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Abstract. We extend the definitions of dyadic paraproduct and
t-Haar multipliers to dyadic operators that depend on the complex-
ity (m, n), for m and n natural numbers. We use the ideas devel-
oped by Nazarov and Volberg in [NV] to prove that the weighted
L2(w)-norm of a paraproduct with complexity (m, n), associated
to a function b ∈ BMOd, depends linearly on the Ad

2-characteristic
of the weight w, linearly on the BMOd-norm of b, and polynomi-
ally on the complexity. This argument provides a new proof of
the linear bound for the dyadic paraproduct [Be1]. We also prove
that the L2-norm of a t-Haar multiplier for any t ∈ R and weight
w depends on the square root of the Cd

2t-characteristic of w times
the square root of the Ad

2-characteristic of w2t and polynomially
on the complexity.

1. Introduction

In the past decade, many mathematicians have devoted their atten-
tion to find how the norm of an operator T on a weighted space Lp(w)
depends on the so called Ap-characteristic of the weight w. More pre-
cisely, is there some optimal function ϕ : [0,∞) → R and a constant
Cp,T > 0 such that for all functions f ∈ Lp(w)

‖Tf‖Lp(w) ≤ Cp,Tϕ([w]Ap)‖f‖Lp(w)?

The first result of this type was due to Buckley [Bu] in 1993, he
showed that ϕ(t) = t1/(p−1) for the Hardy-Littlewood maximal function.
Starting in 2000, one at a time, some dyadic model operators and
some important singular integral operators (Beurling, Hilbert and Riesz
transforms) were shown to obey a linear bound on the A2-characteristic
of w on L2(w), meaning that for p = 2, the function ϕ(t) = t is the
optimal one, see [W, W1, HukTV, PetV, Pet2, Pet3, Be1]. These linear
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estimates in L2(w) imply Lp(w)-bounds for 1 < p < ∞, by the sharp
extrapolation theorem [DGPPet]. All these papers used the Bellman
function technique, see [V] for more insights and references.

The linear bound for H, the Hilbert transform, is based on a rep-
resentation of H as an average of dyadic shift operators of complex-
ity (0, 1), see [Pet1]. Hytönen obtained a representation valid for any
Calderón-Zygmund operator as an average of Haar shift operators of
arbitrary complexity, paraproducts and their adjoints, using this rep-
resentation to prove the A2-conjecture, see [H]. Thus, he showed that
for all Calderón-Zygmund integral singular operators T in RN , weights
w ∈ Ap, there is a constant Cp,N,T > 0 such that,

‖Tf‖Lp(w) ≤ Cp,N,T [w]
max{1,1/p−1}
Ap

‖f‖Lp(w).

See [L1] for a survey of the A2-conjecture including a rather com-
plete history of most results that appeared up to November 2010, and
that contributed to the final resolution of this mathematical puzzle.
A crucial part of the proof was to obtain bounds for Haar shifts op-
erators that depended linearly on the A2-characteristic and at most
polynomially on the complexity (m,n). In 2011, Nazarov and Volberg
[NV] provided a beautiful new proof that still uses Bellman functions,
although minimally, and that can be transferred to geometric doubling
metric spaces [NV1, NRezV]. Treil [T], independently [HLM+] ob-
tained linear dependence on the complexity. Similar Bellman function
techniques have been used to prove the Bump Conjecture in L2, see
[NRezTV].

The martingale transform was extended to the Haar shift operators
with complexity (m,n) in [LPetR]. It seems natural to attempt this
type of extension for other dyadic operators, and examine if we can
recover the same dependence on the A2-characteristic that we have for
the original operator (the one with complexity (0, 0)) times a factor that
depends at most polynomially on the complexity of these operators.
We will do this analysis for the dyadic paraproduct and for the t-Haar
multipliers.

For b ∈ BMOd, a function of dyadic bounded mean oscillation,
m,n ∈ N, the dyadic paraproduct of complexity (m,n) is defined by,

πm,nb f(x) =
∑
L∈D

∑
I∈Dn(L)
J∈Dm(L)

cLI,JmIf 〈b, hI〉hJ(x),

where |cLI,J | ≤
√
|I| |J |/|L|, and mIf is the average of f on the interval

I. Here D denotes the dyadic intervals, |I| the length of interval I,
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Dm(L) denotes the dyadic subintervals of L of length 2−m|L|, hI are
the Haar functions, and 〈f, g〉 denotes the L2-inner product on R.

We prove that the dyadic paraproduct of complexity (m,n) obeys the
same linear bound obtained by Beznosova [Be1] for the dyadic para-
product of complexity (0, 0) (see [Ch] for the result in RN , N > 1),
multiplied by a factor that depends polynomially on the complexity.

Theorem 1.1. If w ∈ Ad2, b ∈ BMOd, then

‖πm,nb f‖L2(w) ≤ C(m+ n+ 2)5[w]Ad
2
‖b‖BMOd‖f‖L2(w).

Theorem 1.1 shows how to use the ideas in [NV] for this setting,
explicitly displaying the dependence on ‖b‖BMOd and bypassing the
more complicated Sawyer two-weight testing conditions present in other
arguments [HPzTV, L1, HLM+], providing, from our point view, a
more transparent proof.

For t ∈ R, m,n ∈ N, and weight w, the t-Haar multiplier of com-
plexity (m,n) is defined by

Tm,nt,w f(x) =
∑
L∈D

∑
I∈Dn(L)
J∈Dm(L)

cLI,J
wt(x)

(mLw)t
〈f, hI〉hJ(x),

where |cLI,J | ≤
√
|I| |J |/|L|. When (m,n) = (0, 0) and cLI,J = cL = 1

for all L ∈ D, we denote the corresponding Haar multiplier T tw. In
addition, if t = 1, we denote the multiplier simply Tw. A necessary
condition for the boundedness of T tw on L2(R) is that w ∈ Cd

2t, that is,

[w]Cd
2t

:= sup
I∈D

( 1

|I|

∫
I

w2t(x)dx
)( 1

|I|

∫
I

w(x)dx
)−2t

<∞.

This condition is also sufficient for t < 0 and t > 1/2. For 0 ≤ t ≤ 1/2
the condition Cd

2t is always fulfilled; in this case, boundedness of T tw is
known when w ∈ Ad∞, see [KP]. The Haar multipliers Tw are closely
related to the resolvent of the dyadic paraproduct [P1], and appeared
in the study of Sobolev spaces on Lipschitz curves [P3]. It was proved
in [P2] that the L2-norm for the Haar multiplier Tw depends linearly on
the Cd

2 -characteristic of the weight w. We show the following theorem
that generalizes a result of Beznosova for T tw [Be, Chapter 5].

Theorem 1.2. If w ∈ Cd
2t and w2t ∈ Ad2, then

‖Tm,nt,w f‖2 ≤ C(m+ n+ 2)3[w]
1
2
C2t

[w2t]
1
2

Ad
2
‖f‖2.

The condition w ∈ Cd
2t is necessary for the boundedness of Tm,nt,w when

cLI,J =
√
|I||J |/|L|.
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The result is optimal for T
±1/2
w , see [Be, P2] and [BeMoP]. We expect

that, for both the paraproducts and t-Haar multipliers with complex-
ity (m,n), the dependence on the complexity can be strengthened to
be linear, in line with the best results for the Haar shift operators.
However our methods yield polynomials of degree 5 and 3 respectively.

To simplify notation, and to shorten the exposition we analyze the
one dimensional case. Some of the building blocks in our arguments
can be found in the literature in the RN case, or even in the geometric
doubling metric space case. As we go along we will note where such
results can be found. For a complete presentation of these results in
the geometric doubling metric spaces (in particular in RN) see [Mo1].

The paper is organized as follows. In Section 2 we provide the basic
definitions and results that are used throughout this paper. In Section
3 we prove the lemmas that are essential for the main results. In
Section 4 we prove the main estimate for the dyadic paraproduct with
complexity (m,n) and we present a new proof of the linear bound for
the dyadic paraproduct. In Section 5 we prove the main estimate for
the t-Haar multipliers with complexity (m,n), also discussing necessary
conditions for these operators to be bounded in Lp(R), for 1 < p <∞.

Acknowledgments: The authors would like to thank Carlos Pérez,
Rafael Espinola and Carmen Ortiz-Caraballo for organizing the Doc-
course: Harmonic analysis, metric space and applications to PDE, held
in Seville, at the Instituto de Matemáticas de la Universidad de Sevilla
(IMUS) during the Summer of 2011. We are grateful to our thoughtful
referees who pointed out multiple ways for improving this paper.

2. Preliminaries

2.1. Weights, maximal function and dyadic intervals. A weight
w is a locally integrable function in RN taking values in (0,∞) almost
everywhere. The w-measure of a measurable set E, denoted by w(E),
is w(E) =

∫
E
w(x)dx. For a measure σ, σ(E) =

∫
E
dσ, and |E| stands

for the Lebesgue measure of E. We define mσ
Ef to be the integral

average of f on E, with respect to σ,

mσ
Ef :=

1

σ(E)

∫
E

f(x)dσ.

When dx = dσ we simply write mEf ; when dσ = v dx we write mv
Ef .

Given a weight w, a measurable function f : RN → C is in Lp(w) if

and only if ‖f‖Lp(w) :=
(∫

R |f(x)|pw(x)dx
)1/p

<∞.
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For a weight v we define the weighted maximal function of f by

(Mvf)(x) = sup
Q3x

mv
Q|f |,

where Q is a cube in RN with sides parallel to the axis. The operator
Mv is bounded in Lq(v) for all q > 1. Furthermore,

(2.1) ‖Mvf‖Lq(v) ≤ CNq
′‖f‖Lq(v),

where q′ is the dual exponent of q, that is 1/q + 1/q′ = 1. A proof
of this fact can be found in [CrMPz1]. When v = 1, Mv is the usual
Hardy-Littlewood maximal function, which we will denote by M . It is
well-known that M is bounded on Lp(w) if and only if w ∈ Ap [Mu].

We work with the collection of all dyadic intervals, D, given by:
D = ∪n∈ZDn,where Dn := {I ⊂ R : I = [k2−n, (k+1)2−n), k ∈ Z}. For
a dyadic interval L , letD(L) be the collection of its dyadic subintervals,
D(L) := {I ⊂ L : I ∈ D}, and let Dn(L) be the nth-generation of
dyadic subintervals of L, Dn(L) := {I ∈ D(L) : |I| = 2−n|L|}. Any
two dyadic intervals I, J ∈ D are either disjoint or one is contained
in the other. Any two distinct dyadic intervals I, J ∈ Dn are disjoint,
furthermore Dn is a partition of R, and Dn(L) is a partition of L. For

every dyadic interval I ∈ Dn there is exactly one Î ∈ Dn−1, such that

I ⊂ Î, Î is called the parent of I. Each dyadic interval I in Dn is
the union of two disjoint intervals in Dn+1, the right and left halves,
denoted I+ and I− respectively, and called the children of I.

A weight w is dyadic doubling if w(Î)/w(I) ≤ C for all I ∈ D. The
smallest constant C is called the doubling constant of w and is denoted
by D(w). Note that D(w) ≥ 2, and that in fact the ratio between the
length of a child and the length of its parent is comparable to one, more

precisely, D(w)−1 ≤ w(I)/w(Î) ≤ 1−D(w)−1.

2.2. Dyadic Adp, reverse Hölder RHd
p and Cd

s classes. A weight w

is said to belong to the dyadic Muckenhoupt Adp-class if and only if

[w]Ad
p

:= sup
I∈D

(mIw)(mIw
−1
p−1 )p−1 <∞, for 1 < p <∞,

where [w]Ad
p

is called the Adp-characteristic of the weight. If a weight is

in Adp then it is dyadic doubling. These classes are nested, Adp ⊂ Adq for

all p ≤ q. The class Ad∞ is defined by Ad∞ :=
⋃
p>1A

d
p.

A weight w is said to belong to the dyadic reverse Hölder RHd
p -class

if and only if

[w]RHd
p

:= sup
I∈D

(mIw
p)

1
p (mIw)−1 <∞, for 1 < p <∞,
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where [w]RHd
p

is called the RHd
p -characteristic of the weight. If a weight

is in RHd
p then it is not necessarily dyadic doubling (in the non-dyadic

setting reverse Hölder weights are always doubling). Also these classes
are nested, RHd

p ⊂ RHd
q for all p ≥ q. The class RHd

1 is defined by

RHd
1 :=

⋃
p>1RH

d
p . In the non-dyadic setting A∞ = RH1. In the

dyadic setting the collection of dyadic doubling weights in RHd
1 is Ad∞,

hence Ad∞ is a proper subset of RHd
1 . See [BeRez] for some recent and

very interesting results relating these classes.
A weight w satisfies the Cd

s -condition, for s ∈ R, if

[w]Cd
s

:= sup
I∈D

(
mIw

s
) (
mIw

)−s
<∞.

The quantity defined above is called the Cd
s -characteristic of w. The

class of weights Cd
s was defined in [KP]. Let us analyze this definition.

For 0 ≤ s ≤ 1, we have that any weight satisfies the condition with
Cd
s -characteristic 1, being just a consequence of Hölder’s Inequality

(cases s = 0, 1 are trivial). When s > 1, the condition is analogous to

the dyadic reverse Hölder condition and [w]
1/s

Cd
s

= [w]RHd
s
. For s < 0, we

have that w ∈ Cd
s if and only if w ∈ Ad1−1/s. Moreover [w]Cd

s
= [w]−s

Ad
1−1/s

.

2.3. Weighted Haar functions. For a given weight v and an interval
I define the weighted Haar function as

(2.2) hvI(x) =
1

v(I)

(√
v(I−)

v(I+)
χI+(x)−

√
v(I+)

v(I−)
χI−(x)

)
,

where χI(x) is the characteristic function of the interval I.
If v is the Lebesgue measure on R, we will denote the Haar function

simply by hI . It is an important fact that {hvI}I∈D is an orthonormal

system in L2(v), with the inner product 〈f, g〉v =
∫

R f(x) g(x) v(x)dx.
It is a simple exercise to verify that the weighted and unweighted

Haar functions are related linearly as follows:

Proposition 2.1. For any weight v, there are numbers αvI , β
v
I such that

hI(x) = αvI h
v
I(x) + βvI χI(x)/

√
|I|

where (i) |αvI | ≤
√
mIv, (ii) |βvI | ≤ |∆Iv|/mIv, ∆Iv := mI+v −mI−v.

For a weight v and a dyadic interval I, |∆Iv|/mIv = 2
∣∣∣1−mI−v/mIv

∣∣∣ ≤
2. If the weight v is dyadic doubling then we get an improvement on
the above upper bound, |∆Iv|/mIv ≤ 2 (1− 2/D(v)) .
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2.4. Dyadic BMO and Carleson sequences. A locally integrable
function b is a function of dyadic bounded mean oscillation, b ∈ BMOd,
if and only if

(2.3) ‖b‖BMOd :=
(

sup
J∈D

1

|J |
∑

I∈D(J)

|〈b, hI〉|2
) 1

2
<∞.

Note that if bI := 〈b, hI〉 then |bI | |I|−
1
2 ≤ ‖b‖BMOd , for all I ∈ D.

If v is a weight, a positive sequence {αI}I∈D is called a v-Carleson
sequence with intensity B if for all J ∈ D,

(2.4) (1/|J |)
∑

I∈D(J)

λI ≤ B mJv.

When v = 1 we call a sequence satisfying (2.4) for all J ∈ D a Carleson
sequence with intensity B. If b ∈ BMOd then {|bI |2}I∈D is a Carleson
sequence with intensity ‖b‖2

BMOd .

Proposition 2.2. Let v be a weight, {λI}I∈D and {γI}I∈D be two v-
Carleson sequences with intensities A and B respectively then for any
c, d > 0 we have that

(i) {cλI +dγI}I∈D is a v-Carleson sequence with intensity cA+dB.

(ii) {
√
λI
√
γI}I∈D is a v-Carleson sequence with intensity

√
AB.

(iii) {(c
√
λI + d

√
γI)

2}I∈D is a v-Carleson sequence with intensity
2c2A+ 2d2B.

The proof of these statements is quite simple. To prove the first one
we just need properties of the supremum, for the second one we apply
the Cauchy-Schwarz inequality, and the third one is a consequence of
the first two statements combined with the fact that 2cd

√
A
√
B ≤

c2A+ d2B.

3. Main tools

In this section, we state and prove the lemmas and theorems neces-
sary to obtain the estimates for the paraproduct and the t-Haar mul-
tipliers of complexity (m,n). The Weighted Carleson Lemma 3.1, α-
Lemma 3.4 and Lift Lemma 3.7 are fundamental for all our estimates.

3.1. Carleson Lemmas. We present some weighted Carleson lem-
mas that we will use. Lemma 3.3 was introduced and used in [NV],
it was called a folklore lemma in reference to the likelihood of having
been known before. Here we obtain Lemma 3.3 as an immediate corol-
lary of the Weighted Carleson Lemma 3.1 and what we call the Little
Lemma 3.2, introduced by Beznosova in her proof of the linear bound
for the dyadic paraproduct.
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3.1.1. Weighted Carleson Lemma. The Weighted Carleson Lemma we
present here is a variation in the spirit of other weighted Carleson em-
bedding theorems that appeared before in the literature [NV, NTV1].
All the lemmas in this section hold in RN or even geometric doubling
metric spaces, see [Ch, NRezV].

Lemma 3.1 (Weighted Carleson Lemma). Let v be a dyadic doubling
weight, then {αL}L∈D is a v-Carleson sequence with intensity B if and
only if for all non-negative v-measurable functions F on the line,

(3.1)
∑
L∈D

αL inf
x∈L

F (x) ≤ B

∫
R
F (x) v(x) dx;

Proof. (⇒) Assume that F ∈ L1(v) otherwise the first statement is
automatically true. Setting γL = inf

x∈L
F (x), we can write

∑
L∈D

γLαL =
∑
L∈D

∫ ∞
0

χ(L, t) dt αL =

∫ ∞
0

(∑
L∈D

χ(L, t)αL

)
dt,

where χ(L, t) = 1 for t < γL and zero otherwise, and the last equality
follows by the monotone convergence theorem. Define Et = {x ∈ R :
F (x) > t}. Since F is assumed to be a v-measurable function, Et is a
v-measurable set for every t. Moreover, since F ∈ L1(v) we have, by
Chebychev’s inequality, that the v-measure of Et is finite for all real t.
If χ(L, t) = 1 then L ⊂ Et. Moreover, there is a collection of maximal
disjoint dyadic intervals Pt that are contained in Et. Then we can write
(3.2)∑

L∈D

χ(L, t)αL ≤
∑
L⊂Et

αL =
∑
L∈Pt

∑
I∈D(L)

αI ≤ B
∑
L∈Pt

v(L) ≤ Bv(Et),

where, in the second inequality, we used the fact that {αI}I∈D is a
v-Carleson sequence with intensity B. Thus we can estimate∑

L∈D

γLαL ≤ B

∫ ∞
0

v(Et)dt = B

∫
R
F (x) v(x) dx.

where the last equality follows from the layer cake representation.

(⇐) Assume (3.1) is true; in particular it holds for F (x) = χJ(x)/|J |.
Since infx∈I F (x) = 0 if I ∪ J = ∅, and infx∈I F (x) = 1/|J | otherwise,

1

|J |
∑

I∈D(J)

αI ≤
∑
I∈D

αI inf
x∈I

F (x) ≤
∫

R
F (x) v(x) dx = mJv.

�
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3.1.2. Little Lemma. In order to prove Lemma 3.3 we need Lemma 3.2,
which was proved by Beznosova in [Be1] using the Bellman function
B(u, v, l) = u− 1/v(1 + l).

Lemma 3.2 (Little Lemma [Be1]). Let v be a weight, such that v−1 is a
a weight as well, and let {λI}I∈D be a Carleson sequence with intensity
B. Then, {λI/mIv

−1}I∈D is a v-Carleson sequence with intensity 4B,
that is for all J ∈ D,

(1/|J |)
∑

I∈D(J)

λI/mIv
−1 ≤ 4B mJv.

For a proof of this result we refer [Be, Prop. 3.4], or [Be1, Prop. 2.1].
For an RN version of this result see [Ch, Prop 4.6].

Lemma 3.3 ([NV]). Let v be a weight such that v−1 is also a weight.
Let {λJ}J∈D be a Carleson sequence with intensity B, and let F be a
non-negative measurable function on the line. Then,∑

J∈D

(λJ/mJv
−1) inf

x∈J
F (x) ≤ C B

∫
R
F (x) v(x) dx.

Lemma 3.3 is an immediate consequence of Lemma 3.2 and the
Weighted Carleson Lemma 3.1. Note that Lemma 3.2 can be deduced
from Lemma 3.3 with F (x) = χJ(x).

3.2. α-Lemma. The following lemma for α = 1/4 appeared in the
work of Beznosova, see [Be], and for 0 < α < 1/2, in [NV].

Lemma 3.4 (α-Lemma). Let w ∈ A2 and then for any α ∈ (0, 1/2),
the sequence {µαI }I∈D, where

µαI := (mIw)α(mIw
−1)α|I|

(
|∆Iw|2

(mIw)2
+
|∆Iw

−1|2

(mIw−1)2

)
,

is a Carleson sequence with intensity 2Cα[w]αA2
, with Cα = 36/(α− 2α2).

A proof of this lemma that works in RN (for α = 1/4) can be found
[Ch, Prop. 4.8], and one that works in geometric doubling metric spaces
can be found in [NV1, V].

The following lemmas simplify the exposition of the main theorems
(this was pointed to us by one of our referees). We deduce these lemmas
from the α-Lemma. According to our kind anonymous referee, one
can also deduce Lemma 3.5 from a pure Bellman-function argument
without reference to the α-Lemma.
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Lemma 3.5. Let w ∈ Ad2 and let νI = |I|(mIw)2(∆Iw
−1)2. The se-

quence {νI}I∈D is a Carleson sequence with intensity at most C[w]2
Ad

2

for some numerical constant C (C = 288 works).

Proof. Multiply and divide νI by (mIw
−1)2 to get for any 0 < α < 1/2,

νI = |I|(mIw)2(mIw
−1)2

(
|∆Iw

−1|/mIw
−1
)2 ≤ [w]2−αA2

µαI .

But {µαI }D is a Carleson sequence with intensity Cα[w]αA2
by Lemma 3.4,

therefore by Proposition 2.2(i) {νI}D is a Carleson sequence with in-
tensity at most Cα[w]2

Ad
2

as claimed. �

It is well know that if w ∈ Ad2 then {|I||∆Iw|2/(mIw)2}I∈D is a
Carleson sequence with intensity log[w]Ad

2
, see [W]. This estimate

together with Proposition 2.2(i), give intensities [w]α
Ad

2
log[w]Ad

2
and

[w]2
Ad

2
log[w]Ad

2
respectively for the sequences {µαI }I∈D and {νI}I∈D. The

lemmas show we can improve the intensities by dropping the logarith-
mic factor. Likewise we can show the following lemma.

Lemma 3.6. Let w ∈ Ad2, s > 0, and

τ sI := |I|(mIw)s(mIw
−1)s|I|

(
|∆Iw|2

(mIw)2
+
|∆Iw

−1|2

(mIw−1)2

)
.

Then for 0 < α < min{1/2, s}, the sequence {τ sI }I∈D is a Carleson
sequence with intensity at most Cα[w]s

Ad
2

where Cα is the constant in

Lemma 3.4 (when s > 1/4 can choose α = 1/4 and Cα = 288.)

3.3. Lift Lemma. Given a dyadic interval L, and weights u, v, we
introduce a family of stopping time intervals ST mL such that the av-
erages of the weights over any stopping time interval K ∈ ST mL are
comparable to the averages on L, and |K| ≥ 2−m|L|. This construc-
tion appeared in [NV] for the case u = w, v = w−1. We also present
a lemma that lifts w-Carleson sequences on intervals to w-Carleson se-
quences on “m-stopping intervals”. This was used in [NV] for a very
specific choice of stopping time intervals ST mL . We present the proofs
for the convenience of the reader.

Lemma 3.7 (Lift Lemma [NV]). Let u and v be weights, L be a dyadic
interval and m,n be fixed natural numbers. Let ST mL be the collection of
maximal stopping time intervals K ∈ D(L), where the stopping criteria
are either (i) |∆Ku|/mKu + |∆Kv|/mKv ≥ 1/(m+ n+ 2), or (ii)
|K| = 2−m|L|. Then for any stopping interval K ∈ ST mL , e−1mLu ≤
mKu ≤ emLu, also e−1mLv ≤ mKv ≤ emLv.
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Note that the roles of m and n can be interchanged and we get the
family ST nL using the same stopping conditions (i) and (ii) replaced by
|K| = 2−n|L|. Notice that ST mL is a partition of L in dyadic subinter-
vals of length at least 2−m|L|. Any collection of subintervals of L with
this property will be an m-stopping time for L.

Proof. Let K be a maximal stopping time interval; thus no dyadic
interval strictly bigger than K can satisfy either stopping criteria. If
F is a dyadic interval strictly bigger than K and contained in L, then
necessarily |∆Fu|/mFu ≤ (m+n+2)−1 and |∆Fv|/mFv ≤ (m+n+2)−1.

This is particularly true for the parent of K. Let us denote by K̂ the
parent of K, then |mKu − m bKu| = |∆ bKu|/2 ≤ m bKu/2(m+ n+ 2).
So, m bKu(1 − 1/2(m+ n+ 2)

)
≤ mKu ≤ m bKu(1 + 1/2(m+ n+ 2)

)
.

Iterating this process until we reach L, we will get that

mLu

(
1− 1

2(m+ n+ 2)

)m
≤ mKu ≤ mLu

(
1 +

1

2(m+ n+ 2)

)m
remember that |K| = 2−j|L| where 0 ≤ j ≤ m so we will iterate at
most m times. We can obtain the same bounds for v. These clearly
imply the estimates in the lemma, since limk→∞(1 + 1/k)k = e. �

The following lemma lifts a w-Carleson sequence to m-stopping time
intervals with comparable intensity. The lemma above appeared in
[NV] for the particular stopping time ST mL given by the stopping cri-
teria (i) and (ii) in Lemma 3.7, and w = 1. This is a property of any
stopping time that stops once the mth-generation is reached.

Lemma 3.8. For each L ∈ D, let ST mL be a partition of L in dyadic
subintervals of length at least 2−m|L| (in particular it could be the stop-
ping time intervals defined in Lemma 3.7). Assume {νI}I∈D is a w-
Carleson sequence with intensity at most A, let νmL :=

∑
K∈ST m

L
νK,

then {νmL }L∈D is a w-Carleson sequence with intensity at most (m+1)A.

Proof. In order to show that {νmL }L∈D is a w-Carleson sequence with
intensity at most (m+ 1)A, it is enough to show that for any J ∈ D∑

L∈D(J)

νmL < (m+ 1)Aw(J).

Observe that for each dyadic interval K inside a fixed dyadic interval
J there exist at most m + 1 dyadic intervals L such that K ∈ ST mL .
Let us denote by Ki the dyadic interval that contains K and such that
|Ki| = 2i|K|. If K ∈ D(J) then L must be K0, K1, ... or Km. We just
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have to notice that if L = Ki, for i > m then K cannot be in ST mL
because |K| < 2−m|L|. Therefore,∑

L∈D(J)

νmL =
∑

L∈D(J)

∑
K∈ST m

L

νK =
∑

K∈D(J)

∑
L∈D(J)s.t.K∈ST m

L

νK

≤
∑

K∈D(J)

(m+ 1)νk ≤ (m+ 1)Aw(J).

The last inequality follows by the definition of w-Carleson sequence
with intensity A. The lemma is proved. �

4. Paraproduct

For b ∈ BMOd, and m,n ∈ N, a dyadic paraproduct of complexity
(m,n) is the operator defined as

(4.1)
(
πm,nb f

)
(x) :=

∑
L∈D

∑
(I,J)∈Dn

m(L)

cLI,JmIf〈b, hI〉hJ(x),

where |cLI,J | ≤
√
|I| |J |/|L| for all dyadic intervals L and (I, J) ∈

Dnm(L), where Dnm(L) = Dn(L)×Dm(L).
A dyadic paraproduct of complexity (0, 0) is the usual dyadic para-

product πb known to be bounded in Lp(R) if and only if b ∈ BMOd.
A Haar shift operator of complexity (m,n), m,n ∈ N, is defined by(

Sm,nf
)
(x) :=

∑
L∈D

∑
(I,J)∈Dn

m(L)

cLI,J〈f, hI〉hJ(x),

where |cLI,J | ≤
√
|I| |J |/|L|. Notice that the Haar shift operators are

automatically uniformly bounded on L2(R), with operator norm less
than or equal to one [LPetR, CrMPz].

The dyadic paraproduct of complexity (m,n) is the composition of
Sm,n and πb. Therefore, if b ∈ BMOd then πm,nb is bounded in L2(R),
since πm,nb = Sm,nπb, and both πb (the dyadic paraproduct) and Sm,n

(the Haar shift operators) are bounded in L2(R).
Furthermore, πb and Sm,n are bounded in L2(w) whenever w ∈

Ad2. Both of them obey bounds on L2(w) that are linear in the A2-
characteristic of the weight, immediately providing a quadratic bound
in the A2-characteristic of the weight for πm,nb . We will show that in
fact, the dyadic paraproduct of complexity (m,n) obeys the same linear
bound in L2(w) with respect to [w]Ad

2
obtained by Beznosova [Be1] for

the dyadic paraproduct of complexity (0, 0), multiplied by a polynomial
factor that depends on the complexity.

The proof given by Nazarov and Volberg, in [NV], of the fact that
Haar shift operators with complexity (m,n) are bounded in L2(w) with
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a bound that depends linearly on the Ad2-characteristic of w, and poly-
nomially on the complexity, works, with appropriate modifications, for
the dyadic paraproducts of complexity (m,n). Below we describe those
modifications. Beforehand, however, we will present this new and con-
ceptually simpler (in our opinion) proof for the linear bound on the
Ad2-characteristic for the dyadic paraproduct, which will allow us to
highlight certain elements of the general proof without dealing with
the complexity.

4.1. Complexity (0, 0). The dyadic paraproduct of complexity (0, 0)
is defined by (πbf)(x) :=

∑
I∈D cI mIf 〈b, hI〉hI(x), where |cI | ≤ 1.

It is known that πb obeys a linear bound in L2(w) both in terms of
the Ad2-characteristic of the weight w and the BMO-norm of b.

Theorem 4.1 ([Be1]). There exists C > 0, such that for all b ∈ BMOd

and for all w ∈ Ad2,

‖πbf‖L2(w) ≤ C[w]Ad
2
‖b‖BMOd‖f‖L2(w).

Beznosova’s proof is based on the α-Lemma, the Little Lemma (these
were the new Bellman function ingredients that she introduced), and
Nazarov-Treil-Volberg’s two-weight Carleson embedding theorem, which
can be found in [NTV]. Below, we give another proof of this result;
this proof is still based on the α-Lemma 3.4 (via Lemma 3.5) however
it does not make use of the two-weight Carleson embedding theorem.
Instead we will use properties of Carleson sequences such as the Lit-
tle Lemma 3.2, and the Weighted Carleson Lemma 3.1, following the
argument in [NV] for Haar shift operators of complexity (m,n). The
extension of Theorem 4.1 to RN can be found in [Ch], and the meth-
ods used there can be adapted to extend our proof to RN even in the
complexity (m,n) case, see [Mo1].

Remark 4.2. Throughout the proofs a constant C will be a numerical
constant that may change from line to line.

Proof of Theorem 4.1. Fix f ∈ L2(w) and g ∈ L2(w−1). Define bI =
〈b, hI〉, then {b2

I}I∈D is a Carleson sequence with intensity ‖b‖2
BMOd .

By duality, it suffices to prove:

(4.2) |〈πb(fw), gw−1〉| ≤ C‖b‖BMOd [w]A2‖f‖L2(w)‖g‖L2(w−1).

Note that 〈πb(fw), gw−1〉| =
〈∑

I∈D cIbImI(fw)hI , gw
−1
〉
. Write hI =

αIh
w−1

I + βIχI/
√
|I| where αI = αw

−1

I and βI = βw
−1

I as described in
Proposition 2.1. Then

(4.3) |〈πb(fw), gw−1〉| ≤
∑
I∈D

|bI |mI(|f |w)
∣∣〈gw−1, αIh

w−1

I + βI
χI√
|I|
〉∣∣.
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Use the triangle inequality to break the sum in (4.3) into two summands
to be estimated separately, |〈πb(fw), gw−1〉| ≤ Σ1 + Σ2. Where, using
the estimates |αI | ≤

√
mIw−1, and |βI | ≤ |∆Iw

−1|/mIw
−1,

Σ1 :=
∑
I∈D

|bI |mI(|f |w)|〈gw−1, hw
−1

I 〉|
√
mIw−1

Σ2 :=
∑
I∈D

|bI |mI(|f |w)|〈gw−1, χI〉|
|∆Iw

−1|
mIw−1

1√
|I|
.

Estimating Σ1: First using thatmI(|f |w)/mIw ≤ infx∈IMwf(x), and
that 〈gv, f〉 = 〈g, f〉v; second using the Cauchy-Schwarz inequality and
mIwmIw

−1 ≤ [w]Ad
2
, we get

Σ1 ≤
∑
I∈D

|bI |
infx∈IMwf(x)√

mIw−1

∣∣〈g, hw−1

I 〉w−1

∣∣ mIw
−1 mIw

≤ [w]Ad
2

(∑
I∈D

|bI |2
infx∈IM

2
wf(x)

mIw−1

) 1
2
(∑
I∈D

∣∣〈g, hw−1

I 〉w−1

∣∣2) 1
2

.

Using Weighted Carleson Lemma 3.1, with F (x) = M2
wf(x), v = w,

and αI = |bI |2/mIw
−1 (which is an w-Carleson sequence with inten-

sity 4‖b‖2
BMOd , according to Lemma 3.2 ), together with the fact that

{hw−1

I }I∈D is an orthonormal system in L2(w−1), we get

Σ1 ≤ 4[w]Ad
2
‖b‖BMOd

(∫
R
M2

wf(x)w(x)dx

) 1
2

‖g‖L2(w−1)

≤ C[w]Ad
2
‖b‖BMOd‖f‖L2(w)‖g‖L2(w−1).

In the last inequality we used the fact that Mw is bounded in L2(w)
with operator norm independent of w.

Estimating Σ2: Using arguments similar to the ones used for Σ1, we
conclude that,

Σ2 =
∑
I∈D

|bI |mw
I |f | mw−1

I |g|
√
νI ≤

∑
I∈D

|bI |
√
νI inf

x∈I
Mwf(x)Mw−1g(x),

where νI = |I|(mIw)2(∆Iw
−1)2 as defined in Lemma 3.5, and in the

last inequality we used that for any I ∈ D and all x ∈ I,

mw
I |f |mw−1

I |g| ≤Mwf(x)Mw−1g(x).

Since {|bI |2}I∈D and {νI}I∈D are Carleson sequences with intensities
‖b‖2

BMOd and C[w]2
Ad

2
, respectively, by Proposition 2.2, the sequence

{|bI |
√
νI}I∈D is a Carleson sequence with intensity C‖b‖BMOd [w]Ad

2
.
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Thus, by Lemma 3.1 with F (x) = Mwf(x)Mw−1g(x), αI = |bI |
√
νI ,

and v = 1,

Σ2 ≤ C‖b‖BMOd [w]Ad
2

∫
R
Mwf(x)Mw−1g(x) dx.

Using the Cauchy-Schwarz inequality and w
1
2 (x)w

−1
2 (x) = 1 we get

Σ2 ≤ C[w]Ad
2
‖b‖BMOd

(∫
R
M2

wf(x)w(x)dx
) 1

2
(∫

R
M2

w−1g(x)w−1(x)dx
) 1

2

= C[w]Ad
2
‖b‖BMOd‖Mwf‖L2(w)‖Mw−1g‖L2(w−1)

≤ C[w]Ad
2
‖b‖BMOd‖f‖L2(w)‖g‖L2(w−1).

These estimates together give (4.2), and the theorem is proved. �

4.2. Complexity (m,n). In this section, we prove an estimate for
the dyadic paraproduct of complexity (m,n) that is linear in the A2-
characteristic and polynomial in the complexity. The proof will follow
the general lines of the argument presented in Section 4.1 for the com-
plexity (0, 0) case, with the added refinements devised by Nazarov and
Volberg [NV], adapted to our setting, to handle the general complexity.

Theorem 4.3. Let b ∈ BMOd and w ∈ Ad2, there is C > 0 such that

‖πm,nb f‖L2(w) ≤ C(n+m+ 2)5[w]Ad
2
‖b‖BMOd‖f‖L2(w).

Proof. Fix f ∈ L2(w) and g ∈ L2(w−1), define bI = 〈b, hI〉 and let
Cn
m := (m+ n+ 2). By duality, it is enough to show that

|〈πm,nb (fw), gw−1〉| ≤ C(Cn
m)5[w]Ad

2
‖b‖BMOd‖g‖L2(w−1)‖f‖L2(w).

We write the left-hand side as a double sum, that we will estimate as

|〈πm,nb (fw), gw−1〉| ≤
∑
L∈D

∑
(I,J)∈Dn

m(L)

|bI |
√
|I| |J |
|L|

mI(|f |w)|〈gw−1, hJ〉|.

As before, we write hJ = αJh
w−1

J + βJχJ/
√
|J |, with αJ = αw

−1

J ,

βJ = βw
−1

J , and break the double sum into two terms to be estimated
separately. Then |〈πm,nb (fw), gw−1〉| ≤ Σm,n

1 + Σm,n
2 , where

Σm,n
1 :=

∑
L∈D

∑
(I,J)∈Dn

m(L)

|bI |
√
|I| |J |
|L|

mI(|f |w)|〈g, hw−1

J 〉w−1 |
√
mJw−1,

Σm,n
2 :=

∑
L∈D

∑
(I,J)∈Dn

m(L)

|bI |
√
|I|
|L|

mI(|f |w)|〈gw−1, χJ〉|
|∆Jw

−1|
mJw−1

.
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For a weight v, and a locally integrable function φ we define the fol-
lowing quantities,

Sv,mL φ :=
∑

J∈Dm(L)

|〈φ, hvJ〉v|
√
mJv

√
|J |/|L|,(4.4)

Rv,m
L φ :=

∑
J∈Dm(L)

|∆Jv|
mJv

mJ(|φ|v) |J |/
√
|L|,(4.5)

Pbv,nL φ :=
∑

I∈Dn(L)

|bI | mI(|φ|v)
√
|I|/|L|.(4.6)

We also define for w ∈ Ad2 the following Carleson sequences (see Lemma 3.8
and Lemma 3.6 with s = 1, 2):

µsK := (mKw)s(mKw
−1)s
(
|∆Kw

−1|2

(mKw−1)2
+
|∆Kw|2

(mKw)2

)
|K|,

with intensity C[w]s
Ad

2
,

µm,sL :=
∑

K∈ST m
L

µK , with intensity C(m+ 1)[w]s
Ad

2
,

µn,sL :=
∑

K∈ST n
L

µK , with intensity C(n+ 1)[w]s
Ad

2
,

µb,sK := |bK |2(mKw mKw
−1)s, with intensity ‖b‖2

BMOd [w]s
Ad

2
, and

µb,n,sL :=
∑

K∈ST n
L

µb,sK , with intensity (n+ 1)‖b‖2
BMOd [w]s

Ad
2
.

Note that

Σm,n
1 ≤

∑
L∈D

Pbw,nL f Sw
−1,m

L g and Σm,n
2 ≤

∑
L∈D

Pbw,nL f Rw−1,m
L g.

In order to estimate Σm,n
1 and Σm,n

2 we will use the following estimates

for , Sw
−1,m

L g, Rw−1,m
L g and Pbw,nL f ,

(4.7) Sw
−1,m

L g ≤
( ∑
J∈Dm(L)

|〈g, hw−1

J 〉w−1|2
) 1

2
(mLw

−1)
1
2 ,

(4.8)

Rw−1,m
L g ≤ C Cn

m(mLw)
−s
2 (mLw

−1)1− s
2 inf
x∈L

(
Mw−1(|g|p)(x)

) 1
p

√
µm,sL ,

(4.9) Pbw,nL f ≤ C Cn
m(mLw)1− s

2 (mLw
−1)

−s
2 inf
x∈L

(
Mw(|f |p)(x)

) 1
pνn,sL ,

where νn,sL = ‖b‖BMOd

√
µn,sL +

√
µb,n,sL , and p = 2− (Cn

m)−1 (note that

1 < p < 2). In the proof it will become clear why this is a good choice,
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the reader is invited to assume first that p = 2 and reach a point of no
return in the argument.

Estimate (4.7) is easy to show. We just use the Cauchy-Schwarz
inequality and the fact that Dm(L) is a partition of L.

Sw
−1,m

L g ≤
( ∑
J∈Dm(L)

|〈g, hw−1

J 〉w−1|2
) 1

2 (
mLw

−1
) 1

2 .

Estimate (4.8) was obtained in [NV]. With a variation on their argu-
ment we prove estimate (4.9) in Lemma 4.4. Let us first use estimates
(4.7), (4.8) and (4.9) to estimate Σm,n

1 and Σm,n
2 .

Estimate for Σm,n
1 : Use estimates (4.7) and (4.9) with s = 2, the

Cauchy-Schwarz inequality and the fact that {hw−1

J }J∈D is an orthonor-
mal system in L2(w−1) and D = ∪L∈DDm(L), then

Σm,n
1 ≤ C Cn

m

(∑
L∈D

(νn,2L )2

mLw−1
inf
x∈L

(
Mw(|f |p)(x)

) 2
p

) 1
2‖g‖L2(w−1).

We will now use the Weighted Carleson Lemma 3.1 with F (x) =(
Mw(|f |p)(x)

)2/p
, v = w, and αL = (νn,2L )2/mLw

−1. Recall that νn,2L :=(
‖b‖BMOd

√
µn,2L +

√
µb,n,2L

)
, by Proposition 2.2, {(νn,2L )2}L∈D is a Car-

leson sequence with intensity at most C Cn
m‖b‖2

BMOd [w]2
Ad

2
. By Lemma 3.2,

{(νn,2L )2/mLw
−1}L∈D is a w-Carleson sequence with comparable inten-

sity. Thus we will have that

Σm,n
1 ≤ C (Cn

m)
3
2 [w]Ad

2
‖b‖BMOd‖g‖L2(w−1)

∥∥∥Mw(|f |p)
∥∥∥ 1

p

L
2
p (w)

≤ C
[
(2/p)′

] 1
p (Cn

m)
3
2 [w]Ad

2
‖b‖BMOd‖g‖L2(w−1)

∥∥ |f |p∥∥ 1
p

L
2
p (w)

= C(Cn
m)

5
2 [w]Ad

2
‖b‖BMOd‖g‖L2(w−1)‖f‖L2(w).

We used in the first inequality that Mw is bounded in Lq(w) for all
q > 1, more specifically we used that ‖Mwf‖Lq(w) ≤ Cq′‖f‖Lq(w). In
our case q = 2/p and q′ = 2/(2− p) = 2Cn

m.

Estimate for Σm,n
2 : Use estimates (4.8) and (4.9) with s = 1 in

both cases, use the facts (mIwmIw
−1)−1 ≤ 1, and the product of

the infimum of positive quantities is smaller than the infimum of the
product, then

Σm,n
2 ≤ C(Cn

m)2
∑
L∈D

νn,1L

√
µm,1L inf

x∈L

(
Mw(|f |p)(x)

) 1
p
(
Mw−1(|g|p)(x)

) 1
p .
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Since (νn,1L )2 and µm,1L have intensity at most C(n + 1)[w]Ad
2
‖b‖2

BMO

and C(m + 1)[w]Ad
2
. By Proposition 2.2, we have that νn,1L

√
µm,1L is

a Carleson sequence with intensity at most C Cm
n ‖b‖BMOd [w]Ad

2
. If

we now apply Lemma 3.1 with F p(x) = Mw(|f |p)(x)Mw−1(|g|p)(x),

αL = νn,1L

√
µm,1L , and v = 1, we will have, by the Cauchy-Schwarz

inequality and the boundedness of Mv in Lq(v) for q = p/2 > 1,

Σm,n
2 ≤ C(Cn

m)3[w]Ad
2
‖b‖BMOd

∫
R

(
Mw(|f |p)(x)

) 1
p
(
Mw−1(|g|p)(x)

) 1
pdx

≤ C(Cn
m)3[w]Ad

2
‖b‖BMOd

∥∥Mw(|f |p)
∥∥ 1

p

L
2
p (w)

∥∥Mw−1(|g|p)
∥∥ 1

p

L
2
p (w−1)

≤ C
[
(2/p)′

] 2
p (Cn

m)3[w]Ad
2
‖b‖BMOd

∥∥|f |p∥∥ 1
p

L
2
p (w)

∥∥|g|p∥∥ 1
p

L
2
p (w−1)

= C(Cn
m)5[w]Ad

2
‖b‖BMOd‖f‖L2(w)‖g‖L2(w−1).

Together these estimates prove the theorem, under the assumption that
estimate (4.9) holds. �

4.3. Key Lemma. The missing step in the previous proof is estimate
(4.9), which we now prove. The argument we present is an adaptation
of the argument used in [NV] to obtain estimate (4.8).

Lemma 4.4. Let b ∈ BMOd, and let φ be a locally integrable function.
Then,

Pbw,nL φ ≤ C Cn
m(mLw)1− s

2 (mLw
−1)

−s
2 inf
x∈L

(
Mw(|φ|p)(x)

) 1
pνn,sL ,

where νn,sL = ‖b‖BMOd

√
µn,sL +

√
µb,n,sL , and p = 2− (Cn

m)−1.

Proof. Let ST nL be the collection of stopping time intervals defined in
Lemma 3.7. Noting that Dn(L) = ∪K∈ST n

L

(
D(K) ∩ Dn(L)

)
, we get,

Pbw,nL φ =
∑

K∈ST n
L

∑
I∈D(K)

T
Dn(L)

|bI | mI(|φ|w)
√
|I|/|L|.

Note that if K is a stopping time interval by the first criterion then

Pbw,nL φ ≤ ‖b‖BMOd mK(|φ|w)|K|/
√
|L|

≤ Cn
m‖b‖BMOd mK(|φ|w)(

√
|K|/|L|)

√
2µsK (mKwmKw

−1)
−s
2 .

The first inequality is true because |bI |/
√
|I| ≤ ‖b‖BMOd and the second

one because

1 ≤ Cn
m

(
|∆Kw|
mKw

+
|∆Kw

−1|
mKw−1

)√
|K| ≤ Cn

m

√
2µsK(mKw mKw

−1)
−s
2 .
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Now we use the fact, proved in Lemma 3.7, that we can compare the
averages of the weights on the stopping intervals with their averages in
L, paying a price of a constant e, and continue estimating by

√
2Cm

n e
s‖b‖BMOdmK(|φ|w)

√
|K|/|L|

√
µsK(mLwmLw

−1)
−s
2 .

If K is a stopping time interval by the second criterion, then the sum
collapses to just one term∑

I∈D(K)
T
Dn(L)

|bI | mI(|φ|w)
√
|I|/|L| = |bK | mK(|φ|w)

√
|K|/|L|

= mK(|φ|w)
√
|K|/|L|

√
µb,sK (mKwmKw

−1)
−s
2

≤ Cm
n e

smK(|φ|w)
√
|K|/|L|

√
µb,sK (mLwmLw

−1)
−s
2 .

Let Ξ1(L) := {K ∈ ST nL : K is a stopping time interval by criterion 1},
and Ξ2(L) := {K ∈ ST nL : K is a stopping time interval by criterion 2}.
Note that Ξ1(L)

⋃
Ξ2(L) is a partition of L. We then have,

(4.10) Pbw,nL ≤
√

2Cm
n e

s (mLwmLw
−1)

−s
2

(
‖b‖BMOdΣ1

Pb + Σ2
Pb

)
,

where the terms Σ1
Pb and Σ2

Pb are defined as follows,

Σ1
Pb :=

∑
K∈Ξ1(L)

mK(|φ|w)
√
|K|/|L|

√
µsK ,

Σ2
Pb :=

∑
K∈Ξ2(L)

mK(|φ|w)
√
|K/|L|

√
µb,sK .

Now estimate Σ1
Pb using the Cauchy-Schwarz inequality, noting that

we can move inside a sum a power p/2 < 1 that is outside the sum,
and that µn,sL :=

∑
I∈ST n

L
µsK ≥

∑
I∈Ξ1(L) µ

s
K ,

Σ1
Pb ≤

( ∑
K∈Ξ1(L)

(mK(|φ|w))2|K|/|L|
) 1

2
( ∑
K∈Ξ1(L)

µsK

) 1
2

≤
( ∑
K∈Ξ1(L)

(mK(|φ|w))p
(
|K|/|L|

) p
2

) 1
p
√
µn,sL .(4.11)

By the second stopping criterion |K|/|L| = 2−j for 0 ≤ j ≤ m, then

(4.12)
(
|K|/|L|

) p
2 = 2−j+

j
2(m+n+2) < 2 · 2−j = 2|K|/|L|.

Plugging (4.12) into (4.11) gives

Σ1
Pb ≤

(
2
∑

K∈Ξ1(L)

(mK(|φ|w))p|K|/|L|
) 1

p
√
µn,sL .
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Use Hölder’s inequality inside the sum, then Lift Lemma 3.7, to get

Σ1
Pb ≤

( ∑
K∈Ξ1(L)

(mK(|φ|pw))(mKw)p−1|K|/|L|
) 1

p
√
µn,sL

≤ 2
1
p (emLw)1− 1

p

( 1

|L|
∑

K∈Ξ1(L)

∫
K

|φ(x)|pw(x) dx
) 1

p
√
µn,sL .

Observe that the intervals K ∈ Ξ1(L) are disjoint subintervals of L,
therefore,

∑
K∈Ξ1(L)

∫
K
|φ(x)|pw(x) dx ≤

∫
L
|φ(x)|pw(x) dx, thus,

(4.13) Σ1
Pb ≤ 2emLw inf

x∈L

(
Mw(|φ|p)(x)

) 1
p

√
µn,sL .

Similarly we estimate Σ2
Pb, to get,

Σ2
Pb ≤

( ∑
K∈Ξ2

(mK(|φ|w))2|K|/|L|
) 1

2
( ∑
K∈Ξ2

µb,sK

) 1
2

≤
( ∑
K∈ST n

L

(mK(|φ|w))p
(
|K|/|L|

) p
2

) 1
p

√
µb,n,sL .

Following the same steps as we did in the estimate for Σ1
Pb, we will

have

(4.14) Σ2
Pb ≤ 2emLw inf

x∈L

(
Mw(|φ|p)(x)

) 1
p

√
µb,n,sL .

Insert estimates (4.13) and (4.14) into (4.10). All together we can
bound Pbw,nL by

C Cm
n e

s+1 (mLw)1− s
2 (mLw

−1)
−s
2 inf
x∈L

(
Mw(|φ|p)(x)

) 1
p
νn,sL .

The lemma is proved. �

Remark 4.5. In [NV1], Nazarov and Volberg extend the results that
they had for Haar shift operators in [NV] to metric spaces with geo-
metric doubling. One can extend Theorem 4.3 as well to this setting,
see [Mo1].

5. Haar Multipliers

For a weight w, t ∈ R, and m,n ∈ N, a t-Haar multiplier of com-
plexity (m,n) is the operator defined as

(5.1) Tm,nt,w f(x) :=
∑
L∈D

∑
(I,J)∈Dn

m(L)

cLI,J

(w(x)

mLw

)t
〈f, hI〉hJ(x),

where |cLI,J | ≤
√
|I| |J |/|L|.
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Note that these operators have symbols, namely cLI,J
(
w(x)/mLw

)t
,

that depend on: the space variable x, the frequency encoded in the
dyadic interval L, and the complexity encoded in the subintervals
I ∈ Dn(L) and J ∈ Dm(L). This makes these operators akin to pseu-
dodifferential operators where the trigonometric functions have been
replaced by the Haar functions.

Observe that Tm,nt,w is different than both Sm,nT tw and T twS
m,n. Notice

that, unlike Tm,nt,w , both Sm,nT tw and T twS
m,n obey the same bound that

T tw obeys in L2(R), because the Haar shift multipliers have L2-norm
less than or equal to one.

5.1. Necessary conditions. Let us first show a necessary condition
on the weight w so that the Haar multiplier Tm,nw,t with cLI,J =

√
|I| |J |/|L|

is bounded on Lp(R). This necessary Cd
tp-condition is the same condi-

tion found in [KP] for the t-Haar multiplier of complexity (0, 0).

Theorem 5.1. Let w be a weight, m,n be positive integers and t a real
number. If Tm,nt,w is the t-Haar multiplier with cLI,J =

√
|I| |J |/|L| and

is a bounded operator in Lp(R), then w is in Cd
tp.

Proof. Assume that Tm,nt,w is bounded in Lp(R) for 1 < p < ∞. Then
there exists C > 0 such that for any f ∈ Lp(R) we have ‖Tm,nt,w f‖p ≤
C‖f‖p. Thus for any I0 ∈ D we should have

(5.2) ‖Tm,nt,w hI0‖pp ≤ Cp‖hI0‖pp.

Let us compute the norm on the left-hand side of (5.2). Observe that

(5.3) Tm,nt,w hI0(x) =
∑
L∈D

∑
(I,J)∈Dn

m(L)

√
|I| |J |/|L|

(w(x)

mLw

)t
〈hI0 , hI〉hJ(x).

We have 〈hI0 , hI〉 = 1 if I0 = I and 〈hI0 , hI〉 = 0 otherwise. Also,
there exists just one dyadic interval L0 such that I0 ⊂ L0 and |I0| =
2−n|L0|. Therefore we can collapse the sums in (5.3) in just one sum,
and calculate the Lp-norm as follows,

‖Tm,nt,w hI0‖pp =

∫
R

∣∣∣ ∑
J∈Dm(L0)

√
|I0| |J |/|L0|

( w(x)

mL0w

)t
hJ(x)

∣∣∣pdx.
Furthermore, since Dm(L0) is a partition of L0, the power p can be put
inside the sum, and we get,

(5.4) ‖Tm,nt,w hI0‖pp =
(
|I0|

p
2 /|L0|p−1

)(
mL0w

tp/(mL0w)pt
)
.
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Inserting ‖hI0‖pp = |I0|1−
p
2 and (5.4) in (5.2), we will have that for

any dyadic interval I0 there exists C such that(
|I0|

p
2 /|L0|p−1

)(
mL0w

tp/(mL0w)pt
)
≤ Cp|I0|1−

p
2 .

Thus, mL0w
tp/(mL0w)pt ≤ Cp|I0|1−p|L0|p−1 = Cp2n(p−1) =: Cn,p. Now

observe that this inequality should hold for any L0 ∈ D, we just have
to choose as I0 any of the descendants of L0 in the n-th generation,
and that n is fixed. Therefore,

[w]Cd
2t

= sup
L∈D

(mLw
tp)(mLw)−pt ≤ Cn,p.

We conclude that w ∈ Cd
tp; moreover [w]Cd

tp
≤ 2n(p−1)||Tm,nt,w ||pp. �

5.2. Sufficient condition. For most t ∈ R, the Cd
2t-condition is not

only necessary but also sufficient for a t-Haar multiplier of complexity
(m,n) to be bounded on L2(R); this was proved in [KP] for the case
m = n = 0. Here we are concerned not only with the boundedness but
also with the dependence of the operator norm on the Cd

2t-constant. For
the case m = n = 0 and t = 1,±1/2 this was studied in [P2]. Beznosova
[Be] was able to obtain estimates, under the additional condition on the
weight: w2t ∈ Adp for some p > 1, for the case of complexity (0, 0) and

for all t ∈ R. We generalize her results when w2t ∈ Ad2 for complexity
(m,n). Our proof differs from hers in that we are adapting the methods
of Nazarov and Volberg [NV] to this setting as well. Both proofs rely
on the α-Lemma (Lemma 3.4) and on the Little Lemma (Lemma 3.2).
See also [BeMoP].

Theorem 5.2. Let t be a real number and w a weight in Cd
2t, such

that w2t ∈ Ad2. Then Tm,nt,w , a t-Haar multiplier with depth (m,n), is
bounded in L2(R). Moreover,

‖Tm,nt,w f‖2 ≤ C(m+ n+ 2)3[w]
1
2

Cd
2t

[w2t]
1
2

Ad
2
‖f‖2.

Proof. Fix f, g ∈ L2(R). By duality, it is enough to show that

|〈Tm,nt,w f, g〉| ≤ C(m+ n+ 2)3[w]
1
2

Cd
2t

[w2t]
1
2

Ad
2
‖f‖2‖g‖2.

The inner product on the left-hand-side can be expanded into a double
sum that we now estimate,

|〈Tm,nt,w f, g〉| ≤
∑
L∈D

∑
(I,J)∈Dn

m(L)

(
√
|I| |J |/|L|) |〈f, hI〉|

(mLw)t
|〈gwt, hJ〉|.

Decompose hJ into a linear combination of a weighted Haar function
and a characteristic function, hJ = αJh

w2t

J + βJχJ/
√
|J |, where αJ =
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αw
2t

J , βJ = βw
2t

J , |αJ | ≤
√
mJw2t, and |βJ | ≤ |∆J(w2t)|/mJw

2t. Now
we break this sum into two terms to be estimated separately so that,

|〈Tm,nt,w f, g〉| ≤ Σm,n
3 + Σm,n

4 ,

where

Σm,n
3 :=

∑
L∈D

∑
(I,J)∈Dn

m(L)

√
|I| |J |
|L|

√
mJ(w2t)

(mLw)t
|〈f, hI〉| |〈gwt, hw

2t

J 〉|,

Σm,n
4 :=

∑
L∈D

∑
(I,J)∈Dn

m(L)

|J |
√
|I|

|L|(mLw)t
|∆J(w2t)|
mJ(w2t)

|〈f, hI〉| mJ(|g|wt).

Again, let p = 2−(Cm
n )−1, and define as in (4.4) and (4.5), the quan-

tities Sv,mL φ and Rv,m
L φ, with v = w2t, and corresponding estimates.

Define a new quantity

P n
Lφ :=

∑
I∈Dn(L)

|〈f, hI〉|
√
|I|/|L|.

We also define the following sequence:

ηI := mI(w
2t) mI(w

−2t)

(
|∆I(w

2t)|2

|mIw2t|2
+
|∆I(w

−2t)|2

|mIw−2t|2

)
|I|.

By Lemma 3.6 with s = 1, {ηI}I∈D is a Carleson sequence with intensity
C[w2t]Ad

2
. Let ηmL :=

∑
I∈ST m

L
ηI , where the stopping time ST mL is de-

fined as in Lemma 3.7 (with respect to the weight w2t). By Lemma 3.8,
{ηmL }L∈D is a Carleson sequence with intensity C(m+ 1)[w2t]Ad

2
.

Observe that on the one hand 〈gwt, hw2t

J 〉 = 〈gw−t, hw2t

J 〉w2t , and on
the other mJ(|g|wt) = mJ(|gw−t|w2t). Therefore,

Σm,n
3 =

∑
L∈D

(mLw)−tSw
2t,m

L (gw−t) P n
Lf,

Σm,n
4 =

∑
L∈D

(mLw)−tRw2t,m
L (gw−t) P n

Lf.

Estimates (4.7) and (4.8) with s = 1 hold for Sw
2t,m

L (gw−t) andRw2t,m
L (gw−t),

with w−1 and g replaced by w2t and gw−t:

Sw
2t,m

L (gw−t) ≤ (mLw
2t)

1
2

( ∑
J∈Dm(L)

|〈gw−t, hw2t

J 〉w2t|2
) 1

2
,

Rw2t,m
L (gw−t) ≤ C Cn

m(mLw
2t)

1
2 (mLw

−2t)
−1
2 F

1
2 (x)

√
ηmL ,
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where F (x) = infx∈L
(
Mw2t(|gw−t|p)(x)

) 2
p . Estimating P n

Lf is simple:

P n
Lf ≤

( ∑
I∈Dn(L)

|I|/|L|
) 1

2
( ∑
I∈Dn(L)

|〈f, hI〉|2
) 1

2
=
( ∑
I∈Dn(L)

|〈f, hI〉|2
) 1

2
.

Estimating Σm,n
3 : Plug in the estimates for Sw

2t,m
L (gw−t) and P n

Lf ,

observing that (mLw
2t)

1
2/(mLw)t ≤ [w]

1
2

Cd
2t

. Using the Cauchy-Schwarz

inequality, we get,

Σm,n
3 ≤

∑
L∈D

[w]
1
2

Cd
2t

( ∑
J∈Dm(L)

|〈gw−t, hw2t

J 〉w2t |2
) 1

2
( ∑
I∈Dn(L)

|〈f, hI〉|2
) 1

2

≤ [w]
1
2

Cd
2t
‖f‖2‖gw−t‖L2(w2t) = [w]

1
2

Cd
2t
‖f‖2‖g‖2.

Estimating Σm,n
4 : Plug in the estimates for Rw2t,m

L (gw−t) and P n
Lf ,

where F (x) =
(
Mw2t(|gw−t|p)(x)

)2/p
. Using the Cauchy-Schwarz in-

equality and considering again that (mLw
2t)

1
2/(mLw)t ≤ [w]

1
2

Cd
2t

, then

Σm,n
4 ≤ C Cn

m[w]
1
2

Cd
2t
‖f‖2

(∑
L∈D

ηmL
mLw−2t

inf
x∈L

F (x)
) 1

2
.

Now, use the Weighted Carleson Lemma 3.1 with αL = ηmL /mL(w−2t)
(which by Lemma 3.2 is a w2t-Carleson sequence with intensity at most

C Cn
m[w2t]Ad

2
). Let F (x) =

(
Mw2t |gw−t|p(x)

)2/p
, and v = w2t, then

Σm,n
4 ≤ C(Cn

m)2[w]
1
2

Cd
2t

[w2t]
1
2

Ad
2
‖f‖2

∥∥Mw2t(|gw−t|p)
∥∥ 1

p

L
2
p (w2t)

.

Using (2.1), that is the boundedness of Mw2t in L
2
p (w2t) for 2/p > 1,

and (2/p)′ = 2Cn
m, we get

Σm,n
4 ≤ C(Cn

m)2(2/p)′[w]
1
2

Cd
2t

[w2t]
1
2

Ad
2
‖f‖2

∥∥|gw−t|p∥∥ 1
p

L
2
p (w2t)

≤ C(Cn
m)3[w]

1
2

Cd
2t

[w2t]
1
2

Ad
2
‖f‖2‖g‖2.

The theorem is proved. �
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