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1 Introduction

This report will address the boundedness of the discrete Hilbert transform
in ¢*(Z). The argument makes use of Fourier-type arguments, in contrast to
the article by Grafakos, which is available on the internet . We will make
use of the inverse Fourier transform to find a function, within L?(T) where
T = [—7, 7], associated to the discrete Hilbert transform.

2 Multiplier for Discrete Hilbert Transform

During the lectures, we were introduced to the Hilbert Transform on the
Fourier-side. This definition was one of our first examples of a Fourier mul-
tiplier and, if you recall, it was given, at least for functions in the Schwartz
class, as:

Ho(€) = —isgn(€)o(£).

For the discrete Hilbert transform, we will show that the analogous multiplier,
h(§) which is defined on T, is given by:

h(§) = i(msgn(§) — &)

3 Explanation

We begin by finding the Fourier coefficients of h; we note here that h € L'(T)
and, in fact, ||h||; = 72. As it will be required later, we also mention that
h € L*(T) and h € L>=(T) with associated norms of ||h]|3 = % and [|h| =
7, respectively.

Thttp: //www.math.missouri.edu/~loukas/preprints /monthly.pdf



By direct computation, we see that /H(O) =0, since h is odd. Forn #0 €
Z, we obtain that:

h(n) = LT h(€)emmede
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The significance of this function is easily seen by examining the formula for
the discrete Hilbert transform.

By Parseval, since z € (*(Z), we can associate with it a function f €
L3(T) such that f(]) = z; for all j € Z. By definition, for this sequence and
for p € Z:

Hz(p) = ZJ—/ZZOO p_j

2= —oe SU)P(P = )
(F*h)(p),
where x denotes the discrete convolution of two sequences on Z. We will be
able to show that the discrete Hilbert transform is bounded by considering
it as a Fourier coefficient. That is, if we can identify an H € L?(T) such that
H(p) = Hx(p) for all p € Z, then we can use the identity of Parseval and
obtain that Hx € (2.

Towards this end, we require the following fact concerning Fourier coeffi-
cients.

Theorem 3.1. If f € L*(T) and g € L¥(T), with fg € L*(T), then fg(n) =
S )G —5) = (Fx9)(n).

Implicit in this theorem is the fact that, on the torus, f € L*(Z) = f €
L'(Z); with this, each of the associated sequences of Fourier coefficients is
(*(Z) summable. Since this result is well-known, we only provide a formal

sketch of the proof. Assuming that f(¢) = S°°°_ _ f(j)e¥ and g(¢) =

j=—o0
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by the orthogonality of the exponentials on T.

Using this fact, we immediately obtain that H(§) = f(£)h(§), where f
and h have the same definitions as before. The theorem holds as f € L?(T)
(by Parseval) and h € L*°(T) (by direct computation) imply that H = fh €
L*(T). We finish by showing that the discrete Hilbert transform is bounded
in (*(Z). We have, for x € (*(Z):

[Hz|7 = Zp__oo\Hx( )
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Hfh||i2
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which proves the boundedness. We point out that, in the second and sixth
lines, we have used Parseval’s identity; in the fourth, the result holds by a
direct calculation.



