The Borel-Cantelli Lemma and its Applications

Alan M. Falleur
Department of Mathematics and Statistics
The University of New Mexico
Albuquerque, New Mexico, USA

Ding Li
Department of Electrical and Computer Engineering
The University of New Mexico
Albuquerque, New Mexico, USA

Yuan Yan
Department of Electrical and Computer Engineering
The University of New Mexico
Albuquerque, New Mexico, USA

October 13, 2010

Abstract

We state and prove the Borel-Cantelli lemma and use the result to prove another proposition.

1 Definitions and Identities

Definition 1 Let \(\{E_k\}_{k=1}^{\infty} \) be a countable family of measurable subsets. The limit supremum of \(\{E_k\} \) is the set

\[
\limsup_{k \to \infty} (E_k) := \{ x \in \mathbb{R}^d : x \in E_k \text{ for infinitely many } k \}
\]
Proposition 1 The following identity holds:

\[
\limsup_{k \to \infty} (E_k) = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k
\]

Proof. Assume that \(x \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k\). So,

\[
x \in \left(\bigcup_{k=1}^{\infty} E_k \right) \cap \left(\bigcup_{k=2}^{\infty} E_k \right) \cap \left(\bigcup_{k=3}^{\infty} E_k \right) \cap \ldots
\]

Suppose that \(x \notin \limsup_{k \to \infty} (E_k)\). By definition, this means that there is a positive integer \(k_0\) such that for all \(k \geq k_0\), \(x \notin E_k\). Hence, \(x \notin \bigcup_{k=k_0}^{\infty} E_k\). Therefore, \(x \in \limsup_{k \to \infty} (E_k)\). This means that

\[
\limsup_{k \to \infty} (E_k) \supset \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k
\]

Conversely, assume that \(x \in \limsup_{k \to \infty} (E_k)\). This means that \(x\) belongs to \(E_k\) for infinitely many \(k\). That is to say, \(x\) continuously reappears as an element in a set of the sequence \(E_k\). Then it is evident that \(x \in \bigcup_{k=1}^{\infty} E_k\). It is equally evident that \(x \in \bigcup_{k=2}^{\infty} E_k\), \(x \in \bigcup_{k=3}^{\infty} E_k\), and so on. Thus,

\[
x \in \left(\bigcup_{k=1}^{\infty} E_k \right) \cap \left(\bigcup_{k=2}^{\infty} E_k \right) \cap \left(\bigcup_{k=3}^{\infty} E_k \right) \cap \ldots
\]

\[
\in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k
\]

Therefore,

\[
\limsup_{k \to \infty} (E_k) \subset \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k
\]

Thus,

\[
\limsup_{k \to \infty} (E_k) = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k
\]
2 The Borel-Cantelli lemma and applications

Lemma 1 (Borel-Cantelli) Let \(\{E_k\}_{k=1}^{\infty} \) be a countable family of measurable subsets of \(\mathbb{R}^d \) such that

\[
\sum_{k=1}^{\infty} m(E_k) < \infty
\]

Then \(\limsup_{k \to \infty} (E_k) \) is measurable and has measure zero.

Proof. Given the identity,

\[
E = \limsup_{k \to \infty} (E_k) = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k
\]

Since each \(E_k \) is a measurable subset of \(\mathbb{R}^d \), \(\bigcup_{k=n}^{\infty} E_k \) is measurable for each \(n \in \mathbb{N} \), and so \(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k \) is measurable as well, Stein [1]. Therefore, \(E \) is measurable.

Suppose that \(m(E) = \epsilon > 0 \). Then

\[
0 < \epsilon = m(E) = m\left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k \right)
\]

Since for all \(n \in \mathbb{N} \), \(E \subset \bigcup_{k=n}^{\infty} E_k \), by the monotonicity property, Stein [1],

\[
m(E) \leq m\left(\bigcup_{k=n}^{\infty} E_k \right)
\]

By the countable sub-additivity property, Stein [1], for all \(n \in \mathbb{N} \),

\[
m(E) = m\left(\bigcup_{k=n}^{\infty} E_k \right) \leq \sum_{k=n}^{\infty} m(E_k)
\]

By assumption, \(\sum_{k=1}^{\infty} E_k < \infty \). It follows that the tail of the series can be made arbitrarily small. In other words, for any \(\delta > 0 \), there is an \(N' \in \mathbb{N} \) such that
\[\sum_{k=N'}^\infty m(E_k) < \delta \]

However, if we choose \(\delta = \epsilon/2 \), we have

\[0 < \epsilon < m(E) \leq \sum_{k=N'}^\infty m(E_k) \leq \frac{\epsilon}{2} \]

Therefore, \(m(E) = 0 \).

\[\square \]

Proposition 2 Let \(\{f_n(x)\} \) be a sequence of measurable functions on \([0,1]\) with \(|f_n(x)| < \infty \) for a.e. \(x \in [0,1] \). Then there exists a sequence \(\{c_n\} \) of positive real numbers such that

\[\frac{f_n(x)}{c_n} \to 0 \quad \text{a.e. } x \in [0,1] \]

Proof. Given a sequence of positive numbers \(\{c_n\} \), consider the set

\[E_n = \{ x \in [0,1] : \frac{|f_n(x)|}{c_n} > \frac{1}{n} \} \]

Suppose that there is no sequence of positive numbers \(\{c_n\} \) such that \(m(E_n) \leq 2^{-n} \). Without loss of generally, we can assume that \(\{c_n\} \) is a sequence of positive numbers. Fix \(n \in \mathbb{N} \). Then it follows that for any \(N \in \mathbb{N} \),

\[m(A_N) = m\left(\{ x \in [0,1] : \frac{|f_n(x)|}{N} > \frac{1}{n} \} \right) > 2^{-n} \]

\[m(A_N) = m\left(\{ x \in [0,1] : |f_n(x)| > \frac{N}{n} \} \right) > 2^{-n} \]
So,

\[A_1 = \{ x \in [0, 1] : |f_n(x)| > \frac{1}{n} \} \]
\[A_2 = \{ x \in [0, 1] : |f_n(x)| > \frac{2}{n} \} \]
\[A_3 = \{ x \in [0, 1] : |f_n(x)| > \frac{3}{n} \} \]

\vdots

\[A_\infty = \{ x \in [0, 1] : |f_n(x)| = \infty \} \]

It is easy to see that this is a decreasing sequence of sets: \(A_1 \supset A_2 \supset A_3 \supset \ldots \). Since \(A_\infty \) is a subset of each \(A_N \), \(A_\infty = \bigcap_{N=1}^{\infty} A_N \). Hence, \(m(\bigcap_{N=1}^{\infty} A_N) = m(A_\infty) \), and so

\[2^{-n} < m \left(\bigcap_{N=1}^{\infty} A_N \right) = m(A_\infty) \]

However, by assumption \(m(A_\infty) = 0 \). Therefore, there is a sequence of positive numbers \(\{c_n\} \) such that

\[m(E_n) = m(\{ x \in [0, 1] : \frac{|f_n(x)|}{c_n} > \frac{1}{n} \}) \leq 2^{-n} \]

Thus the series converges by comparison to a geometric series:

\[\sum_{n=1}^{\infty} m(E_n) \leq \sum_{n=1}^{\infty} 2^{-n} \]
\[\sum_{n=1}^{\infty} m(E_n) \leq 1 \]
\[< \infty \]

According to the Borel-Cantelli lemma then, \(\limsup_{n \to \infty} E_n \) has measure zero. By definition,

\[\limsup_{n \to \infty}(E_n) = \{ x : x \in E_n \text{ for infinitely many } n \} \]
So if $x \in \limsup_{n \to \infty} (E_n)$, then x is a number in $[0,1]$ such that for infinitely many n,

$$\frac{|f_n(x)|}{c_n} > \frac{1}{n}$$

Negating this statement, if $x \notin \limsup_{n \to \infty} (E_n)$, then there is a $k_0 \in \mathbb{N}$ such that $|f_n(x)|/c_n \leq 1/n$ for all $n \geq k_0$. By comparison then, $\{|f_n(x)|/c_n\}$ would converge to 0 since $\{1/n\}$ converges to 0. Therefore, since $m(\limsup_{n \to \infty} (E_n)) = 0$, the conclusion is

$$\frac{f_n(x)}{c_n} \to 0 \quad \text{a.e. } x \in [0,1]$$

References