Practice for Second Exam - MATH 402-Spring 2019

Instructor: C. Pereyra

1. Exercise 3.2.1(b) (connection between uniform continuity and uniform convergence).
2. Exercises 3.3.6 and 3.3.7 (Uniform convergence preserves boundedness but pointwise convergence does not necessarily preserve boundedness).
3. Exercise $3.4,3$ (the metric space of continuous functions with the uniform distance is complete).
4. Recall that a function $f:[a, b] \rightarrow \mathbb{R}$ is piecewise constant or is a step function if there is a finite partition \mathcal{P} of subintervals of the interval $I=[a, b]$ such that $f(x)=\sum_{J \in \mathcal{P}(I)} c_{J} \chi_{J}(x)$. Prove that every continuous function on $[a, b]$ is a uniform limit of piecewise constant or step functions. (Hint: remember that continuous functions on compact sets are uniformly continuous).
5. Compute the radius of convergence of the power series and expand the given function in a power series:
(a) $\sum_{n=1}^{\infty} \frac{n^{4}}{n!} x^{n}$,
(b) $\quad \sum_{n=1}^{\infty} \sqrt{n} 2^{n} x^{n}$,
(c) $f(x)=\frac{1}{1+x^{2}}$.
6. Given $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, with components $f=\left(f_{1}, \ldots, f_{m}\right)$. Show that f is differentiable at $\mathbf{a} \in \mathbb{R}^{n}$ if and only if $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at a for all $i=1, \ldots, m$. Moreover $D f(\mathbf{a})$, the matrix representation of the linear transformation $f^{\prime}(\mathbf{a})$, is the matrix whose rows are $D f_{i}(\mathbf{a})$, the matrix representation of $f_{i}^{\prime}(\mathbf{a})$ for each $i=1, \ldots, m$.
7. Show that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=|x y|$ is differentiable at $(0,0)$ but is not of class C^{1} in any neighborhood of $(0,0)$.
8. (Mean Value Theorem) Let D be an open subset of \mathbb{R}^{n}, let $f: D \rightarrow \mathbb{R}$ be differentiable on D. If D contains a line segment with end points \mathbf{a} and $\mathbf{a}+\mathbf{h}$, then there is a point $\mathbf{c}=\mathbf{a}+\xi \mathbf{h}$ with $0<\xi<1$ on the line segment such that

$$
f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})=f^{\prime}(\mathbf{c}) \cdot \mathbf{h}
$$

9. Let D be an open subset of \mathbb{R}^{n}, let $f: D \rightarrow \mathbb{R}^{n}$ be differentiable on D. Let $\mathbf{a} \in D$ and $f(\mathbf{a})=\mathbf{b}$. Suppose that g maps a neighborhood V of \mathbf{b} into \mathbb{R}^{n}, that $g(\mathbf{b})=\mathbf{a}$ and that

$$
g(f(\mathbf{x}))=\mathbf{x}
$$

for all \mathbf{x} in a neighborhood U of \mathbf{a}. If f is differentiable at \mathbf{a} and g is differentiable at \mathbf{b} then

$$
g^{\prime}(\mathbf{b}) f^{\prime}(\mathbf{a})=I_{n}
$$

Where I_{n} denotes the identity linear transformation in \mathbb{R}^{n}, that is $I(\mathbf{x})=\mathbf{x}$. This shows that $f^{\prime}(\mathbf{a})$ is an invertible linear transformation moreover $g^{\prime}(\mathbf{b})=\left[f^{\prime}(\mathbf{a})\right]^{-1}$.
10. Exercises $6.6 .1,6.6 .2,6.6 .3$, and 6.6.4 (differentiability vs contraction).
11. Show that every contraction defined on a metric space X is a continuous function.
12. Consider $y(t)=\tan t$ for $|t|<\pi / 2$ assume known basic properties.
(a) Show that $y^{\prime}=1+y^{2}$ and $y(0)=0$. Show that $\tan (t)=\int_{0}^{t}\left(1+\tan (u)^{2}\right) d u$ for $|t|<\pi / 2$.
(b) Consider the map $F(f)(t)=\int_{0}^{t}\left(1+f^{2}(u)\right) d u$, show that it takes continuous functions bounded by $M>0$ on $[-\delta, \delta]$ into continuous functions bounded by $M>0$ in $[-\delta, \delta]$ for $\delta>0$ small enough and is a strict contraction in the metric space $C([-\delta, \delta])$ with the uniform metric for sufficiently small δ.
(c) By the contraction mapping theorem F has a unique fixed point, $F(f)=f$ and by (b) that unique fixed point is $f(t)=\tan t$. The contraction mapping theorem provides an algorithm to find the fixed point. Initiate the algorithm with $f_{0}(t)=0$ and compute several iterations, what do you get?

