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1 Finite Dimensional Discrete Hilbert Transform

1.1 Definition on the Spatial Domain

For N a finite integer number, consider the finite dimensional Discrete Hilbert Transform
(DHT) defined in terms of the following matrix HN :

HN := (hij) , for i, j ∈ I (1)

where hij = (i−j)−1 when i 6= j and 0 otherwise, and I := {−N,−N +1, . . . , 0, . . . , N}.
The matrix HN can be written in terms of the column vectors hi, i ∈ I and interms of
HN−1 as follows:
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where T stands for transposition, v = [1 1
2

. . . 1
2N−1

]T and v((2N−1)) stands for a
vector whose components are the same as v but shifted 2N − 1 positions. Note the
following properties of H: i) HN = −HT

N , i.e., the matrix is skew-symmetric; ii)
(HN)2 = −HNHT

N = −HT
NHN = (HT

N)2; and iii) the value h∗ = maxi∈I ||hi||1, is
attained at i = 0 and it is equal to h∗ = 2

∑N
i=1 i−1.

Let us recall now the definition of the p-norms for matrices, which are induced from
the p-norms of vectors: ||A||p := sup||v||p=1 ||Av||p. From Linear Algebra, and from
Functional Analysis also, we know that the following relationship holds: ||Av||p ≤
||A||p||v||p, for p ≥ 1, A a matrix in CN×N , and v a vector in CN and appropriate
vector and matrix norms. Let us introduce now the Harmonic numbers, defined as:

Hk :=
k∑

i=1

1

i
= γ + ln k +

1

2k
− 1

12k2
+O(k−4) , (2)

where γ := limk→∞(Hk − ln k) ≈ 0.5772 . . . is the so-called Euler-Mascheroni constant.
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Fig. 1: Numerical evaluation of the `1-norm and the `2-norm of HN .

Motivation: A numerical evaluation of the `1-norm and the `2-norm of HN gives
the picture shown in Fig. 1. Question: Is it true that the `1-norm grows logarithmically
as the dimension of the matrix, N , goes to infinity? In addition, is it true that the
`2-norm is uniformly bounded for all the dimensions of the matrix?
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Case 1: The `1-norm of HN . For z = [z−N z−N+1 . . . zN ]T ∈ C2N+1, we would
like to prove that ||HNz||1 ≤ ||HN ||1||z||1, where ||HN ||1 grows logarithmically as N
goes to infinity. Using the definition we have:

||HN ||1 = sup
||z||1=1

||Hz||1 = sup
||z||1=1

N∑
i=−N

∣∣∣ N∑
j=−N

j 6=i

zj

i− j

∣∣∣ ≤ sup
||z||1=1

N∑
j=−N

|zj|
N∑

i=−N
i6=j

1

|i− j|

≤ sup
||z||1=1

N∑
j=−N

|zj| max
−N≤j≤N

N∑
i=−N
i6=j

1

|i− j|
= max

−N≤j≤N
||hj||1 sup

||x=1||1

N∑
j=−N

|zj| = 2HN

∴ ||HN ||1 ≤ 2γ + 2 ln N +
2

N
+O(N−2) . (3)

Taking the limit as N goes to infinity of the last expression we obtain the desired result.
Case 2: The `2-norm of HN . Our goal is to prove that ||HNz||2 ≤ ||HN ||2||z||2,

where ||HN ||2 is uniformly bounded by a constant for all N . Inspired1 by the idea shown
in the proof of the Hilbert’s inequality, [1], we mimic here such a proof making a small
but necessary change in order to achieve our goal.

Consider the positive integers M > N and consider also the following matrices and
vectors:

HM =

 M1 M2 M3

M4 HN M5

M6 M7 M8

 and zN
M =

 0
z
0

 ,

where the Mi’s are the appropriate matrices to construct HM from HN , 0 is the zero
column vector of dimension M , and z is a column vector of dimension N . Note that:
||z||2 = ||zN

M ||2.
The square of the `2-norm of HN can be bounded in the following way:

||HN ||22 = sup
||z||2=1

||HNz||22 ≤ sup
||zN

M ||2=1

||HMzN
M ||22 (4)

≤ sup
||zN

M ||2=1

M∑
i=−M

( M∑
j=−M

j 6=i

zN
M,j

i− j

)2

= sup
||zN

M ||2=1

M∑
i=−M

( N∑
j=−N

j 6=i

zj

i− j

)2

(5)

1Actually, the idea of mimic Grafakos’ proof was an inspiration of Prof. Pereyra. Thanks a lot!
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||HN ||22 ≤ sup
||zN

M ||2=1

M∑
i=−M

N∑
j=−N

j 6=i

N∑
k=−N

k 6=i

zjzk

(i− j)(i− k)
(6)

≤ sup
||zN

M ||2=1

N∑
j=−N
(j=k)

z2
j

M∑
i=−M

i6=j

1

(i− j)2
+

N∑
j=−N

N∑
k=−N
k 6=j

zjzk

M∑
i=−M
i6=j,i 6=k

1

(i− j)(i− k)
. (7)

Now, we follow Grafakos’ trick presented in [1]. One can show that for k 6= j:

M∑
i=−M
i6=j,i 6=k

1

(i− j)(i− k)
=

2

(j − k)2
+

1

(j − k)

( M∑
i=−M

i6=j

1

i− j
−

M∑
i=−M

i6=k

1

i− k

)
. (8)

Plugging the last result in (7), we have:

||HN ||22 ≤ sup
||zN

M ||2=1

 N∑
j=−N
(j=k)

z2
j

M∑
i=−M

i6=j

1

(i− j)2
+

N∑
k=−N

N∑
j=−N
j 6=k

2zjzk

(j − k)2

+
N∑

j=−N

N∑
k=−N
k 6=j

zjzk

(j − k)

( M∑
i=−M

i6=j

1

i− j
−

M∑
i=−M

i6=k

1

i− k

) (9)

≤ sup
||zN

M ||2=1

 N∑
j=−N
(j=k)

z2
j

M∑
i=−M

i6=j

1

(i− j)2
+

N∑
j=−N

N∑
k=−N
j 6=k

z2
j

(j − k)2
+

N∑
k=−N

N∑
j=−N
j 6=k

z2
k

(j − k)2

+
N∑

j=−N

N∑
k=−N
k 6=j

zjzk

(j − k)

( M∑
i=−M

i6=j

1

i− j
−

M∑
i=−M

i6=k

1

i− k

) (10)

where the last inequality holds from 2zjzk ≤ z2
j + z2

k.
Recall the following convergent series:

∑∞
i=1 i−2 = π2/6. If we now take the limit as
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M goes to infinity we have:

||HN ||22 ≤ sup
||zN

M ||2=1

lim
M→∞

(
N∑

j=−N

z2
j

M∑
i=−M

i6=j

1

(i− j)2
+

N∑
j=−N

N∑
k=−N
j 6=k

z2
j

(j − k)2

+
N∑

j=−N

N∑
k=−N
k 6=j

z2
k

(j − k)2
+

N∑
j=−N

N∑
k=−N
k 6=j

zjzk

(j − k)

( M∑
i=−M

i6=j

1

i− j
−

M∑
i=−M

i6=k

1

i− k

))

≤ sup
||zN

M ||2=1

(
π2

3

N∑
j=−N
(j=k)

z2
j +

N∑
j=−N

z2
j

N∑
k=−N
k 6=j

1

(j − k)2
+

N∑
k=−N

z2
k

N∑
j=−N
j 6=k

1

(j − k)2

)
,

where the last inequality holds because for a fixed j and k and M large enough the
summations

∑M
i=−M, i6=j(i − j)−1 and

∑M
i=−M, i6=k(i − k)−1 contain a large number of

terms that overlap, so in the limit we can conclude that the both harmonic series cancel
out. We can bound the summations in the last inequality one more time to obtain:

||HN ||22 ≤ sup
||zN

M ||2=1

(
π2

3

N∑
j=−N

z2
j +

π2

3

N∑
j=−N

z2
j +

π2

3

N∑
k=−N

z2
k

)
= π2||z||22 (11)

∴ ||HN ||22 ≤ π2 . (12)

Consequently, we can conclude that ||HN ||2 ≤ π for all N . So, from the results on the
`1- and `2-norms we can finally conclude that: The finite dimensional DHT defined in
(1) is uniformly bounded in the dimension in the `2-norm but not in the `1-norm.

Bonus theorem: Hilbert’s inequality. Given a real and square summable sequence
ak, the following inequality holds:√√√√∑

j∈Z

(∑
k∈Z
k 6=j

ak

j − k

)2

≤ π

√∑
j∈Z

a2
j . (13)

Moreover, the constant π is a sharp constant.

Proof. For an infinite square summable sequence, one can start considering both a
sequence with finite support and an infinite matrix. Such a proof is essentially the
same as the one shown here, but doesn’t require the matrix vector definitions. So,
we can say that the case of a square summable sequence with finite support is proved.
Then, a limiting argument on ak proves the theorem for an infinite square summable real
sequence. For details and for the proof on the sharpness of π, please see reference [1].
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1.2 Definition on the Fourier Domain

In order to define the finite dimensional DHT we first need to define the finite dimen-
sional Discrete Fourier Transform (DFT). Consider a sequence of complex numbers zk,
k ∈ I = {0, 1, . . . , N − 1} then we define the sequence Zn, n ∈ I, called the DFT of zk,
as:

Zn :=
N−1∑
k=0

zk exp
(
− i

2π

N
kn
)

, n ∈ I. (14)

Similarly, we define the inverse formula (i.e. the discrete inverse Fourier transform) as:

zk :=
1

N

N−1∑
n=0

Zn exp
(
i
2π

N
kn
)

, k ∈ I. (15)

Recall that the Fourier multiplier corresponding to the Hilbert transform is: (Hf)∧(ξ) =
−isgn(ξ). Now, the discrete version of the Fourier multiplier associated to the Hilbert
transform can be defined as:

H∗
n :=


0 , n ∈ I1

−i , n ∈ I2

i , n ∈ I3

, (16)

where for N even (consequently, N odd) I1 = {0, N/2}, I2 = {1, 2, . . . , N/2 − 1}, and
I3 = {N/2 + 1, . . . , N − 1} (consequently, I1 = {0}, I2 = {1, 2, . . . , (N − 1)/2− 1}, and
I3 = {(N + 1)/2 + 1, . . . , N − 1}). Note that the definition takes care of the symmetry
of the multiplier on the Fourier side. Consider the case when N is even and plug (16)
in (15), hence we have:

h∗k =
1

N

N−1∑
n=0

H∗
n exp

(
i
2π

N
kn
)

, k ∈ {0, 1, . . . , N − 1} (17)

=
1

N

N/2−1∑
n=1

(−i) exp
(
i
2π

N
kn
)

+
N−1∑

n=N/2+1

i exp
(
i
2π

N
kn
)=

2

N

N/2−1∑
n=1

sin
(2π

N
kn
)

. (18)

Similarly, for N odd we obtain: h∗k =
2

N

(N−1)/2∑
n=1

sin
(2π

N
kn
)

, k ∈ I. So, we can define

the sequence corresponding to the finite dimensional DHT on the spatial domain as:

h∗k =
2

N

L∑
n=1

sin
(2π

N
kn
)

, k ∈ {0, 1, . . . , N − 1} , (19)
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where L = N/2− 1 for N even and L = (N − 1)/2 for N odd.
Given a sequence of real numbers xn, its Hilbert transformed version is given by the

discrete convolution H∗(xn) = h∗n ∗ xn, which in matrix form can be represented as:
H∗(x) = H∗

Nx where x = [x0 x1 . . . xN−1]
T and

H∗
N = (hij) ≡

(
2

N

L∑
n=1

sin
(2π

N
(j − i)n

))
, for i, j ∈ {1, 2, . . . , N} , (20)

and L = N/2− 1 for N even and L = (N − 1)/2 for N odd.
Remark 1. There exists alternative closed forms for (20). When N is even:

h∗k =

{
2
N

sin2
(

πk
2

)
cot
(

πk
N

)
, k ∈ {1, 2, . . . , N − 1}

0 , k = 0
(21)

and for N odd:

h∗k =

{
1
N

cot
(

πk
N

)
− (−1)k

N
sin−1

(
πk
N

)
, k ∈ {1, 2, . . . , N − 1}

0 , k = 0
(22)

Remark 2. Note that by exploiting the L2 isometry, we have that:

||H∗
N ||22 = sup

||x||2=1

||H∗
Nx||22 = sup

||x||2=1

||Ĥ∗
Nx||22 (23)

= sup
||x||2=1

N∑
i=−N

|Ĥ∗
N |

2|x̂|2 = sup
||x||2=1

N∑
i=−N

|x̂|2 = 1 . (24)

What is the DFT of discrete DHT defined on the spatial domain?. If we
consider the definition on the spatial domain for hk then we have that: hk = (k−N)−1

for k ∈ {0, 1, . . . , N − 1} \ {N} and hN = 0. Then, if we compute the DFT of such a
sequence, HN = 0, while for n ∈ {0, 1, . . . , N − 1} \ {N}:

Hn =
2N∑
k=0
k 6=N

1

k −N
exp

(
− i

2πkn

2N + 1

)
= −2i exp

(
i

2πnN

2N + 1

)N−1∑
j=1

1

j
sin
( 2πnj

2N + 1

)
. (25)

Note that the DFT version of hk does not correspond to a discrete version of the mul-
tiplier (Hf)∧(ξ) = −isgn(ξ).
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Fig. 2: Numerical evaluation of the `1-norm and the `2-norm of H∗
N .

1.3 Applications

1.3.1 Analog/Digital Communications

Modulation Theory 101. Communications Theory deals with the problem of trans-
mitting information from a sender to a receiver. Due to several technical reasons, an
effective way of transmitting the information is to use a known waveform and embed such
information in one of the parameters of the signal. Modulation is one way to introduce
the information into the known signal. For example, if we introduce the information in
the amplitude of a sinosoidal waveform, we talk about Amplitude Modulation (AM). In
AM the information signal, say s(t), is assumed to be band-limitted, i.e., the frequency
components of s(t) are compactly supported up to a certain known frequency fmax.
The band-limitted signal is modulated using a sinusoidal waveform whose frequency is
known to be much larger than 2fmax, the bandwidth of s(t). This modulating waveform
is called the carrier signal and is denoted as sc(t). The frequency of sc(t) is termed
as the carrier frequency and is denoted as fc. The modulated signal is obtained by
multiplying in the time-domain the information signal to the carrier signal, in symbols:
sm = s(t)sc(t) = s(t) cos(2πfct). Note that the information signal turns out to be the
(time-varying) amplitude of the carrier signal. One disadvantage of the AM modulation
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is that, when real valued signals are modulated, some bandwidth is wasted by having
two identical side-bands on either side of the carrier frequency.

The so-called Single-Side Band (SSB) modulation solves the aforementioned problem.
When a real signal is considered for transmission, one can exploit the symmetry of
the Fourier transform of the real signal. In simple terms, given that we don’t need
a duplicated copy of the frequency information of s(t) then we can eliminate such a
redundant information! This elimination can be easily performed if one defines what
is called the “analytic signal”. The analytic signals associated to the information and
the modulating signal are: sa(t) := s(t) + iŝ(t) and sc,a(t) := sc(t) + iŝc(t), where ŝ(t)
and ŝc(t) are the Hilbert transforms of s(t) and sc(t), respectively. Therefore, if we
modulate the analytic version of the information signal using the analytic version of the
modulating signal we have:

sm,a(t) = sa(t)sc,a(t) =
(
s(t) + iŝ(t)

)(
sc(t) + iŝc(t)

)
(26)

=
(
s(t) + iŝ(t)

)(
cos(2πfct) + i sin(2πfct)

)
(27)

= s(t) cos(2πfct)− ŝ(t) sin(2πfct) + i
(
s(t) sin(2πfct) + ŝ(t) cos(2πfct)

)
. (28)

Finally, in applications the signal transmitted from sender to receiver in the case of SSB
is the real part of the last equation: sSSB

m = s(t) cos(2πfct)− ŝ(t) sin(2πfct).
In Fig. 3 an example of SSB-AM is presented. For comparison purposes, a tradi-

tional or Double-Side Band (DSB) modulated signal is shown. The information signal
considered is s(t) = cos(2πfmt) + 0.5 cos(4πfmt) + 0.25 cos(8πfmt) for fm = 1 [Hz] and
the carrier signal has a frequency of fc=40 [Hz].

Why this is important? Consider the case of AM radio broadcasting. If n is the
maximum number of radio stations that can be allocated to the interval of frequencies
associated to AM when DSB-AM is used, then by simply2 switching to SSB modulation
we can immediately allocated 2n radio stations.

1.3.2 Envelope Detection

Several applications result in a time-signal containing a rapidly oscillating component.
The amplitude of the oscillation varies slowly with time, and the shape of the slow time
variation is called the “envelope”. The envelope often contains important information
about the phenomenon of interest. One example of such applications is again an AM
signal, see for example Fig. 3(a). By using the DHT, the rapid oscillations can be

2An additional technical detail has to be considered under this scenario: The AM radio receiver
have to be aware that SSB is being used instead of DSB.
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removed from the signal to produce a direct representation of the envelope. In terms of
AM, the DHT can be used also to demodulate the transmitted signal.

As an example consider signal x(t) = A exp(−λt) cos(2πfot), which corresponds to
the response of an exponentially dumped oscillating system, with decaying rate λ and
oscillating frequency fo. Assume that A exp(−λt) is approximately constant with respect
to cos(2πfot). If we form the analytic signal:

xa(t) = x(t) + ix̂(t) = A exp(−λt) cos(2πfot) + iA exp(−λt) sin(2πfot) (29)

∴ |xa(t)| =
√

A2 exp(−2λt)
(
cos2(2πfot) + sin2(2πfot)

)
= A exp(−λt) , (30)

which is the desired result. In Fig. 4 a numerical example is shown where λ = 0.5,
A = 10, and fo=4 [Hz].

1.3.3 Edge Detection in Image Processing

The DHT is used in image processing as a spatial filter because it can selectively empha-
size features of an input object. In particular, the DHT produces an image that is edge
enhanced with respect to the input image. However, given that the operation performed
is one dimensional, then the DHT enhances edges along only a single direction. Hence,
one has to apply the transform to the transpose image to obtain the edge enhancement
in the other direction. Such a situation is shown in Fig. 5. Moreover, one should rotate
the given image and apply the DHT in all the directions in order to obtain an image
properly edge enhanced.

Why this is important? Edge detection is a commonly used approach for de-
tecting discontinuities in an image. Moreover, edge detection is the first step in order
to produce the segmentation of an image. Image segmentation is the process of parti-
tioning an image into multiple regions of interest. For example, segmented images in
medical imaging help the M.D.s to locate tumors and other pathologies, measure tissue
volumes, etc.; in remote sensing applications a user can locate objects (called features
or signatures) in the images such as roads, forests, etc.

2 Problem 2

Given f ∈ Lp(Rd), show that lim|h|→∞ ||f + τhf ||p = 21/p||f ||p.

Proof. We are going to use the fact that compactly supported functions (Lp
c) are dense

in Lp, i.e. ∀f ∈ Lp(Rd) ∃ {fn}∞n=1, fn ∈ Lp
c(Rd), such that ‖f − fn‖Lp(Rd) → 0 as n goes

to infinity.
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Note that since τh is a linear operator and

‖τhf − τhfn‖Lp( R d) = ‖τh(f − fn)‖Lp( R d) = ‖f − fn‖Lp( R d) ,

sequence {τhfn}∞n=1 converges to τhf in Lp( R d). Then we can write ‖f + τhf‖p as:

‖f + τhf‖p = ‖f − fn + fn + τhfn + τhf − τhfn‖p (by triangle inequality) (31)

≤ ‖f − fn‖p + ‖fn + τhfn‖p + ‖τhf − τhfn‖p (32)

= 2 ‖f − fn‖p + ‖fn + τhfn‖p . (33)

Now note that since fn’s are compactly supported, for |h| large enough fn and τhfn have
disjoint support, so

‖fn + τhfn‖p =

(∫
R d

(fn + τhfn)p dx

)1/p

=

(∫
supp fn

fp
ndx +

∫
supp τhfn

(τhfn)pdx

)1/p

=

(
2

∫
supp fn

fp
ndx

)1/p

= 21/p ‖fn‖p .

Hence, for all n and for |h| large enough

‖f + τhf‖p ≤ 21/p ‖fn‖p + 2 ‖f − fn‖p .

In particular,
lim
|h|→∞

‖f + τhf‖p ≤ 21/p ‖fn‖p + 2 ‖f − fn‖p .

Letting n →∞ and using the fact that fn → f in Lp we have:

lim
|h|→∞

‖f + τhf‖p ≤ 21/p ‖f‖p .

Switching f and fn we get the reverse inequality:

21/p ‖f‖p = lim
n→∞

lim
|h|→∞

‖fn + τhfn‖p

≤ lim
n→∞

lim
|h|→∞

(
‖f − fn‖p + ‖f + τhf‖p + ‖f − τhf‖p

)
.

Since expression under the limit is positive we can interchange limits, obtaining

lim
|h|→∞

‖f + τhf‖p ≥ 21/p ‖f‖p .

Which completes the proof of the exercise.
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Fig. 3: (a) The information signal s(t) = cos(2πfmt) + 0.5 cos(4πfmt) + 0.25 cos(8πfmt) for fm = 1
[Hz] and fc=40 [Hz]. Note that for DSB the information signal is the envelope of the modulated signal.
(b) The power spectrum of the modulated signal when SSB and DSB modulation schemes are used.
The four lower plots correspond to zoom in of the images on top.
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Fig. 4: Envelope detection using the DHT.

Fig. 5: Edge detection in image processing using the DHT. The left image is the original image, the
center image is the edge enhanced image along the vertical direction and the right image is the edge
enhanced image along the horizontal direction.
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