MATH 565: Introduction to Harmonic Analysis - Spring 2008 Homework \# 2

Choose at least 2 out of the following four problems.

1. Show that,

$$
H \chi_{[a, b]}(x):=\lim _{\epsilon \rightarrow 0} H^{\epsilon}\left(\chi_{[a, b]}\right)(x)=\frac{1}{\pi} \log \frac{|x-a|}{|x-b|} .
$$

and that

$$
H^{*} \chi_{[a, b]}(x):=\sup _{\epsilon \rightarrow 0}\left|H^{\epsilon}\left(\chi_{[a, b]}\right)(x)\right|=\frac{1}{\pi}\left|\log \frac{|x-a|}{|x-b|}\right| .
$$

2. Show that

$$
\left|\left\{x \in \mathbb{R}:\left|H \chi_{[a, b]}(x)\right|>\lambda\right\}\right|=\frac{4|b-a|}{e^{\pi \lambda}-e^{-\pi \lambda}}
$$

More generally show that for any measurable subset E of \mathbb{R} of finite measure $|E|$,

$$
\left|\left\{x \in \mathbb{R}:\left|H \chi_{E}(x)\right|>\lambda\right\}\right|=\frac{4|E|}{e^{\pi \lambda}-e^{-\pi \lambda}} \leq \frac{2|E|}{\pi \lambda}
$$

Hint: See exercise 4.1.4. in Grafakos book.
3. Let $P_{t}(x)=\frac{1}{\pi} \frac{t}{x^{2}+t^{2}}$ be the Poisson kernel, and $Q_{t}(x)=\frac{1}{\pi} \frac{x}{x^{2}+t^{2}}$ be the Conjugate Poisson kernel dfined for all $t>0$. Check that $\left\{P_{t}\right\}_{t>0}$ is an approximation of the identity as $t \rightarrow 0$, but $\left\{Q_{t}\right\}_{t>0}$ is not.
Verify that

$$
\widehat{P}_{t}(\xi)=e^{-2 \pi t|\xi|}, \quad \widehat{Q_{t}}(\xi)=-i \operatorname{sgn} \xi e^{-2 \pi t|\xi|}
$$

4. Exercise 4.1.11 (a) in Grafakos (characterization of the Hilbert transform via invariances)
