Jaime Hernandez Jr.
(Taylor Dupuy, Arnab Saha)
Harmonic Analysis
SEMESTER PROJECT
May 8, 2008

1 Introduction

This report will address the boundedness of the discrete Hilbert transform in $\ell^{2}(\mathbb{Z})$. The argument makes use of Fourier-type arguments, in contrast to the article by Grafakos, which is available on the internet ${ }^{1}$. We will make use of the inverse Fourier transform to find a function, within $L^{2}(\mathbb{T})$ where $\mathbb{T}=[-\pi, \pi]$, associated to the discrete Hilbert transform.

2 Multiplier for Discrete Hilbert Transform

During the lectures, we were introduced to the Hilbert Transform on the Fourier-side. This definition was one of our first examples of a Fourier multiplier and, if you recall, it was given, at least for functions in the Schwartz class, as:

$$
\widehat{H \phi}(\xi)=-i \operatorname{sgn}(\xi) \widehat{\phi}(\xi)
$$

For the discrete Hilbert transform, we will show that the analogous multiplier, $h(\xi)$ which is defined on \mathbb{T}, is given by:

$$
h(\xi)=i(\pi \operatorname{sgn}(\xi)-\xi)
$$

3 Explanation

We begin by finding the Fourier coefficients of h; we note here that $h \in L^{1}(\mathbb{T})$ and, in fact, $\|h\|_{1}=\pi^{2}$. As it will be required later, we also mention that $h \in L^{2}(\mathbb{T})$ and $h \in L^{\infty}(\mathbb{T})$ with associated norms of $\|h\|_{2}^{2}=\frac{2 \pi^{3}}{3}$ and $\|h\|_{\infty}=$ π, respectively.

[^0]By direct computation, we see that $\widehat{h}(0)=0$, since h is odd. For $n \neq 0 \in$ \mathbb{Z}, we obtain that:

$$
\begin{array}{rlc}
\widehat{h}(n) & = & \frac{1}{2 \pi} \int_{-\pi}^{\pi} h(\xi) e^{-i n \xi} d \xi \\
& = & -\frac{1}{2 \pi i}\left\{-\int_{-\pi}^{0}(\pi+\xi) e^{-i n \xi} d \xi+\int_{0}^{\pi}(\pi-\xi) e^{-i n \xi} d \xi\right\} \\
& = & -\frac{1}{2 \pi i}\left\{-\int_{0}^{\pi}(\pi-\xi) e^{i n \xi} d \xi+\int_{0}^{\pi}(\pi-\xi) e^{-i n \xi} d \xi\right\} \\
& = & -\frac{1}{2 \pi i}\left\{-\pi \int_{0}^{\pi}\left(e^{i n \xi}-e^{-i n \xi}\right) d \xi+\int_{0}^{\pi} \xi\left(e^{i n \xi}-e^{-i n \xi}\right) d \xi\right\} \\
& = & \int_{0}^{\pi} \sin (n \xi) d \xi-\frac{1}{\pi} \int_{0}^{\pi} \xi \sin (n \xi) d \xi \\
& = & \frac{1}{n .}
\end{array}
$$

The significance of this function is easily seen by examining the formula for the discrete Hilbert transform.

By Parseval, since $x \in \ell^{2}(\mathbb{Z})$, we can associate with it a function $f \in$ $L^{2}(\mathbb{T})$ such that $\widehat{f}(j)=x_{j}$ for all $j \in \mathbb{Z}$. By definition, for this sequence and for $p \in \mathbb{Z}$:

$$
\begin{array}{rlc}
H x(p) & = & \sum_{\substack{j=-\infty \\
j \neq p}}^{\infty} \frac{x_{j}}{p-j} \\
& = & \sum_{j=-\infty}^{\infty} \widehat{f}(j) \widehat{h}(p-j) \\
& = & (\widehat{f} \star \widehat{h})(p),
\end{array}
$$

where \star denotes the discrete convolution of two sequences on \mathbb{Z}. We will be able to show that the discrete Hilbert transform is bounded by considering it as a Fourier coefficient. That is, if we can identify an $H \in L^{2}(\mathbb{T})$ such that $\widehat{H}(p)=H x(p)$ for all $p \in \mathbb{Z}$, then we can use the identity of Parseval and obtain that $H x \in \ell^{2}$.

Towards this end, we require the following fact concerning Fourier coefficients.

Theorem 3.1. If $f \in L^{2}(\mathbb{T})$ and $g \in L^{2}(\mathbb{T})$, with $f g \in L^{2}(\mathbb{T})$, then $\widehat{f g}(n)=$ $\sum_{j=-\infty}^{\infty} \widehat{f}(j) \widehat{g}(n-j)=(\widehat{f} \star \widehat{g})(n)$.

Implicit in this theorem is the fact that, on the torus, $f \in L^{2}(\mathbb{Z}) \Rightarrow f \in$ $L^{1}(\mathbb{Z})$; with this, each of the associated sequences of Fourier coefficients is $\ell^{2}(\mathbb{Z})$ summable. Since this result is well-known, we only provide a formal sketch of the proof. Assuming that $f(\xi)=\sum_{j=-\infty}^{\infty} \widehat{f}(j) e^{i j \xi}$ and $g(\xi)=$

$$
\begin{aligned}
\sum_{k=-\infty}^{\infty} \widehat{g}(k) e^{i k \xi} & \\
\widehat{f g}(n) & = \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{j=-\infty}^{\infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(j) e^{i j \xi}\right)\left(\sum_{k=-\infty}^{\infty} \widehat{g}(k) g(\xi) e^{-i n \xi} d \xi\right. \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \widehat{f}(j) \widehat{g}(k) e^{i j \xi} e^{i k \xi} e^{-i n \xi} d \xi \\
& =\quad \frac{1}{2 \pi} \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \widehat{f}(j) \widehat{g}(k) \int_{-\pi}^{\pi} e^{i(j+k-n) \xi} d \xi \\
& = \\
& \quad \sum_{j=-\infty}^{\infty} \widehat{f}(j) \widehat{g}(n-j) \\
& (\widehat{f} \star \widehat{g})(n)
\end{aligned}
$$

by the orthogonality of the exponentials on \mathbb{T}.
Using this fact, we immediately obtain that $H(\xi)=f(\xi) h(\xi)$, where f and h have the same definitions as before. The theorem holds as $f \in L^{2}(\mathbb{T})$ (by Parseval) and $h \in L^{\infty}(\mathbb{T})$ (by direct computation) imply that $H=f h \in$ $L^{2}(\mathbb{T})$. We finish by showing that the discrete Hilbert transform is bounded in $\ell^{2}(\mathbb{Z})$. We have, for $x \in \ell^{2}(\mathbb{Z})$:

$$
\begin{aligned}
\|H x\|_{\ell^{2}}^{2} & = & \sum_{p=-\infty}^{\infty}|H x(p)|^{2} \\
& = & \|H\|_{L^{2}}^{2} \\
& = & \|f h\|_{L^{2}}^{2} \\
& \leq & \|h\|_{L^{\infty}}^{2}\|f\|_{L^{2}}^{2} \\
& = & \pi^{2}\|f\|_{L^{2}}^{2} \\
& = & \pi^{2}\|x\|_{\ell^{2}}^{2},
\end{aligned}
$$

which proves the boundedness. We point out that, in the second and sixth lines, we have used Parseval's identity; in the fourth, the result holds by a direct calculation.

[^0]: ${ }^{1}$ http://www.math.missouri.edu/~loukas/preprints/monthly.pdf

