Math 565: Introduction to Harmonic Analysis - Spring 2008

Homework # 2, DAEWON CHUNG

1. Show that,
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[Solution] Let us pick € < min(|z — al, |x — b|) and we consider three cases © < a, z > b, and < a < x < b.
By definition,
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If x > b, thene < x—b < y < £—a, and we have the same result as above. If a < x < b,thenz—b <y < —e¢
ore<y<axz—a,thus
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Thus, for every case, we have

|z — al

. 1
HX[a,b]('r) = ll_I%HG(X[a,b})(x) = ;log |$ — b| .
Consider now H* X4, () . If we consider € > max(|z—al, |z—b|), then the integral region becomes an empty
set. We consider the case when € is between |z —a| and |z —b|. If x < a,thenz —b<y< —e<z—a<0,
and

1 (71 1 € 1 |x — al
He = = —dy=—1 —1 .
X[a, 5] () ﬂ/x_by y=loe—y > —log —y

Since € < |z — b| and logﬁ <0,

1 € |z — al
He ‘: 2 - .
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Ifx >b,thenx —b<e<y<x—a, and we have
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If a < x < b, then there are two possibilities. One is |z — b|] < € < |z — al, i.e.

1 /71 1 r—a 1 T —a
’HGX[a,b](JT)’: / dy‘ = *10g| | < ’10g| | .
T Je Y ™ ™ |l’—b|
Another is |z —a| < e < |z —b|, i.e.
1o 1 —b 1 1 _
‘H€X[a7b](x)‘ = / *dy = *log |x ’ = flog € < flogM .
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Hence, by first part, we can conclude that

* 6 1|, |e—a
H" X, (%) = sup [ H (xa,)) (@) = W‘log o ||’
2. Show that
4|b — al

{z e R: [Hx(o,y(2)] > A} = oA _ oA

More generally show that for any measurable subset E of R of finite measure |E|,

4|E| 2|E|
{z e R: |[Hxp(z)| > A} = o p— < .
[Solution] By first problem, we know Hx[q, (%) = %log “fc:zl‘. First, we need to observe the function
||;:Z||' This function has a horizontal asymptote y = 1, vertical asymptote x = b and has a function value 1

|z—al
lz—b[ -

at * = (a + b)/2. Therefore we can figure out the graph of log

|z—al

Figure 1. Graph of log o=b] -

Let £ = {z € R: [Hx[q(7)] > A} = E1 U E3, we can find |E| = |E1| + |E2| as follows. Let Ey = [, 31] .
Then
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can be found with log 7= = —7\ because of « < a < b, and

3 _be_”)‘—l—a
T A e ™

—7A

can be found with log 2= = e™™", a < 1 < b. Also, if we set Ez = [az, f2] then we can find similarly

be™ + a be™ — q
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Then
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Now, to see the general case let us assume E is the union of finitely many disjoint intervals, each of finite
length. We may express F in the form £ = U?Zl(aj,bj), where the a; and b;,(j = 1,2,...,n), satisfy
a1 < by <ag <by<---<a, <b,. It follows from the linearity of the Hilbert transform that
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Fix A >0 and set F'={z € R: |Hxg(z)| > A} Then F can be decomposed into the disjoint union
F={lg|>e™}U{lgl<e ™} =FRUP,

where g is the rational function defined by

Here, we claim that if u # 1, then the equation g(z) = p has n distinct root 71, ra, ..., 7, which satisfy

n n

Yobi=d A=) Y (b —ay).
j=1 j=1 j=1

Furthermore, if © > 1, then
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Figure 2. Graph of g(z) = [[}_, =
J

Since g has a simple pole at each b;, (j = 1,2,...,n), and g(x) approach to 1 as |z| goes to infinity, there
are exactly n distinct solutions, say r1, 7o, ...,y , to the equation g(x) = p, (u # 1) (Figure 2.). Since the
numbers 71,79, ..., 7, are the roots of g(x) = p, those are also n roots of the n-th degree polynomial equation
p(z) = 0, where
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The sum Y 7; of the roots is equal to —p,_1/pn so, equating coefficients of 2™ and of z"~! in p(x), we can
have

ppn=1-—p and p,1=— Za]"‘ﬂzbj:

thus we obtain

which is equivalent to

j-1 j=1 = j=1 j=1
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j=1 j=1 j=1 j=1 j=1 = =
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Thus we prove the our first claim. If p > 1, then {g > u} = Jj_(bj,r;) (Figure 2.), so the identity;
(n—=1Hg > p}| = >, (bj — a;) follows from directly from the previous result. The other one can be
established in similar fashion. Now we go back to our case, then we obtain from the claim,
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By considering the rational function 1/¢ instead of g, and applying the analogous version of claim we obtain
a similar estimate |Fy| = 2|E|/(e™ — e~™). Since |F| = |Fi| + |F»|, we have

AlE|

[{zeR: Hxp(@)| > M| = 5.

where F is the union of finitely many disjoint intervals. For given general measurable subset £ of R with
finite measure, we can find F, such that each E, is a finite union of intervals and E, \ £ — @ asn — 0.
Then, as n — oo,

Ixe, — x5l =/er —XEdez/ dz = |E,\ E| - 0.

n

Also, by L? boundedness of Hilbert transform, Hy g, converge to Hx g in L?-sense, also it converges in weak
L?. Thus, given € > 0 find an N such that for n > N, we have

|Hxg, — HxE|r20 =supa|{z € R: |Hxg, — Hxg| > a}]% < extl,
a>0

Taking o = €, we have Hxpg, converge to Hxg in measure. Then some subsequence of Hy g, converges to
Hyx g almost everywhere. Hence, by Lebesgue’s Dominated Convergence Theorem with dominate function

X{|Hxg, (@) >3} () -

lim [{z € R: |Hxg,, (z)| > A} = lim dx
k—o0 k=00 J{zeR:| Hxg,, (z)|>A}

= X1, @)>2 3

:/ lim X{|HXEnk(I)|>)\}d$

R k—o0

= [ Mimsisnde = e € R+ 1Hxe(@)] > M.
This and the fact: o < 3(e” — e™®) give us desired result.

3. Let Pi(z) = %# be the Poisson kernel, and Q¢(x) = %%HQ be the Conjugate Poisson kernel defined
for all ¢ > 0. Check that {P,};~¢ is an approximation of the identity as ¢ — 0, but {Q;}¢>0 is not.
Verify that

~

Pi(€) = e 2l Qu(e) = —isgnee 24l

[Solution] Let’s try to see {P,;};~0 is an approximation of the identity as ¢t — 0. After substitute y = z/t
for fixed ¢, we can see

1 1 1 1 o 1
/Pt(x)da::/tdt:/dy:tan_l(y) == (T (-I))=1.
R 7w Jg 22+ t2 T Jrpy?+1 T o T\2 2
Because P;(x) is positive for all z € R, || P||;1 =1 < co. And we need to show, for all § > 0,

lim |Pi(z)|dz = 0.
=0 J1z[>s



For fixed ¢,

2 [ t
P:L‘d:r::/ Pa:dm:/ ——dx
/|x>(5| 1)l |z|>6 ) T )5 x4t
9 w/2 2 9
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Since, §/t — o0 ast — 0,

2 4]
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On the other hand,
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Thus {Q¢}+>0 is not an approximation of the identity. Now, we’ll see Fourier transform of each kernel. If
we show that

; t
—2m|€|t 27rz§zd =P —
/Re T = Ple) = ey

then , by the Fourier inversion theorem in the case of moderate decrease function, we can have
/ Pi(z)e” ™8y = e 2mIElt
R

This mean e~ 27lélt

integral separately.

is a Fourier transform of P;(x). Now, we try to see the previous equality by calculate the

. . o0
/oo 6727r£t627ri£$d€ _ /oo e27ri(m+it)§d€ — M _ 1
0 0 2mi(x + it) . 2mi(x +it)’
and 0
0 0 o
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By adding these two integration, we get desired result,
1 1 t

—27|&|t 27ri§xd - _ — '
/Re = e ) i —i) @ 1)

To avoid the sign confuse, we’ll calculate the @\t(f ) for the two cases. If € > 0, then
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Let

2mi€z
ze
&) =2
Consider the integral of f(z) over a closed semicircular contour Cr = [—R, R] UT'r with radius R in the

upper half plane. Then

e 27rz§z - '
/ 5 dz = 2miRes(f(2),it) = Qi 2Ttz — ime 2mEt
op 2212 z+ it
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On the other hand,
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which tends to 0 as R approaches oco. Thus,
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that implies, for £ > 0, .
Qt(f) —ime 27r§t

If £ <0, denote £ = —n (n > 0), then

1 T omizg, 1 °° x cos(2mnz) ./OO x sin(27nz)
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by previous contour integral. Hence, we can see Fourier transform of Conjugate Poisson kernel is

Qi(€) = —isgnge el

4. Exercise 4.1.11 (a) in Grafakos (characterization of the Hilbert transform via invariances) Prove that if
T is a bounded operator on L?(R) that commutes with translations and dilations and anticommutes with
the reflection f(z) — f(z) = f(—xz), then T is a constant multiple of the Hilbert transform.

[Solution] Since T commutes with translations, then T is a convolution type operator.(Grafakos, Theorem
2.5.2.) Thus, there exist unique tempered distribution v such that

T(f)=fx*v.

After taken Fourier transform, we can get

~

(TF)(€) = u©)f(€),



where u(§) = v(&) . Since T' commutes with dilations, for a > 0, we have that
T(0af(x)) = 6a(T f ().
However, T' anticommutes with reflection, we have

T((Saf(‘r)) = sgna 5a(Tf(‘T)) >

~

for all values of a. Let g(§) = f(§), and observe dilation of u(§)g(¢) with Time-Frequency Dictionary.

e/ )g(€/a) = 3a(u(€)9(6)) = 6u(T3)(©) = - (5 T9)(€) = - (s8maTh,1 6) )

sgna sgna sgna

= U (75,76)(6) = Eu(©) (5219)(©) = Zru(©)asug(€) = semau(6) g(c/a).

This gives us, for a # 0,
u(§/a) = sgnau(g).
Thus, u(£) must be a constant multiple of sgn{, and if we denote this constant with C' then

Tf(x) = (—iDsgnéf(€))" (x) = D( —isgné f(€)) " (¢) = DHf(z),

where D = (% is a constant.



[Remark.] In the class, we have a little problem to prove the weak type (1,1) of Hilbert transform. The
question was for L? function, two definitions of Hilbert transform are coincide. Actually we’ve solved in the
class. However, it is still interesting question for more general function which is in L? . First, we may check
this for characteristic function with

Hf(x) = (—isgné F(€))" (x).

We already found one in the problem 1. Now, we’ll use the followings to see the other. For any number

c,d>0,
d e~ TY [T d | |
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c Y c |d|

=0
By Fubini’s theorem,
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We will use the last equality for following calculation.
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=2 \ %% 2ri(z — b)] 2mi(b — )| z b

We may show, for any f € L2, that Hf(z) converge to Hf(z) = (—z’sgn{f(f))v in L?—sense, as € — 0.
This give us strong type of (2,2). Since the step functions are dense in L(R), for f € L?, there is ¢; and
Aj = [aj,bj] for j = 1,2, ..ey SO that

2—>O as n — 00.

|73 i)

j=1

Thus, for given €’ > 0, we can choose N such that

Hf - f:ch[aj,bj](')’
j=1

Also, we have seen, from the previous observation(problem 1), lim,_o H “X[a,p) and Hx|qp are coincide. By
linearity of H¢ and H, we can have
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Then we can have

N N
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Then, we can finished the proof of weak type (1,1) of H as we did in the class. Since the step functions are
also dense in L', for f € L', there is c;j and A; = [aj,b;] for j = 1,2,... and we can choose some positive

integer N so that
N
Hf - ZCjX[aj,bj](')’ L€
j=1

for any given €’. Then, we claim that, for all 6 > 0,

{w € Rs [lim Hf(2) = Hf(2)] > 5}| = 0.
Choose N so that ||f — Z] 1€iX[ay,b,) 22 < d€’/4, then we have

{o e Rs [1im Hf(2) — Hf(2)] > 5}

N N
~|{w € R [ lim Hf(2) — lim H° Z (a0, () + H Y 5o, 1,)(@) = Hf(2)] > 8}
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Last inequality due to the weak type (1,1) of Hilbert transform. Therefore we can conclude, for any f €
LP(R),p=1,2
1 [y : =
i [y = isen ) @)
r—y|>€

e—0 T xr—vy
almost everywhere. Then, by duality argument and interpolation, we can conclude that

1),

lz—y[>e T — Y

y = (—isgné f(€))V(z) ae. z€R,

lim —
e—0 7T

for given f € [P, 1 <p< o0,

10



