Now we can reproduce almost verbatim what we did in Section 4. Estimate (23)

applied to (Dσ
v )−1/2f implies the analogue of Lemma 5 in this context, namely

Lemma 7. Let v ∈ A2(dσ) then

D−1/2(σ)‖f‖L2(dσ) ≤ ‖v1/2Sdσ(D
σ
v )−1/2f‖L2(dσ) ≤ D1/2(σ)‖f‖L2(dσ).

The corollaries and their proofs are very similar to the corresponding ones we did in
Section 4 (we omit their proofs) modulo the appearance of a dependence of constants on
the doubling constant of σ each time we use Lemma 7 and each time we use Theorem 6
in particular the precise estimate (28) to be proved in Section 6. We obtain the following
direct and inverse estimates for Sdσ in L2(vdσ),

Corollary 3 (Theorem 4). Given σ a doubling measure, v ∈ Ad2(dσ) then there exists
a constant C > 0, independent of v and σ, such that for all f ∈ L2(vdσ),

‖Sdσf‖L2(vdσ) ≤ CD2(σ) [v]Ad
2(dσ)‖f‖L2(vdσ). (24)

Corollary 4 (Theorem 5). Given σ a doubling measure, v ∈ Ad2(dσ) then there exists
a constant C > 0, independent of v and σ, such that for all f ∈ L2(vdσ),

‖f‖L2(vdσ) ≤ CD2(σ) [v]1/2
Ad

2(dσ)
‖Sdσf‖L2(vdσ). (25)

Both for the direct and the inverse estimates the constants depend not only on
the Ad2(dσ) characteristic of the weight v (at the rates advertised in Theorem 4 and
Theorem 5), but also on D(σ). The dependence on D(σ) comes from Theorem 6,
more precisely (28) (responsible for a power 3/2 in both estimates) and from Lemma 7
(responsible for a power 1/2 in both estimates). An intermediate estimate needed to
get Corollary 3 is the following estimate, which also follows almost verbatim the proof
of Corollary 1

Corollary 5 (Theorem 7). Given σ a doubling measure, v ∈ Ad2(dσ) then there exists
a constant C > 0, independent of v and σ, such that for all f ∈ L2(dσ),

‖(T σv )−1/2f‖L2(dσ) ≤ CD3/2(σ)[v]Ad
2(dσ)‖f‖L2(dσ).
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Notice also that if we specialize to the case dσ = wdx and v = w−1, and remember
that [w−1]Ad

2(wdx) = [w]2
RHd

2
, we obtain the following direct and inverse estimates for

Sdw in L2(R),

‖Sdwf‖L2(R) ≤ CD2(w) [w]2
RHd

2
‖f‖L2(R), (26)

‖f‖L2(R) ≤ CD2(w) [w]RHd
2
‖Sdwf‖L2(R). (27)

In both cases the constants depend on D(w). Note that in Section 3 we got linear de-
pendence on the doubling constant for the direct estimate of Sw, whereas the argument
just presented yields the larger quadratic power.

6 Sharp bounds for (T σ
v )1/2

In this section we will prove an estimate of the form

‖(T σv )1/2f‖L2(dσ) ≤ CD3/2(σ)[v]1/2A2(dσ)‖f‖L2(dσ). (28)

Note that the dependence on the A2(dσ)-characteristic of v is like a square root, and
the dependence on the dyadic doubling constant of σ is like a power 3/2.

Proof of Theorem 6. Suffices to prove the following estimate∑
I∈D

1
mσ
I (v)

|〈f, hσI 〉σ|2 ≤ CD3(σ)[v]Ad
2(dσ)‖f‖

2
L2(v−1dσ). (29)

Notice that the left hand side of (29) is ‖(T 1/2
σ )∗(v−1/2f)‖2L2(dσ), and that ‖f‖2L2(v−1dσ) =

‖v−1/2f‖2L2(dσ). So (29) is equivalent to the square root estimate (28) for T 1/2
σ . Esti-

mate (29) is exactly what was proved in [PetPot] for the case dσ = dx and v = w, and
we will follow their proof very closely.

The weighted Haar system {hσI }I∈D satisfies the following identity,

hI = δσI h
σ
I + γσI χI ,

where δσI =

√
mI+

(dσ)mI− (dσ)

mI(dσ) , and γσI = 〈dσ,hI〉
|I|mI(dσ) .

The same holds for another doubling measure µ,

hI = δµI h
µ
I + γµI χI .

Combining these two we can obtain a similar relation between hσI and hµI when
dµ = vdσ, namely

hσI = δv,σI hµI + γv,σI χI , (30)
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where

δv,σI =

√
mσ
I+

(v)mσ
I−

(v)

mσ
I (v)

, γv,σI =
〈v, hσI 〉σ
σ(I)mσ

I (v)
.

Switching in (29) to the weighted Haar system {hµI }I∈D, which is an orthonormal
basis in L2(dµ), where dµ = vdσ, the left hand side becomes,∑

I∈D

1
mσ
I (v)

|〈f, δv,σI hµI + γv,σI χI〉σ|2 = (I) + (II) + (III),

where

(I) =
∑
I∈D

1
mσ
I (v)

|δv,σI |2|〈f, hµI 〉σ|
2,

(II) =
∑
I∈D

1
mσ
I (v)

δv,σI γv,σI 〈f, hµI 〉σ〈f, χI〉σ,

(III) =
∑
I∈D

1
mσ
I (v)

|γv,σI |2|〈f, χI〉σ|2,

The following estimates will hold:

(I) ≤ CD(σ)‖f‖2L2(v−1dσ), (31)

(III) ≤ CD3(σ)[v]Ad
2(dσ)‖f‖

2
L2(v−1dσ), . (32)

With those estimates in hand, we can control the second term by Cauchy-Schwarz,

|(II)| ≤
√

(I)
√

(III) ≤ CD2(σ)[v]1/2
Ad

2(dσ)
‖f‖2L2(v−1dσ).

All together these imply,∑
I∈D

1
mσ
I (v)

|〈f, δv,σI hµI + γv,σI χI〉σ|2 ≤ CD3(σ)[v]Ad
2(dσ)‖f‖

2
L2(v−1dσ).

Which is what we wanted to prove.

The first estimate (31) is not difficult, it is in estimating term (III), inequality
(32), where we will have to prove a Carleson’s Lemma. To estimate term (III) we
will follow the scheme described in Section 3: first prove a Sawyer’s estimate which
boils down to finding exactly the same Bellman function we found before, second we
will need a weight lemma to jump-start properly the Sawyer’s estimate, this time such
lemma is not trivial.
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6.1 Estimate for term (I)

Proof of estimate (I). Note that

|δv,σI |2

mσ
I (v)

=
mσ
I+

(v)mσ
I−

(v)

mσ
I (v)m

σ
I (v)

,

and that

mσ
I (v) =

σ(I+)
σ(I)

mσ
I+(v) +

σ(I−)
σ(I)

mσ
I−(v),

σ(I+)
σ(I)

+
σ(I−)
σ(I)

= 1.

Denote by s = σ(I+)
σ(I) , which will be uniformly bounded away from 1 and 0 because σ

is dyadic doubling, more precisely, ε ≤ s, 1− s ≤ 1− ε, for 0 < ε = D(σ)−1 ≤ 1/2. The
geometric-arithmetic inequality implies that,

√
mσ
I+

(v)mσ
I−

(v) ≤ 1
2
√
s(1− s)

mσ
I (v) ≤

√
D(σ)

2
mσ
I (v).

Therefore, for dµ = vdσ,

(I) ≤ D(σ)
2

∑
I∈D

|〈f, hµI 〉σ|
2 =

D(σ)
2

∑
I∈D

|〈v−1f, hµI 〉µ|
2

=
D(σ)

2
‖v−1f‖L2(dµ) =

D(σ)
2

‖f‖L2(v−1dσ).

Which is what we wanted to prove.

6.2 Estimate for term (III)

We are trying to show the following Lemma, which can be thought as a Carleson’s
Embedding Lemma after noticing that 〈f, χσI 〉 = σ(I)mσ

I f .

Lemma 8. If v ∈ Ad2(dσ), and σ is a doubling dyadic measure, then there exists a
constant C > 0, independent of σ and v, such that for all f ∈ L2(v−1dσ),

∑
I∈D

σ2(I)
mσ
I (v)

|γv,σI |2|mσ
I (f)|2 ≤ CD3(σ)[v]Ad

2(dσ)‖f‖
2
L2(v−1dσ).

To prove this Carleson’s Embedding Lemma, it will suffice to prove a Sawyer’s
Estimate, and a Weight Lemma to jump-start it with the right constant. This was
exactly the scheme followed in the proof of Lemma 2
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Lemma 9 (σ-Sawyer’s Estimate). Given a dyadic doubling measure σ, Q > 0, and a
sequence of positive numbers {λI}I∈D. Suppose that for all dyadic intervals J

1
σ(J)

∑
I∈D(J)

|mσ
I (v)|2λI ≤ Qmσ

J(v),

then
1

σ(J)

∑
I∈D(J)

|mσ
I (f)|2λI ≤ 4Qmσ

J(f
2v−1).

Lemma 10 (Weight Lemma). If v ∈ Ad2(dσ), and σ is a doubling dyadic measure,
then

1
σ(J)

∑
I∈D(J)

|〈v, hσI 〉σ|2

mσ
I (v)

≤ 18D3(σ)[v]Ad
2(dσ)m

σ
J(v).

This Weight Lemma is known to hold in the case dσ = dx, a proof can be found
in [W1], and it is a refinement of Buckley’s characterization of Ad∞ by summation
conditions, in the case the weight is in the subset Ad2, see [B2].

We will prove the σ-Sawyer’s Estimate (Lemma 9) in Section 6.3, and the Weight
Lemma (Lemma 10) in Section 6.4.

Proof of Lemma 8. Apply σ-Sawyer’s Estimate (Lemma 9 ) withQ = 18D3(σ)[w]Ad
2(dσ) >

0, and

λI = σ2(I)
|γv,σI |2

mσ
I (v)

=
|〈v, hσI 〉σ|2(
mσ
I (v)

)3 .
By Weight Lemma 10, the hypothesis of σ-Sawyer’s Estimate are satisfied, namely,

1
σ(J)

∑
I∈D(J)

|mσ
I (v)|2λI =

1
σ(J)

∑
I∈D(J)

|〈v, hσI 〉σ|2

mσ
I (v)

≤ 18D3(σ)[v]Ad
2(dσ)m

σ
J(v) ≤ Qmσ

J(v).

Therefore the conclusion of σ-Sawyer’s Estimate holds, namely, for each J ∈ D,

1
σ(J)

∑
I∈D(J)

|mσ
I (f)|2λI =

∑
I∈D

σ2(I)
mσ
I (v)

|γv,σI |2|mσ
I (f)|2

≤ 72D3(σ)[v]Ad
2(dσ)

1
σ(J)

∫
J
f2(x)v−1(x) dσ.

Cancel σ(J) and let J grow to [0,∞) and to (−∞, 0]. Finally add both estimates to
obtain Lemma 8 with C = 72.

23



6.3 σ-Sawyer’s Estimate

Proof of Lemma 9. Let us write σ-Sawyer’s estimate in term of Lebesgue averages, the
hypothesis (or Carleson condition) now reads,

1
|J |

∑
I∈D(J)

∣∣∣∣mI(vdσ)
mI(dσ)

∣∣∣∣2 λI ≤ QmJ(vdσ), (33)

and the conclusion will now read,

1
|J |

∑
I∈D(J)

∣∣∣∣mI(fdσ)
mI(dσ)

∣∣∣∣2 λI ≤ 4QmJ(f2v−1dσ), (34)

where here mI(dσ) := σ(I)/|I|, mI(fdσ) := 1
|I|
∫
I f dσ.

Notice that if dσ = wdx and v = w, then this is exactly Lemma 3 (our first Sawyer’s
Estimate), for which we have a Bellman function. In fact, we proved in Section 3.2
that there exists a real-valued function of 5 variables, B(s) = B(x, y, w, v,M) whose
domain D is given by those s = (x, y, w, v,M) ∈ R5 such that

x, y, w, v,M ≥ 0, M ≤ v, y2 ≤ xv;

whose range is given by 0 ≤ B(s) ≤ x, s ∈ D, and such that the following convexity
property holds: for all s, s± ∈ D such that s− s++s−

2 = (0, 0, 0, 0, α) then

B(s)− B(s+) +B(s−)
2

≥ 1
4

(y
v

)2
α.

Fix a dyadic interval I. Let sI = (xI , yI , wI , vI ,MI), where xI = mI(f2v−1dσ),
yI = mI(fdσ), wI = mI(dσ), vI = mI(vdσ), and

MI =
1
Q

1
|I|

∑
K∈D(I)

(
mK(vdσ)
mK(dσ)

)2

λK .

Clearly for each J ∈ D, sJ belongs to the domain, these are all positive quantities, MJ ≤
vJ is the hypothesis of Lemma 9, and y2

J ≤ xJvJ is nothing more than Cauchy-Schwarz
inequality. Let now s± = sJ± ∈ D. By definition, sJ−

sJ+
+sJ−
2 = (0, 0, 0, 0, αJ), where

αJ = 1
Q|J |

(
mJ (vdσ)
mJ (dσ)

)2
λJ .

Hence, B(sJ) ≤ mJ(f2v−1dσ), and since the convexity property holds,

B(sJ)−
B(sJ+) +B(sJ−)

2
≥ 1

4

(
yJ
vJ

)2

αJ =
1

4Q|J |

(
mJ(fdσ)
mJ(dσ)

)2

λJ .

Iterating, we obtain that

mJ(f2v−1dσ) ≥ 1
4Q|J |

∑
I∈D(J)

(
mI(fdσ)
mI(dσ)

)2

λI .

And we are done proving Sawyer’s estimate.
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6.4 Weight Lemma

Janine Wittwer proved Lemma 10 in the case dσ = dx, her proof uses Buckley’s
characterization of weights by summation conditions [B2], Gehring’s self-improvement
theorem [Ge], Hölder’s inequality, see [W1]. There is a proof also using Bellman func-
tions (although we have not been able to find a full reference, but modifications of
other proofs lead to it). We will adapt the later for dyadic doubling positive measures
σ. We present a Bellman function that gives the linear bound Cε[v]A2(dσ), where ε is
the dyadic doubling constant of σ. The Bellman function that gives linear dependence
in the case dσ = dx has been kindly provided by F. Nazarov [N], a small variation of
it works for the doubling measure case.

Proof of Lemma 10. Fix 0 < ε ≤ 1/2. Define the domain

DQ = {(u, v) ∈ R2
+ : 1 ≤ uv ≤ Q}.

Suppose we can find a function of two variables B(u, v) defined on DQ, such that

(i) 0 ≤ B(u, v) ≤ Qv for all (u, v) ∈ DQ,

(ii) if for all triplets (u, v), (u±, v±) ∈ DQ such that u = su+ + (1 − s)u− and v =
sv+ +(1− s)v− where ε ≤ s ≤ 1− ε, then the following convexity condition holds
for all such s, with Cε > 0,

∆sB(u, v) = B(u, v)− sB(u+, v+)− (1− s)B(u−, v−) ≥ C−1
ε

|v+ − v−|2

v
. (35)

Then the lemma will be proved with bound Cε[w]Ad
2(dσ).

Let vI = mσ
I v, uI = mσ

I (v
−1), and v+ = vIr , v− = vIl , similarly for u±. Let

Q = [v]Ad
2(dσ), then (uI , vI), (u±, v±) ∈ DQ. For each I ∈ D, let s = sI = σ(Ir)

σ(I) (note

that 1 − s = σ(Il)
σ(I) ), then the dyadic doubling condition on σ implies that there is an

0 < ε ≤ 1/2 such that ε ≤ s, 1− s ≤ 1− ε, such ε is nothing more than the reciprocal
of D(σ), the doubling constant of σ. Fix J ∈ D, by the convexity and the range
conditions (i) and (ii), we conclude that

σ(J)Qmσ
Jv ≥ σ(J)B(uJ , vJ)

≥ σ(J)sJB(uJr , vJr) + σ(J)(1− sJ)B(uJl
, vJl

) + C−1
ε

|mσ
Jr
v −mσ

Jl
v|2

mσ
Jv

σ(J)

= σ(Jr)B(uJr , vJr) + σ(Jl)B(uJl
, vJl

) + C−1
ε

|mσ
Jr
v −mσ

Jl
v|2

mσ
Jv

σ(J).

The last equality because by definition of sJ , σ(J)sJ = σ(Jr), σ(J)(1 − sJ) = σ(Jl).
We can now iterate, to conclude that

σ(J)Qmσ
Jv ≥ C−1

ε

∑
I∈D(J)

|mσ
Ir
v −mσ

Il
v|2

mσ
I v

σ(I).
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The last thing to notice is that

|〈v, hσI 〉σ|2 =
σ(Ir)σ(Il)
σ(I)

|mσ
Irv −mσ

Il
v|2 ≤ σ(I)|mσ

Irv −mσ
Il
v|2.

All together these imply that

1
σ(J)

∑
I∈D(J)

|〈v, hσI 〉σ|2

mσ
I v

≤ CεQm
σ
Jv,

which is exactly what we wanted to prove: a linear bound multiplied by a positive
constant C = Cε > 0 depending only on ε, the reciprocal of D(σ), the dyadic doubling
constant of σ.

All these will work provided we can construct the function B(u, v) with the desired
properties.

Here is such a function (a small variation over the corresponding function when
dσ = dx that was provided by Nazarov in [N]),

B(u, v) = Qv − Q

u
− ε

3
v ln(uv). (36)

Let 0 < ε ≤ 1/2. Define the domain

Dε,Q = {(u, v) ∈ R2
+ : 1 ≤ uv ≤ 3ε−1Q}.

Lemma 11. The function B given by (36) is defined on Dε,Q, 0 ≤ B(u, v) ≤ Qv, for
all (u, v) ∈ DQ, and satisfies the following differential inequality in Dε,Q,

−d2B(u, v) ≥ 2ε
9
|dv|2

v
.

Furthermore these imply the convexity condition (35) on DQ with constant Cε = 18
ε3

=
18D(w)3.

Proof. by definition (36) it is clear that

B(u, v) ≤ Qv.

The fact that B(u, v) ≥ 0 is nothing more than a calculus exercise, which we now
describe,

B(u, v) = Qv − Q

u
− ε

3
v ln(uv) = v

(
Q− Q

uv
− ε

3
lnuv

)
.

Suffices to show that the function f(x) = Q
(
1− 1

x

)
− ε

3 lnx is positive for 1 ≤ x <
3ε−1Q. One can check that in that range f ′(x) > 0, therefore f is an increasing
function, hence f(x) ≥ f(1) = 0, and we are done.
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A direct computation of the Hessian of B for all (u, v) ∈ Dε,Q, shows that,

−d2B − 2ε
9
|dv|2

v
=
(
du dv

)(2Q
u3 − ε

3
v
u2

ε
3

1
u

ε
3

1
u

ε
3

1
v −

2ε
9

1
v

)(
du
dv

)
≥ 0.

Hence

−d2B ≥ 2ε
9
|dv|2

v
,

as we wanted to show.
As for the convexity condition (35) on DQ, it is a calculus exercise to check that

∆sB(u, v) = −
∫ 0

−1+s

(
s(1− s) + st

)
b′′(t)dt−

∫ s

0

(
s(1− s)− (1− s)t

)
b′′(t)dt, (37)

where b(t) = B(u(t), v(t)), and

u(t) = (s− t)u+ + (t+ (1− s))u−,

v(t) = (s− t)v+ + (t+ (1− s))v−.

Notice that v(0) = v, v(−1 + s) = v+, v(s) = v−, and dv = v− − v+; similarly for
u(t). Furthermore, if (u, v), (u±, v±) ∈ DQ, then

(
u(t), v(t)

)
∈ Dε,Q for all −1 + s ≤

t ≤ s. The convexity of the lower boundary of the domain gives the lower estimate
1 ≤ u(t)v(t). It is not hard to check that v± ≤ ε−1v, similarly u± ≤ ε−1u (remember
0 < ε ≤ 1/2), therefore, v(t) ≤ ε−1v and u(t) ≤ ε−1u, which in turn implies u(t)v(t) ≤
ε−2uv ≤ ε−2Q. however this is not sufficient to be in the domain, doing more carefully
the estimate we get that u(t)v(t) ≤ 3ε−1Q. Here are the details: uv = s2u+v+ + (1−
s)2u−v− + s(1− s)(u+v− + u−v+), thus,

u+v− + u−v+ =
uv

s(1− s)
− s

1− s
u+v+ −

1− s

s
u−v−. (38)

Similarly, setting α = s− t, 0 ≤ α ≤ 1, and using (38), we get

u(t)v(t) = α2u+v+ + (1− α)2u−v− + α(1− α)(u+v− + u−v+)

=
α(−t)
1− s

u+v+ +
(1− α)t

s
u−v− +

α(1− α)
s(1− s)

uv.

Notice that the third summand is always positive and bounded above by 2ε−1Q (by
hypothesis uv < Q and s(1− s) > ε/2). The sign of the first two summands is dictated
by the sign of t, and one is always positive while the other is negative. Dropping
the negative term, and observing that the positive term is always bounded by Q, we
conclude that for all −1 + s ≤ t ≤ s, u(t)v(t) ≤ (2ε−1 + 1)Q ≤ 3ε−1Q, as claimed.

So we are entitled to integrate b′′(t) from t = −1 + s to t = s.
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Finally notice that since u′′(t) = v′′(t) = 0 then

−b′′(t) = −d2B(u(t), v(t)) ≥ 2ε
9
|dv|2

v(t)
≥ 2ε2

9
|v+ − v−|2

v
> 0.

Therefore, if we now integrate according to (37) and use the lower bound just found
for −b′′(t), we obtain

∆sB(u, v) ≥ 2ε2

9
|v+ − v−|2

v

s(1− s)
2

≥ ε3

18
|v+ − v−|2

v
.

In the second inequality s(1−s)
2 is nothing more than the area under the triangle with

base the interval [−1 + s, s] and height s(1− s), which is bounded from below by ε/2.

This argument provides an operator bound for (T σv )1/2 of the orderD3/2(σ)[v]1/2A2(dσ).
The square root dependence on the A2(dσ) characteristic of v is optimal, one could
try to verify whether the 3/2 power dependence on the doubling constant of σ can be
improved or not, but we will not pursue this issue further in this paper.

7 Sharpness of the bounds for Tw

F. Nazarov, in a personal communication [N], observed that one can approach the
problem of the boundedness of Tw in L2(R) using a Bellman function argument directly
on the adjoint problem.

Lemma 12. Suppose there is a function B = B(x, y, w, v) defined on the domain

D = {s = (x, y, w, v) ∈ R4
+ : y2 ≤ xv, w2 ≤ v ≤ Q2w2},

where Q > 1, such that, for some M > 0,

(i) 0 ≤ B(s) ≤Mx for all s = (x, y, w, v) ∈ D.

(ii) Convexity: for all s0, s± ∈ D such that s0 = s++s−
2 , then

∆2B := B(s0)−
(
B(s+) +B(s−)

2

)
≥ c

(
∆y
w

)2

,

where ∆y = y+−y−
2 .

Then

‖(Tw)∗f‖2L2(R) =
∑
I∈D

∣∣∣∣〈wf, hI〉mIw

∣∣∣∣2 ≤ c−1M‖f‖2L2(R).

28



Proof. We can deduce boundedness of Tw in L2(R) from this lemma by the same
type of arguments we have presented in the previous sections. Consider the function
whose existence is claimed in Lemma 12. For I ∈ D, f ∈ L2(R), w ∈ RHd

2 with
RHd

2 -characteristic Q. Let sI = (xI , yI , wI , vI), where xI = mI(f2), yI = mI(fw),
wI = mIw, and vI = mI(w2), then sI ∈ D. Denote sI+ = sIr , sI− = sIl , then sI± ∈ D
and sI =

sI++sI−
2 . Fix J ∈ D, iterating over the convexity condition (ii) we conclude

that,
1
|J |

∑
I∈D(J)

∣∣∣∣〈wf, hI〉mIw

∣∣∣∣2 ≤ c−1MxJ = c−1M
1
|J |

∫
J
|f(x)|2 dx.

Cancel |J |, let J grow to [0,∞) and to (−∞, 0], and add the estimates to obtain∑
I∈D

∣∣∣∣〈wf, hI〉mIw

∣∣∣∣2 ≤ c−1M‖f‖2L2(R).

Note that if w is dyadic doubling, all we need is the convexity condition (ii) to hold
for those triplets s0, s± in D such that s0 = s++s−

2 and such that

w ≤ ε−1 min {w+, w−}, for ε−1 = D(w). (39)

When w ∈ RHd
2 and dyadic doubling, we can find B like in Lemma 12 with

c−1M ∼ ε−2Q4 = D2(w)[w]4
RHd

2
, because we proved in Section 3 that ‖Twf‖2L2(R) ≤

CD2(w)[w]4
RHd

2
‖f‖2L2(R). If we can show that there is no Bellman function with c−1M

growing slower than Q4 then this will show that the quartic bound [w]4
RHd

2
is optimal.

There are reasons to believe the dyadic doubling constant of w should not be in the
estimate, since the boundedness of Tw requires only w ∈ RHd

2 and not the dyadic dou-
bling condition, see [KP]. However, all the arguments presented in this paper require
at some point or another the use of the doubling conditions.

To find a Bellman function one reduces the convexity condition (ii) to an infinites-
imal condition.

Lemma 13. If we can find a function B such that the range condition (i) holds and
the following infinitesimal condition holds,

(ii’) − d2B ≥ c′
(
dy

w

)2

,

on the larger domain

Dε = {s = (x, y, w, v) ∈ R4
+ : y2 ≤ xv, w2 ≤ v ≤ ε−1Q2w2}.

Then convexity condition (ii) will hold for those triplets s0, s± in D, such that s0 =
s++s−

2 and such that w0 ≤ ε−1 min {w+, w−},
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Proof of Lemma 13. The fact that the differential condition (ii’) holds on the larger do-
main implies now that condition (ii) holds by the usual integration argument. Parametrize
the segment joining s+ and s− by s0(t) = 1−t

2 s+ + 1+t
2 s−, for −1 ≤ t ≤ t, note that

s(1) = s+, s(−1) = s−, and s(0) = s0, dy
dt = ∆y = y+−y−

2 , similarly for dw
dt = ∆w, and

w(t) = w0 + t∆w.

∆2B = −
∫ 1

−1
(1− |t|)d2B(s(t)) dt ≥ c′

(
∆y
w0

)2 ∫ 1

−1

1− |t|
(1 + t∆ww0

)2
dt.

The right-hand-side integral can be computed explicitly and is identical to f
(

∆w
w0

)
,

where f(x) = − ln(1−x2)
x2 . The function f(x) ≥ 1 for 0 < x < 1, and by doubling x = ∆w

w0

is bounded away from 1, in fact, ∆w
w0

≤ 1− ε/2. This argument gives a constant c = c′

in (ii).
The larger domain will guarantee that if s0, s± ∈ D and w0 ≤ ε−1 min {w+, w−}

then s(t) = 1
2 [(1 + t)s+ + (1 − t)s−] ∈ Dε for all t ∈ [−1, 1]. Thus the integration

argument just described can be carried away.
In the application the parameter 0 < ε ≤ 1/2 will be the reciprocal ofD(w). We will

sketch the argument so that the appearance of the larger domain and its dependence
on ε become clear.

The non-convexity of the domain D is an issue only for the variables v and w.
We will concentrate on them, consider in the (w, v)-plane the closed region D′ in the
first quadrant trapped between the parabolas v = w2 and v = Q2w2. Without loss
of generality, assume w+ < w−, and assume that the points (w+, v+) and (w0, v0)
are on the graph of the parabola v = Q2w2, where w0 = w++w−

2 and v0 = v++v−
2 ,

and by hypothesis the point (w−, v−) is inside D′. With these choices, the segment
L− joining (w−, v−) and (w0, v0) must be completely inside the region D′, and the
segment L+ joining (w+, v+) and (w0, v0) must lie completely outside D′. Our job is
to find δ > 0 such that the segment L+ lies completely inside D′

δ, where D′
δ is the

region in the (w, v)-plane trapped between the parabolas v = w2 and v = δ−1Q2w2.
Notice that at the origin, all three parabolas have horizontal tangent, so if we choose
(w+, v+) arbitrarily close to the origin, independently of (w0, v0) , then no δ will do
the job. However, that scenario can be ruled out if we take advantage of the additional
constraint (39) imposed on w0, w±. In fact, given 0 < w+, then w0 ≤ ε−1w+. With
that information at hand, we can now explicitly calculate and bound the slope m of
the segment L+,

m =
Q2w2

0 −Q2w2
+

w0 − w+
= Q2(w0 + w+) ≤ (ε−1 + 1)Q2w+ ≤ 2ε−1Q2w+.

We can also calculate the slope mδ of the tangent line to the graph of v = δ−1Q2w2,
at the point (w+, δ

−1Q2w2
+), namely, mδ = 2δ−1Q2w+. If we now choose δ = ε, we

conclude that m ≤ mε, and this is sufficient to guarantee that the segment L+ lies

30



completely inside D′
ε (the reader is encouraged to draw her own picture illustrating

what we just described in words). Now the integration argument can be carried out
safely.

7.1 Reducing the number of variables

A nice trick that we learned from F. Nazarov [N], together with obvious homogeneity
considerations allows to restrict ourselves to functions of certain type, more precisely,

Lemma 14. If B is a Bellman function satisfying the range and convexity properties
(i) and (ii) on D, then there is a function B̃ of the form

B̃(x, y, w, v) = Mx− y2

v
ψ

(
w√
v

)
(40)

where ψ : [Q−1, 1] → R is a non-negative function, that is also a Bellman function
satisfying the same range and convexity properties (i) and (ii) on D with the same
constant M . Furthermore, the function ψ is bounded by M , namely

M ≥ max
Q−1≤u≤1

ψ(u) ≥ 0 . (41)

If we denote −y2

v ψ
(
w√
v

)
by Ψ(y, w, v), then Ψ must satisfy the same convexity condi-

tion as B and B̃ do, namely, for all s = (x, y, w, v), s± = (x±, y±, w±, v±) ∈ D, such
that s = s++s−

2 ,

∆2Ψ(y, w, v) ≥
(

∆y
w

)2

, (42)

where ∆y = y+−y−
2 , ∆2Ψ(y, w, v) := Ψ(y, w, v)−

(
Ψ(y+,w+,v+)+Ψ(y−,w−,v−)

2

)
.

If we can locate a function ψ : [Q−1, 1] → R, such that 0 ≤ ψ ≤ M , and if
Ψ(y, w, v) := −y2

v ψ
(
w√
v

)
satisfies condition (42) in the appropriate domain then the

function B(x, y, w, v) = Mx+Ψ(y, w, v) defined on D is a Bellman function satisfying
conditions (i) and (ii) with c = 1.

If the function ψ is twice differentiable, then we can replace the convexity condition
(42) by the following infinitesimal condition on the larger domain [

√
εQ−1, 1]

−d2Ψ(y, w, v) = d2

[
y2

v
ψ

(
w√
v

)]
≥ (dy)2

w2
. (43)

Proof of Lemma 14. Let B be the true Bellman function for the problem. Assume that
M is a constant such that B(x, y, w, v) ≤Mx. Since multiplication of the function and
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the weight by a positive constant changes nothing in the problem, the function B must
obey the following homogeneity rule,

B(α2x, αβy, βw, β2v) = α2B(x, y, w, v), for all α, β > 0.

Notice that the domain remains invariant under the above scaling, that is, (x, y, w, v) ∈
D if and only if (α2x, αβy, βw, β2v) ∈ D for all α, β > 0.

Now consider the function of 3 variables, defined for all triplets (y, w, v) ∈ R3
+ such

that there exists x > 0 such that (x, y, w, v) ∈ D,

Ψ(y, w, v) := sup
{x : (x,y,w,v)∈D}

[B(x, y, w, v)−Mx]

Note that Ψ(y, w, v) ≤ 0, and for any x such that (x, y, w, v) ∈ D, we have

Mx+ Ψ(y, w, v) ≥Mx+B(x, y, w, v)−Mx = B(x, y, w, v) ≥ 0.

Note also that for all α, β > 0,

Ψ(αβy, βw, β2v) = α2Ψ(y, w, v)

(this follows almost immediately from the corresponding property of B) and, therefore,
(using α =

√
v
y , β = 1√

v
)

Ψ(y, w, v) =
y2

v
Ψ
(

1,
w√
v
, 1
)

= −y
2

v
ψ

(
w√
v

)
for some non-negative function ψ. So, if we could show that Ψ satisfies the same finite
difference inequality as B, then

B̃(x, y, w, v) := Mx+ Ψ(y, w, v) = Mx− y2

v
ψ

(
w√
v

)
would be another Bellman type function yielding the same constant M as the original
Bellman function B. Consider any three triples in the domain of definition of Ψ such
that

(y, w, v) =
1
2
[(y−, w−, v−) + (y+, w+, v+)]

By definition of Ψ as a supremum, given δ > 0 we can always choose x±, so that
(x±, y±, w±, v±) are in the domain D and

Ψ(y±, w±, v±) ≤ (1 + δ) [B(x±, y±, w±, v±)−Mx±] .

Since the function (y, v) 7→ y2

v is convex, the point x := 1
2 [x− + x+] satisfies x ≥ y2

v
and, (x, y, w, v) ∈ D, therefore, by the definitions of Ψ, x, and the dyadic convexity of
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B,

Ψ(y, w, v) ≥ B(x, y, w, v)−Mx

≥ (∆y)2

w2
+

1
2
[B(x−, y−, w−, v−) +B(x+, y+, w+, v+)−Mx− −Mx+]

≥ (∆y)2

w2
+

(1 + δ)−1

2
[Ψ(y−, w−, v−) + Ψ(y+, w+, v+)], for all δ > 0.

Let δ → 0, then

Ψ(y, w, v) ≥ (∆y)2

w2
+

1
2
[Ψ(y−, w−, v−) + Ψ(y+, w+, v+)].

So, indeed, Ψ satisfies the same convexity condition as B and we are done.

7.2 Non-existence of certain Bellman function

To prove that the estimate obtained so far is sharp (in terms of its dependence in Q),
it is enough to show that there cannot exist a non-negative function B(x, y, w, v) of the
form (40) that is bounded from above by o(Q4)x and such that it satisfies the convexity
property (ii) in the domain w2 ≤ v ≤ Q2w2, y2 ≤ xv. Thus, it is enough to show that
condition (42) is incompatible with 0 ≤ ψ ≤ o(Q4). We will show here that when ψ
is twice differentiable on [

√
εQ−1, 1], then the infinitesimal convexity condition (43) on

the larger domain is incompatible with 0 ≤ ψ ≤ o(Q4).

Lemma 15. There does not exist a function ψ ∈ C2([
√
εQ−1, 1] such that 0 ≤ ψ ≤

o(Q4) and (43) hold on [
√
εQ−1, 1].

Proof. We will first explicitely calculate the Hessian matrix of Ψ, and reduce condition
(43) to verifying the positive definiteness of a three by three matrix parametrized by
u ∈ [

√
εQ−1, 1], with entries depending on ψ, ψ′ and ψ′′.

As F. Nazarov said: “A nice thing is that we have here only one variable u = w√
v
.

A bad thing is that we have a 3× 3 rather than 2× 2 matrix. Fortunately, the matrix
turns out to be fairly nice and easy to analyze though the computations are somewhat
boring.”

Denoting y2

v ψ
(
w√
v

)
by Ψ(y, w, v) (notice that in Ψ denoted −Ψ), we find

Ψy =
2y
v
ψ

Ψv = −y
2

v2
ψ − 1

2
y2w

v5/2
ψ′

Ψw =
y2

v3/2
ψ′
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and, therefore

Ψyy = 2
vψ Ψvv = 2y2

v3
ψ + 7

4
y2w
v7/2ψ

′ + 1
4
y2w2

v4
ψ′′

Ψyv = −2y
v2
ψ − yw

v5/2ψ
′ Ψvw = −3

2
y2

v5/2ψ
′ − 1

2
y2w
v3
ψ′′

Ψyw = 2y
v3/2ψ

′ Ψww = y2

v2
ψ′′

Condition (43) means that the matrix
2
vψ −

1
w2 −2y

v2
ψ − yw

v5/2ψ
′ 2y

v3/2ψ
′

−2y
v2
ψ − yw

v5/2ψ
′ 2y2

v3
ψ + 7

4
y2w
v7/2ψ

′ + 1
4
y2w2

v4
ψ′′ −3

2
y2

v5/2ψ
′ − 1

2
y2w
v3
ψ′′

2y
v3/2ψ

′ −3
2
y2

v5/2ψ
′ − 1

2
y2w
v3
ψ′′ y2

v2
ψ′′


must be non-negative definite in the domain.

Multiplying the first row and column by w, the second row and column by v3/2

y and
the third row and column by v

y , we get the matrix in the variable u, where u2 = w2/v. 2u2ψ − 1 −2uψ − u2ψ′ 2uψ′

−2uψ − u2ψ′ 2ψ + 7
4uψ

′ + 1
4u

2ψ′′ −3
2ψ

′ − 1
2uψ

′′

2uψ′ −3
2ψ

′ − 1
2uψ

′′ ψ′′


Now add u/2 times the third row to the second row and then u/2 times the third
column to the second column. We get the matrix2u2ψ − 1 −2uψ 2uψ′

−2uψ 2ψ + 1
4uψ

′ −3
2ψ

′

2uψ′ −3
2ψ

′ ψ′′


Now add u times the second row to the first row and then u times the second column
to the first column. We obtain the matrix

A(u) =

1
4u

3ψ′ − 1 1
4u

2ψ′ 1
2uψ

′
1
4u

2ψ′ 2ψ + 1
4uψ

′ −3
2ψ

′
1
2uψ

′ −3
2ψ

′ ψ′′

 (44)

At this point to verify that a function B̃ given by (40) is a Bellman function for
the problem all we need to do is verify that the given function ψ(u) ∈ C2([

√
εQ−1, 1]),

0 ≤ maxQ−1≤u≤1 ψ(u) ≤ M , and the matrix A(u) is positive definite for each u in
[
√
εQ−1, 1]. This is equivalent to verifying that detA(u) ≥ 0, and the 2× 2 submatrix

A1(u) =
(

1
4u

3ψ′ − 1 1
2uψ

′
1
2uψ

′ ψ′′

)
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must be itself positive definite for all
√
εQ−1 ≤ u ≤ 1. The matrix A1 is positive

definite if and only if ψ′′(u) ≥ 0 and detA1 = ψ′′
(

1
4u

3ψ′ − 1
)
− 1

4u
2(ψ′)2 ≥ 0.

To show that there is no twice differentiable function ψ such that 0 ≤ ψ ≤ o(Q4),
and the above matrix A is positive definite, we will proceed by contrapositive. If such
function ψ existed, then the 2 × 2 submatrix A1 of A must be itself positive definite
for all

√
εQ−1 ≤ u ≤ 1. Looking at A1 we see that we must have ψ′′ > 0, moreover,

ψ′(u) ≥ 4u−3, and (from the determinant condition)

uψ′′(u) > ψ′(u). (45)

Note that since ψ′′(u) > 0 implies that ψ′ is increasing, a lower bound for ψ′ must
be attained at u =

√
εQ−1, therefore ψ′(u) ≥ ψ′(

√
εQ−1) ≥ 4ε−3/2Q3. Furthermore

the differential inequality (45) can be rewritten as
(
ψ′(u)
u

)′
> 0, which implies that

the function ψ′(u)
u is increasing and it attains its lower bound at u =

√
εQ−1, hence

ψ′(u) ≥ 4ε−2Q4u on [
√
εQ−1, 1]. From here we can see that ψ itself must be of order at

least Q4 for large Q and we are done. More precisely, integrating the inequality from√
εQ−1 to 1, and using the fundamental theorem of calculus, we get

ψ(u) ≥ ψ(u)− ψ(
√
εQ−1) ≥ 2ε−2Q4(u2 − εQ−2).

That is, ψ(u)
ε−2Q4 ≥ 2u2 − 2εQ−2, and letting now Q→∞ we reach a contradiction that

2u2 ≤ 0 since we assumed ψ(u) = o(Q4).

This trick is used to show that, though the function 4
(
x− y2

1+M

)
is not the true

Bellman function for the Carleson embedding theorem, the constant it yields is the
best possible [NTV2]. The method of reducing the number of variables for the Bellman
function is Burkholder’s idea from his paper [Burk], as it is clearly stated in [NTV2].

8 Concluding Remarks

One can deduce Lp(w) results for the square function Sd by “sharp extrapolation”
techniques as described in [DGPPet]. For 1 ≤ p < 2 the operator norm is of the order
[w]1/(p−1)

Ap
and this is optimal [DGPPet, Sec 4.1]. However for p > 2 the linear results

obtained by extrapolation in [DGPPet] are not optimal. Sharper results have been
obtained by Lerner [Le1, Le2]. The optimal rate of growth for Sd on Lp(w), p > 2
with respect to [w]Ap characteristic is not known yet. We expect similar bound for Sσ
on Lp(vdσ) extrapolated form the L2(vdσ) norms obtained in this paper. This will be
discussed in a future paper.

Theorems 4, 5, 6 and 7, are optimal in the sense that we will not find a better
bound that will work for ALL positive doubling measures σ, and weights v ∈ Ad2(dσ),
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because it will mean that it will work for the particular case dσ = dx, v = w, for which
we have shown no better bound exists.

Lemma 9 (σ-Sawyer’s Estimate) was proved using a Bellman function argument.
The Bellman function that worked for Lemma 3 (a Sawyer’s Estimate in the case
dσ = wdx and v = w−1) worked as well for Lemma 9 in a slightly larger domain.
Similarly in the proof of the Weight Lemma 10 the Bellman function needed was the
same that worked for the lemma in the case dσ = dx, which was known to exist
because the lemma was known to hold in that case. In both cases, once we had a
Bellman function for one case, we could use it for the other, provided we could define
it on a slightly larger domain (deformation of the domain or the function dictated by
the doubling constant of σ).

The question now is, how far can the following principle be pushed: Given any
theorem for the Lebesgue measure dx that allows for a Bellman function proof “in
principle” (that is regardless of the proof having been obtained by Bellman functions or
completely different methods, the fact that the theorem is true guarantees the existence
of a Bellman function with certain properties: even if we do not have an explicit formula
for such function, we know it exists) then the proof should be generalizable, in a way
similar to how we have done it here for some particular examples, to the case of the
doubling measure dσ.
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Maŕıa Cristina Pereyra
Department of Mathematics and Statistics
MSC03 2150
1 University of New Mexico
Albuquerque, NM 87131-0001
crisp@math.unm.edu

38


