Chapter 11

The Riemann integral

In the previous chapter we reviewed differentiation - one of the two pil-
lars of single variable calculus. The other pillar is, of course, integration,
which is the focus of the current chapter. More precisely, we will turn
to the definite integral. the integral of a function on a fixed interval, as
opposed to the indefinite integral, otherwise known as the antiderivative.
These two are of course linked by the Fundamental theorem of calculus,
of which more will be said later.

For us, the study of the definite integral will start with an interval I
which could be open, closed, or half-open, and a function f:I—-R,and
will lead us to a number [; f; we can write this integral as || 1 f(z) dz
(of course, we could replace = by any other dummy variable), or if I has
endpoints a and b, we shall also write this integral as [ M for h f(z) dz.

To actually define this integral f| ; [ is somewhat delicate (especially
if one does not want to assume any axioms concerning geometric notions
such as area), and not all functions f are integrable. It turns out that
there are at least two ways to define this integral: the Riemann integral,
named after Georg Riemann (1826-1866), which we will do here and
which suffices for most applications, and the Lebesgue integral, named
after Henri Lebesgue (1875-1941), which supercedes the Riemann in-
tegral and works for a much larger class of functions. The Lebesgue
integral will be constructed in Chapter 19. There is also the Riemann-
Steiltjes integral [, f(z) da(z), a generalization of the Riemann integral
due to Thomas Stieltjes (1856-1894), which we will discuss in Section
11.8.

Our strategy in defining the Riemann integral is as follows. We begin
by first defining a notion of integration on a very simple class of functions
- the piecewise constant functions. These functions are quite primitive,
but their advantage is that integration is very easy for these functions,
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as is verifying all the usual properties. Then, we handle more general
functions by approximating them by piecewise constant functions.

11.1 Partitions

Before we can introduce the concept of an integral, we need to describe
how one can partition a large interval into smaller intervals. In this
chapter, all intervals will be bounded intervals (as opposed to the more
general intervals defined in Definition 9.1.1).

Definition 11.1.1. Let X be a subset of R. We say that X is connected
iff the following property is true: whenever z,y are elements in X such
that £ < y, the bounded interval [z,y] is a subset of X (i.e., every
number between z and y is also in X).

Remark 11.1.2. Later on, in Section 13.4 we will define a more general
notion of connectedness, which applies to any metric space.

Examples 11.1.3. The set [1,2] is connected, because if z < y both lie
in[1,2], then 1 <2 < y < 2, and so every element between = and y also
lies in [1,2]. A similar argument shows that the set (1. 2) is connected.
However, the set [1,2] U [3,4] is not connected (why?). The real line is
connected (why?). The empty set, as well as singleton sets such as {3},
are connected, but for rather trivial reasons (these sets do not contain
two elements x,y for which z < y).

Lemma 11.1.4. Let X be a subset of the real line. Then the following
two statements are logically equivalent:

(a) X is bounded and connected.
(b) X is a bounded interval.

Proof. See Exercise 11.1.1. O

Remark 11.1.5. Recall that intervals are allowed to be singleton points
(e.g., the degenerate interval [2,2] = {2}), or even the empty set.

Corollary 11.1.6. If I and J are bounded intervals, then the intersec-
tion INJ is also a bounded interval.

Proof. See Exercise 11.1.2. 0
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Example 11.1.7. The intersection of the bounded intervals [2,4] and
[4,6] is {4}, which is also a bounded interval. The intersection of (2, 4)
and (4, 6) is 0.

We now give each bounded interval a length.

Definition 11.1.8 (Length of intervals). If I is a bounded interval, we
define the length of I, denoted |I] as follows. If I is one of the intervals
[a,], (a,b), [a,b), or (a,b] for some real numbers a < b, then we define
] := b~a. Otherwise, if I is a point or the empty set, we define |I| = 0.

Example 11.1.9. For instance, the length of (3, 5] is 2, as is the length
of (3,5); meanwhile, the length of {5} or the empty set is 0.

Definition 11.1.10 (Partitions). Let I be a bounded interval. A parti-
tion of I is a finite set P of bounded intervals contained in I, such that
every z in [ lies in exactly one of the bounded intervals J in P.

Remark 11.1.11. Note that a partition is a set of intervals, while each
interval is itself a set of real nurabers. Thus a partition is a set consisting
of other sets.

Examples 11.1.12. The set P = {{1},(1,3),3,5), {5}, (5,8),0} of
bounded intervals is a partition of [L,8], because all the intervals in
P lie in [1, 8], and each element of [1, 8] lies in exactly one interval in P.
Note that one could have removed the empty set from P and still obtain
a partition. However, the set {[1,4],(3,5]} is not a partition of [1,5]
because some elements of (1, 5] are included in more than one interval in
the set. The set {(1,3),(3,5)} is not a partition of (1,5) because some
elements of (1,5) are not included in any interval in the set. The set
{(0,3),[3,5)} is not a partition of (1,5) because some intervals in the
set are not contained in (1, 5).

Now we come to a basic property about length:

Theorem 11.1.13 (Length is finitely additive). Let I be a bounded in-
terval, n be a natural number, and let P be a partition of I of cardinality

n. Then
. 1= Jl
JeP

Proof. We prove this by induction on n. More precisely, we let P(n) be
the property that whenever I is a bounded interval, and whenever P is
a partition of I with cardinality n, that |I| =3 ;cp |J|.
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The base case P(0) is trivial; the only way that I can be partitioned
into an empty partition is if I is itself empty (why?), at which point the
claim is easy. The case P(1) is also very easy; the only way that I can
be partitioned into a singleton set {J} is if J = I (why?), at which point
the claim is again very easy.

Now suppose inductively that P(n) is true for some n > 1, and now
we prove P(n+1). Let I be a bounded interval, and let P be a partition
of I of cardinality n + 1.

If I is the empty set or a point, then all the intervals in P must
also be either the empty set or a point (why?), and so every interval has
length zero and the claim is trivial. Thus we will assume that I is an
interval of the form (a,b), (a,b], [a,b), or [a,b)].

Let us first suppose that b € I, i.e., I is either (a,b] or [a,b]. Since
b € I, we know that one of the intervals K in P contains b. Since K
is contained in I, it must therefore be of the form (c,b], [c,b], or {b}
for some real number ¢, with a < ¢ < b (in the latter case of K = {b},
we set ¢ := b). In particular, this means that the set ] — K is also an
interval of the form [a,¢], (a,c), (g, ¢, [a,c) when ¢ > a, or a point or
empty set when a = c. Either way, we easily see that

I = |K| + I - K]|.

On the other hand, since P forms a partition of I, we see that P — {K}
forms a partition of I — K (why?). By the induction hypothesis, we thus

have
I-Kj= >
JeP—-{K}

Combining these two identities (and using the laws of addition for finite
sets, see Proposition 7.1.11) we obtain

171=>"1J|

JeP

as desired.

Now suppose that b ¢ I, i.e., I is either (a,b) or [a,b). Then one of
the intervals K also is of the form (c, b) or [c,b) (see Exercise 11.1.3). In
particular, this means that the set I — K is also an interval of the form
la,d], (a,¢), (a,d], [a,c) when ¢ > a, or a point or empty set when @ = c.
The rest of the argument then proceeds as above. O
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There are two more things we need to do with partitions. One is to
say when one partition is finer than another, and the other is to talk
about the common refinement of two partitions.

Definition 11.1.14 (Finer and coarser partitions). Let I be a bounded
interval, and let P and P’ be two partitions of I. We say that P’ is finer
than P (or equivalently, that P is coarser than P’ ) if for every J in P’,
there exists a K in P such that J C K.

Example 11.1.15. The partition {[1,2), {2}, (2, 3),[3,4]} is finer than
{[1,2],(2,4]} (why?). Both partitions are finer than {[1,4]}, which is
the coarsest possible partition of [1,4]. Note that there is no such thing
as a “finest” partition of [1,4]. (Why? recall all partitions are assumed
to be finite.) We do not compare partitions of different intervals, for
instance if P is a partition of [1,4] and P’ is a partition of [2, 5] then we
would not say that P is coarser or finer than P’.

Definition 11.1.16 (Common refinement). Let I be a bounded inter-
val, and let P and P’ be two partitions of I. We define the common
refinement P#P’ of P and P’ to be the set

W%w\“HANDkHNmﬁmza&mﬁ@.

Example 11.1.17. Let P := {[1,3), [3,4]} and P’ := {[1,2], (2,4}}
be two partitions of [1,4]. Then P#P’ is the set {[1,2], (2,3), [3,4],0}
(why?).

Lemma 11.1.18. Let I be a bounded interval, and let P and P’ be two
partitions of I. Then P#P’ is also a partition of I, and is both finer
than P and finer than P'.

Proof. See Exercise 11.1.4. (]

— Exercises —

Ezercise 11.1.1. Prove Lemma 11.1.4. (Hint: in order to show that (a) implies

(b) in the case when X is non-empty. consider the supremum and infimum of
X.)

Ezercise 11.1.2. Prove Corollary 11.1.6. (Hint: use Lemma 11.1.4, and explain

why the intersection of two bounded sets is automatically bounded, and why
the intersection of two connected sets is automatically connected.)

Ezercise 11.1.3. Let I be a bounded interval of the form I = (a. by or I = [a,b)

for some real numbers ¢ < b. Let I 1,--+,In be a partition of I. Prove that one
of the intervals I; in this partition is of the form I; = (¢,b) or I; = [e,b) for
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some a < ¢ < b. (Hint: prove by contradiction. First show that if I ; is not of
the form (c, b) or [e, b) for any a < ¢ < b, then sup I; is strictly less than b.)

Ezercise 11.1.4. Prove Lemma 11.1.18.

11.2 Piecewise constant functions

We can now describe the class of “simple” functions which we can inte-
grate very easily.

Definition 11.2.1 (Constant functions). Let X be a subset of R, and
let f: X — R be a function. We say that f is constant iff there exists a
real number ¢ such that f(z) = c for all z € X. If E is a subset of X, we
say that f is constant on E if the restriction f|g of f to E is constant,
in other words there exists a real number c such that f(z) = c for all
z € E. We refer to c as the constant value of f on E.

Remark 11.2.2. If E is a non-empty set, then a function f which is
constant on £can have only one constant value; it is not possible for a
function to always equal 3 on E while simultaneously always equalling
4. However, if E is empty, every real number ¢ is a constant value for f
on E (why?).

Definition 11.2.3 (Piecewise constant functions I). Let I be a bounded
interval, let f : I — R be a function, and let P be a partition of I. We
say that f is piecewise constant with respect to P if for every J € P, f
is constant on J.

Example 11.2.4. The function f : {1,6] — R defined by

ifl<z<3
ifr=3
if3<z<6
ifr=6

flz) =

NG~

is piecewise constant with respect to the partition {[1,3), {3}, (3,6),
{6}} of [1,6]. Note that it is also piecewise constant with respect to
some other partitions as well; for instance, it is piecewise constant with
respect to the partition {[1,2), {2}, (2,3), {3}, (3,5), [5,6), {6},0}.

Definition 11.2.5 (Piecewise constant functions II). Let I be a
bounded interval, and let f : I — R be a function. We say that f
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is piecewise constant on I if there exists a partition P of I such that f
is piecewise constant with respect to P.

Example 11.2.6. The function used in the previous example is piece-
wise constant on [1,6]. Also, every constant function on a bounded
interval I is automatically piecewise constant (why?).

Lemma 11.2.7. Let I be a bounded interval, let P be a partition of I,
and let f : I — R be a function which is piecewise constant with respect
to P. Let P’ be a partition of I which is finer than P. Then [ is also
piecewise constant with respect to P’.

Proof. See Exercise 11.2.1. O

The space of piecewise constant functions is closed under algebraic
operations:

Lemma 11.2.8. Let I be a bounded interval, and let f : I —» R and
g : I — R be piecewise constant functions on I. Then the functions
f+9, f—g, max(f,g) and fg are also piecewise constant functions on
I. Here of course max(f,g) : I — R is the function max(f,g)(x) :=
max(f(z),g(z)). If g does not vanish anywhere on I (i.e., g(x) # 0 for
all z € I) then f/g is also a piecewise constant function on I.

Proof. See Exercise 11.2.2. 0

We are now ready to integrate piecewise constant functions. We be-
gin with a temporary definition of an integral with respect to a partition.

Definition 11.2.9 (Piecewise constant integral I). Let I be a bounded
interval, let P be a partition of I. Let f : I — R be a function which
is piecewise constant with respect to P. Then we define the piecewise
constant integral p.c. bv_ f of f with respect to the partition P by the
formula

pe. | f:= MUQ_&__

[P] JEP

where for each J in P, we let ¢; be the constant value of fondJ.

Remark 11.2.10. This definition seems like it could be ill-defined, be-
cause if J is empty then every number c; can be the constant value of
f on J, but fortunately in such cases |J| is zero and so the choice of
¢y is irrelevant. The notation p.c. %_m._ f is rather artificial, but we shall
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only need it temporarily, en route to a more useful definition. Note that
since P is finite, the sum Y ;.p cy|J| is always well-defined (it is never
divergent or infinite).

Remark 11.2.11. The piecewise constant integral corresponds intu-
itively to one’s notion of arca, given that the area of a rectangle ought
to be the product of the lengths of the sides. (Of course, if f is negative
somewhere, then the “area” c;|J| would also be negative.)

Example 11.2.12. Let f: [1,4] — R be the function
2 ifl1<z<3
flz)=¢ 4 ifz=3
6 if3<z<4

and let P := {[1,3),{3},(3,4]}. Then

D.C. \E.E f

i

cu3l1.3) + ey {3} + ¢3.4/(3,4]|

=2X24+4x0+6x1
= 10.

Alternatively, if we let P’ := {[1,2),(2,3). {3}, (3.4].0} then

w.n. - \nn:_s_:uwv__+n_w.e:m.8_-Toﬁ::w:

+¢3,4)((3,4]] + col0|
=2x1+2x144x04+6x1+4¢yx0
=10.

This example suggests that this integral does not really depend on
what partition you pick, so long as your function is piecewise constant
with respect to that partition. That is indeed true:

Proposition 11.2.13 (Piecewise constant integral is independent of
partition). Let I be a bounded interval, and let f : I — R be a func-
tion. Suppose that P and P’ are partitions of I such that f is piece-
wise constant both with respect to P and with respect to P’. Then

p.c. %E f=pc %mm:_ f.
Proof. See Exercise 11.2.3. 0



274 11. The Riemann integral
Because of this proposition, we can now make the following defini-
tion:

Definition 11.2.14 (Piecewise constant integral IT). Let I be a bounded
interval, and let f : I — R be a piecewise constant function on I. We
define the piecewise constant integral p.c. [, f by the formula

w.o.\~,\ = p.c. - I

where P is any partition of I with respect to which f is piecewise con-
stant. (Note that Proposition 11.2.13 tells us that the precise choice of
this partition is irrelevant.)

Example 11.2.15. If f is the function given in Example 11.2.12, then
p.c. ,:i_ f=10.

We now give some basic properties of the piecewise constant integral.
These laws will eventually be superceded by the corresponding laws for
the Riemann integral (Theorem 11.4.1).

Theorem 11.2.16 (Laws of integration). Let I be a bounded interval,
andlet f: I - R and g: I — R be piecewise constant functions on I.

(a) We have p.c. f,(f +9) =pec [, f+pec fig.

(b) For any real number c, we have p.c. [,(cf) = c(p.c. [ f).
(c) We have p.c. [,(f - g) =pc. [, f —pe [y g.

(d) If f(z) >0 forallz € I, then pc. [, f > 0.

(e) If f(z) > g(z) for allz € I, then p.c. [, f > pc. [, g.

(f) If f is the constant function f(z) = c for allz in I, thenp.c. [, f =
Il

(g) Let J be a bounded interval containing I (i.e., I C J), and let
F:J — R be the function

[ fx) ifzel
Eav.lﬁo ifa gl

Then F' is piecewise constant on J, and p.c. b F=p.c .b f.
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(h) Suppose that {J, K} is a partition of I into two intervals J and K.
Then the functions fly : J — R and f|lk : K — R are piecewise
constant on J and K respectively, and we have

ﬁ.n.\M\Hv.n.\w\:g .Ig.n.\x\_x.

Proof. See Exercise 11.2.4. O

This concludes our integration of piecewise constant functions. We
now turn to the question of how to integrate bounded functions.

— Exercises —
Ezercise 11.2.1. Prove Lemma 11.2.7.

Exzercise 11.2.2. Prove Lemma 11.2.8. (Hint: use Lemmas 11.1.18 and 11.2.7
to make f and g piecewise constant with respect to the same partition of I.)

Ezercise 11.2.3. Prove Proposition 11.2.13. (Hint: first use Theorem 11.1.13
to show that both integrals are equal to p.c. h.u #P7] f)

Ezercise 11.2.4. Prove Theorem 11.2.16. (Hint: you can use earlier parts of
the theorem to prove some of the later parts of the theorem. Sec also the hint
to Exercise 11.2.2.)

11.3 Upper and lower Riemann integrals

Now let f : I — R be a bounded function defined on a bounded interval
I. We want to define the Riemann integral [, f. To do this we first need
to define the notion of upper and lower Riemann integrals [, f and [ e
These notions are related to the Riemann integral in much the same way
that the lim sup and lim inf of a sequence are related to the limit of that
sequence.

Definition 11.3.1 (Majorization of functions). Let f : ] — R and
g : I —» R. We say that g majorizes f on I if we have g(z) > f(x) for
all z € I, and that g minorizes f on I if g(z) < f(z) forall z € I.

The idea of the Riemann integral is to try to integrate a function
by first majorizing or minorizing that function by a piecewise constant
function (which we already know how to integrate).
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Definition 11.3.2 (Upper and lower Riemann integrals). Let f : I — R
be a bounded function defined on a bounded interval I. We define the
upper Riemann integral [, f by the formula

\ f:=inf{p.c. \m : g is a p.c. function on I which majorizes f}
I I

and the lower Riemann integral S P f by the formula

\ f:=sup{p.c. \Q : ¢ is a p.c. function on I which minorizes f}.
g 1

We give a crude but useful bound on the lower and upper integral:

Lemma 11.3.3. Let f : I — R be a function on a bounded interval I
which is bounded by some real number M, i.e., —M < f(z) < M for all
z € I. Then we have

~-M|I| < \\ < \\ < M|I|.

In particular, both the lower and upper Riemann integrals are real num-
bers (i.e., they are not infinite).

Proof. The function g : I — R defined by g{z) = M is constant, hence
piecewise constant, and majorizes f; thus H~ f <pecfg= Ml by
definition of the upper Riemann integral. A similar argument gives
-M|I} < Mlﬁ Finally, we have to show that b\ < N.Zﬁ Let g be
any piecewise constant function majorizing f, and let h be any piece-
wise constant function minorizing f. Then g majorizes h, and hence
pc. [yh < p.c. [; g. Taking suprema in h, we obtain that b\ <pec ;g

Taking infima in g, we thus obtain b\ < HE. as desired. O

We now know that the upper Riemann integral is always at least as
large as the lower Riemann integral. If the two integrals match, then we
can define the Riemann integral:

Definition 11.3.4 (Riemann integral). Let f : I — R be a bounded
function on a bounded interval I. If I ! f= % ;f, then we say that f is
Riemann integrable on I and define

x\NNmu\x
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If the upper and lower Riemann integrals are unequal, we say that f is
not Riemann integrable.

Remark 11.3.5. Compare this definition to the relationship between
the lim sup, lim inf, and limit of a sequence a, that was established in
Proposition 6.4.12(f); the lim sup is always greater than or equal to the
lim inf, but they are only equal when the sequence converges, and in this
case they are both equal to the limit of the sequence. The definition given
above may differ from the definition you may have encountered in your
calculus courses, based on Riemann sums. However, the two definitions
turn out to be equivalent; this is the purpose of the next section.

Remark 11.3.6. Note that we do not consider unbounded functions to
be Riemann integrable; an integral involving such functions is known as
an improper integral. It is possible to still evaluate such integrals using
more sophisticated integration methods (such as the Lebesgue integral):
we shall do this in Chapter 19. .

The Riemann integral is consistent with (and supercedes) the piece-
wise constant integral:

Lemma 11.3.7. Let f : I — R be a piccewise constant function on a
bounded interval I. Then f is Riemann integrable. and f; f = p.c. [, f.

Proof. See Exercise 11.3.3. 0

Remark 11.3.8. Because of this lemma, we will not refer to the piece-
wise constant integral p.c. |, ; again, and just use the Riemann integral
/, ; throughout (until this integral is itself superceded by the Lebesgue
integral in Chapter 19). We observe one special case of Lemma 11.3.7:
if I is a point or the empty set., then % ; f = 0for all functions f : I - R.
(Note that all such functions are automatically constant.)

We have just shown that every piecewise constant function is Rie-
mann integrable. However, the Riemann integral is more general, and
can integrate a wider class of functions; we shall see this shortly. For
now, we connect the Riemann integral we have just defined to the con-
cept of a Riemann sum, which you may have seen in other treatments
of the Riemann integral.

Definition 11.3.9 (Riemann sums). Let f : I — R be a bounded
function on a bounded interval I, and let P be a partition of I. We
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define the upper Riemann sum U(f,P) and the lower Riemann sum
L(f,P) by
U(f,P):= > (supf(@))J|

JeP.zo €7

and

L(f,P):= > (inf f(2)lJ]-
JeP:J#£0

Remark 11.3.10. The restriction J % 0 is required because the quan-
tities infzey f(2) and sup,.; f(z) are infinite (or negative infinite) if J
is empty.

We now connect these Riemann sums to the upper and lower Rie-
mann integral.

Lemma 11.3.11. Let f : I — R be a bounded function on a bounded in-
terval I, and let g be a function which majorizes f and which is piecewise
constant with respect to some partition P of I. Then

pe. \~ 9> U(f,P).

Similarly. if h is a function which minorizes f and is piecewise constant
with respect to P, then

E.n.\b < L(f,P).
I
Proof. See Exercise 11.3.4. O

Proposition 11.3.12. Let f : I — R be a bounded function on a
bounded interval I. Then

inf{U(f,P) : P is a partition of I}

~.\|
&._‘
il

and

f

1

sup{L(f.P) : P is a partition of I}

[~

Proof. See Exercise 11.3.5. O
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— Exercises —

Ezercise 11.3.1. Let f: I -5 R, g: I - R, and h: I — R be functions. Show
that if f majorizes g and g ‘majorizes h, then f majorizes h. Show that if f
and g majorize each other, then they must be equal.

Ezercise 11.3.2. Let f: I - R, g: I — R, and h: I — R. be functions. If f
majorizes g. is it true that f +h majorizes g + h? Is it true that f+h majorizes
g-h? If c is a real number, is it true that ¢f majorizes cg?

Ezercise 11.3.3. Prove Lemma 11.3.7.
Ezercise 11.3.4. Prove Lemma 11.3.11.

Exercise 11.3.5. Prove Proposition 11.3.12. (Hint: you will need Lemma
11.3.11. even though this Lemma will only do half of the job.)

11.4 Basic properties of the Riemann integral

Just as we did with limits, series, and derivatives, we now give the basic
laws for manipulating the Riemann integral. These laws will eventu-
ally be superceded by the corresponding laws for the Lebesgue integral
(Proposition 19.3.3).

Theorem 11.4.1 (Laws of Riemann integration). Let I be o bounded
interval, and let f : I — R and g : I — R be Riemann integrable

functions on I.

(a) The function f+g is Riemann integrable, and we have % [(f+g) =
f b g

(b) For any real number c, the function cf is Riemann integrable, and

we have [i(cf) = c(f, f).

(¢) The function f —g is Riemann integrable, and we have |, [(f—g)=

Iif=1Iia
(@) If f(z) 20 for allz € I, then f, f > 0.
(e) If f(z) 2 g(z) for allz € I, then [, f > [, g.

(f) If f is the constant function f(z)=c for all z in I, then I f=
clI|.
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(9) Let J be a bounded interval containing I (i.e., I C J), and let
F:J —> R be the function

| fl®) H=zel
m?Y|Ao fz gl

Then F is Riemann integrable on J, and [, F = f, f

(h) Suppose that {J, K} is a partition of I into two intervals J and K.
Then the functions f|; : J —» R and flx : K — R. are Riemann
integrable on J and K respectively, and we have

Proof. See Exercise 11.4.1. O

Remark 11.4.2. We often abbreviate [, f|; as [, f, even though f is
really defined on a larger domain than just J.

Theorem 11.4.1 asserts that the sum or difference of any two Rie-
mann integrable functions is Riemann integrable, as is any scalar mul-
tiple cf of a Riemann integrable function f. We now give some further
ways to create Riemann integrable functions.

Theorem 11.4.3 (Max and min preserve integrability). Let I be a
bounded interval, and let f : I - R andg : I — R be a Rie-
mann integrable function. Then the functions max(f,g) : I — R and
min(f,g) : I — R defined by max(f,g)(z) := max(f(z),g(z)) and
min(f, g)(z) := min(f(z), g(z)) are also Riemann integrable.

Proof. We shall just prove the claim for max(f, g), the case of min(f, g)
being similar. First note that since f and g are bounded, then max(Jf, 9)
is also bounded.

Let ¢ > 0. Since [, f = % f, there exists a piecewise constant
function f: I — R which minorizes f on I such that

125+

Similarly we can find a piecewise constant g : I — R which minorizes g

,\QN\-lev
1~ I

on I such that
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and we can find piecewise functions £, G which majorize f, g respectively

on I such that
\wm\\+m
I I

[7< [ove
1 1

In particular. if A : I — R denotes the function

and

we have

On the other hand, max( f,g) is a piecewise constant function on I

(why?) which minorizes max(f, g) (why?), while max(f,g) is similarly
a piecewise constant function on I which majorizes max(f, g). Thus

\~:§x@“mv m\ max(f.g) < \.~ max(f, g) \5@&
I

and so

0< n\.|~ max(f, g) I\ max(f, g) \Bmx?ﬁ — max(f, g).

A
But we have

f(@) = f(&) + (F - f)(z) < f(=) + h(z)

and similarly

§(z) = g(z) + (7 ~ g)(2) < g(z) + h(z)
and thus
max(f(z),(z)) < max(f(z), g(z)) + h(z).

Inserting this into the previous inequality, we obtain

om\NSPAQ,SI\~Bm§Q,Sm\\pmhm.
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To summarize, we have shown that

0< N max(f,g) - [ max(f,g) < 4e

I

for every €. Since H~ max(f,g) —

P max(f, g) does not depend on &, we
thus see that

N max(f, g) - N max(f,) =0

and hence that max(f, g) is Riemann integrable. O

Corollary 11.4.4 (Absolute values preserve Riemann integrability).
Let I be a bounded interval. If f : I — R is a Riemann integrable
function, then the positive part fi := max(f,0) and the negative part
f- = min(f,0) are also Riemann integrable on I. Also, the absolute
value |f| = f+ — f- is also Riemann integrable on I.

Theorem 11.4.5 (Products preserve Riemann integrability). Let I be
a bounded interval. If f : I — R and g : I — R are Riemann integrable,
then fg:I — R is also Riemann integrable.

Proof. This one is a little trickier. We split f = f; +f_ and g = g4 +g-
into positive and negative parts; by Corollary 11.4.4, the functions f,
f-, g+, g— are Riemann integrable. Since

fg=f+g+ + frg-+ f-g9+ + f-g-

then it suffices to show that the functions fig4,f+r9-, f-9+, f-g- are
individually Riemann integrable. We will just show this for figy; the
other three are similar.

Since f; and g. are bounded and positive, there are M, My > 0
such that

0< fe(z) < My and 0 < gy (z) < My

for all x € I. Now let € > 0 be arbitrary. Then. as in the proof of
Theorem 11.4.3, we can find a piecewise constant function S+ minorizing

f+ on I, and a piecewise constant function fi majorizing fi on I, such

that
\NHM\N\.T.Tm
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\~\|+N\~\+lm.

Note that f, may be negative at places, but we can fix this by replacing
f+ by max(f,0), since this still minorizes f; (why?) and still has
integral greater than or equal to || 1 f+ — € (why?). So without loss of
generality we may assume that fi(z) > 0 for all z € I. Similarly we
may assume that fi(z) < M for all z € I; thus

and

0 < fi(2) < fi(z) < filx) < My

forallz e I.

Similar reasoning allows us to find piecewise constant g, minorizing
g+, and gy majorizing g4, such that

\,ﬂm\m++m
1 1

and
\NNW 2 \~m+ =&
and
0< g4(2) < g4(z) < g5(z) < My
forall z € I.

Notice that f,g; is piecewise constant and minorizes f,g,, while
f+9+ is piecewise constant and majorizes fyg,. Thus

0< \~\+m+ |N~\+m+ < \Mwﬂﬂlbf.

However, we have

F+(2)gx(2) = f1(2)g4(2) = Fr(@)(@F — g4)(2) + go (@) (Fy — fu(2))

< My(95 — g4)(2) + Ma(Fy — fi(2))
for all z € I, and thus

om\\aﬁ%?ﬁ:maﬂ\uﬂ-ﬁiam\uw.-\l:

< Mi(2€) + My(2).
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Again, since € was arbitrary, we can conclude that f.g, is Riemann
integrable, as before. Similar argument show that f,g_, f_g+, f-g-
are Riemann integrable; combining them we obtain that fg is Riemann
integrable. 0

— Exercises —

FEzercise 11.4.1. Prove Theorem 11.4.1. (Hint: you may find Theorem 11.2.16
to be useful. For part (b): First do the case ¢ > 0. Then do the case c = —1
and ¢ = 0 separately. Using these cases, deduce the case of ¢ < 0. You can use
earlier parts of the theorem to prove later ones.) )

Ezercise 11.4.2. Let ¢ < b be real numbers, and let f : [2,b] — R be a
continuous, non-negative function (so f(x) > 0 for all z € [a,b]). Suppose
that %?_v_\ = 0. Show that f(z) = 0 for all z € [a,b]. (Hint: argue by
contradiction.)

Exercise 11.4.3. Let I be a bounded interval, let f : I — R be a Riemann
integrable function, and let P be a partition of I. Show that

[5ks

JeP

Ezercise 11.4.4. Without repeating all the computations in the above proofs,
give a short explanation as to why the remaining cases of Theorem 11.4.3
and Theorem 11.4.5 follow automatically from the cases presented in the text.
(Hint: from Theorem 11.4.1 we know that if f is Riemann integrable, then so

is —f.)

11.5 Riemann integrability of continuous functions

We have already said a lot about Riemann integrable functions so far,
but we have not yet actually produced any such functions other than the
piecewise constant ones. Now we rectify this by showing that a large
class of useful functions are Riemann integrable. We begin with the
uniformly continuous functions.

Theorem 11.5.1. Let I be a bounded interval, and let f be a function
which is uniformly continuous on I. Then f is Riemann integrable.

Proof. From Proposition 9.9.15 we see that f is bounded. Now we have
to show that .?.x =[,f.

If I is a point or the empty set then the theorem is trivial, so let us
assume that I is one of the four intervals [a, b], (a,b), (a,b], or [a,b) for
some real numbers a < b.

=== e=as

11.5. Riemann integrability of continuous functions 285

Let € > 0 be arbitrary. By uniform continuity, there exists a § > 0
such that |f(z) ~ f(y)| < e whenever z,y € I are such that lz —y| < 6.
By the Archimedean principle, there exists an integer N > 0 such that
(b—a)/N < 4.

Note that we can partition I into N intervals Ji,...,Jn, each of
length (b—a)/N. (How? One has to treat each of the cases [a,b], (a,b),
(a,8], [a,b) slightly differently.) By Proposition 11.3.12, we thus have

TE€J)

N
<Y (sup f(2))|Jil
k=1
and

T€J)

[
1

N
123t s@nig
I k=1

so in particular

N
[ 1= [ 153 6w 1@~ inf s@)i.

J g =1 €Sy xzeJy

However, we have |f(z) — f(y)| < ¢ for all z,y € Ji, since |Ji]
(b—a)/N < 4. In particular we have

f(z) < fly) +¢ for all z,y € J,.

Taking suprema in z, we obtain

sup f(x) < fly) +¢ for all y € J,
zEJ

and then taking infima in y we obtain

sup f(z) < inf f(y) +e.
z€J) yeJy

Inserting this bound into our previous inequality, we obtain

/ - IE Mi_,
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but by Theorem 11.1.13 we thus have

NTN\ <e(b-a).

But € > 0 was arbitrary, while (b—a) is fixed. Thus H -/ . f cannot be
positive. By Lemma 11.3.3 and the definition of Riemann integrability
we thus have that f is Riemann integrable. O

Combining Theorem 11.5.1 with Theorem 9.9.16, we thus obtain

Corollary 11.5.2. Let [a,b] be a closed interval, and let f : [a,b] = R
be continuous. Then f is Riemann integrable.

Note that this Corollary is not true if [a,}] is replaced by any other
sort of interval, since it is not even guaranteed then that continuous
functions are bounded. For instance, the function f : (0,1) — R defined
by f(z) := 1/z is continuous but not Riemann integrable. However,
if we assume that a function is both continuous and bounded, we can
recover Riemann integrability:

Proposition 11.5.3. Let I be a bounded interval, and let f : I — R be
both continuous and bounded. Then f is Riemann integrable on I.

Proof. If I is a point or an empty set then the claim is trivial; if I is a
closed interval the claim follows from Corollary 11.5.2. So let us assume
that I is of the form (a,b], (a,b), or [a,b) for some a < b.

We have a bound M for f, so that —M < f(x) < M for all z € I.
Now let 0 < ¢ < (b — a)/2 be a small number. The function f when
restricted to the interval [a +€,b — €] is continuous, and hence Riemann
integrable by Corollary 11.5.2. In particular, we can find a piecewise
constant function h : [a+¢,b—¢] — R which majorizes f on [a+¢,b—¢]

such that
\ h< \ fre.
(a+e.b—¢] la+eb—e]

Define h: I — R by

- [ hz) ifzefoteb—el
Eav.lﬁi fzel\la+eb—e¢
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Clearly h is piecewise constant on I and majorizes f; by Theorem 11.2.16
we have -

\mn&:\ >+mEA\ + (201
< 1)=.
1 [a+e.b—¢] late.b—¢] ! A - v

In particular we have

\\m\ F+ (M + 1)e.
1 la+e,b—e]

A similar argument gives

|\L\ > \_E{.blm_ f=(2M+ 1)

\\-BREIMF

But ¢ is arbitrary, and so we can argue as in the proof of Theorem 11.5.1
to conclude Riemann integrability. O

and hence

This gives a large class of Riemann integrable functions already; the
bounded .oo:a_::o:m functions. But we can expand this class a little
more, to include the bounded piecewise continuous functions.

Definition 11.5.4. Let I be a bounded interval. and let f:I —R.
We say that f is piecewise continuous on I iff there exists a partition P
of I such that f|; is continuous on J for all J € P.

Example 11.5.5. The function f : [1, 3] — R defined by

22 fl<z<?

Flz):=¢ 7 ifz=2
ad if2<z<3
is not continuous on [1,3]. but it is piecewise continuous on (1,3] (since

mn is continuous when restricted to [1,2) or {2} or (2, 3], and those three
intervals partition [1, 3]). ‘ .

uunovww#mo.u 11.5.6. Let I be a bounded interval, and let f:I—R be
both piecewise continuous and bounded. Then f is Riemann integrable.

Proof. See Exercise 11.5.1. 0
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— Exercises —
Egercise 11.5.1. Prove Proposition 11.5.6. (Hint: use Theorem 11.4.1(a) and

(h).)

11.6 Riemann integrability of monotone functions

In addition to piecewise continuous functions, another wide class of func-
tions is Riemann integrable, namely the monotone functions. We give
two instances of this:

Proposition 11.6.1. Let [a,b] be a closed and bounded interval and let
f :la,b] — R be @ monotone function. Then f is Riemann integrable
on [a, b].

Remark 11.6.2. From Exercise 9.8.5 we know that there exist
monotone functions which are not piecewise continuous, so this propo-
sition is not subsumed by Proposition 11.5.6.

Proof. Without loss of generality we may take f to be monotone increas-
ing (instead of monotone decreasing). From Exercise 9.8.1 we know that
f is bounded. Now let N > 0 be an integer, and partition [a, b] into N
half-open intervals {[a + %5%j,a + &2 (j + 1)) : 0 < j < N — 1} of length
(b —a)/N, together with the point {6}. Then by Proposition 11.3.12 we
have

gy b—a
\\mw sup f@) | <

r€fa+ 5 jat B (j+1))

(the point {b} clearly giving only a zero contribution). Since f is
monotone increasing, we thus have

—= N—-1 _
e MUxAi ﬁgc%:v i}
I

Similarly we have

Thus we have

L7 (v tues) s or )5
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Using telescoping series (Lemma 7.2.15) we thus have

J = [ (s (o t00) - (o 25t0) ) 255

= (/) - fla) 2.

But N was arbitrary. so we can conclude as in the proof of Theorem
11.5.1 that f is Riemann integrable. O

Corollary 11.6.3. Let I be a bounded interval, and let f : I — R be
both monotone and bounded. Then f is Riemann integrable on I.

Proof. See Exercise 11.6.1. O

We now give the famous integral test for determining convergence of
monotone decreasing scries.

Proposition 11.6.4 (Integral test). Let f : [0.00) — R be a monotone
decreasing function which is non-negative (i.e., f(x) > 0 for all z > 0).
Then the sum 3", f(n) is convergent if and only if SUP x>0 %_o.?_ fis
finite. o

Proof. See Exercise 11.6.3. 0O

Corollary 11.6.5. Let p be a Teal number. Then Mumon_ :F‘ converges
absolutely when p > 1 and diverges when p < 1.

Proof. See Exercise 11.6.5. O

— Exercises —

Ezercise 11.6.1. Use Proposition 11.6.1 to prove Corollary 11.6.3. (Hint: adapt
the proof of Proposition 11.5.3.)

Ezercise 11.6.2. Formulate a reasonable notion of a piecewise monotone func-
tion. and then show that all bounded piecewise monotone functions are Rie-
mann integrable.

Ezercise 11.6.3. Prove Proposition 11.6.4. (Hint: what is the relationship
between the sum Y~_ f(n), the sum V-1 f(n), and the integral \._o.z_ £

n=0
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Ezercise 11.6.4. Give examples to show that both directions of the integral test
break down if f is not assumed to be monotone decreasing.

Ezercise 11.6.5. Use Proposition 11.6.4 to prove Corollary 11.6.5.

11.7 A non-Riemann integrable function

We have shown that there are large classes of bounded functions which
are Riemann integrable. Unfortunately, there do exist bounded func-
tions which are not Riemann integrable:

Proposition 11.7.1. Let f:[0,1] — R be the discontinuous function

|1 ifreQqQ

considered in Example 9.3.21. Then f is bounded but not Riemann
integrable.

Proof. It is clear that f is bounded, so let us show that it is not Riemann
integrable.

Let P be any partition of [0,1]. For any J € P, observe that if J is
not a point or the empty set, then

sup f(z) =1
z€J

(by Proposition 5.4.14). In particular we have

Aé:&_.\_u_,\_.
reJ

(Note this is also true when J is a point. since both sides are zero.) In
particular we see that

U(f,P)= Y Wi=[1=1

JEP:J#D

by Theorem 11.1.13; note that the empty set does not contribute any-
thing to the total length. In particular we have [ 0,1 f =1, by Proposi-
tion 11.3.12.

A similar argument gives that

w7 =0
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for all J (other than points or the empty set), and so

L(f,P)= Y 0=0.

JEP:J#0

In particular we have [ 0.1 f = 0, by Proposition 11.3.12. Thus the

upper and lower Riemann integrals do not match, and so this function
is not Riemann integrable. ]

Remark 11.7.2. As you can see, it is only rather “artificial” bounded
functions which are not Riemann integrable. Because of this, the Rie-
mann integral is good enough for a large majority of cases. There are
ways to generalize or improve this integral, though. One of these is
the Lebesgue integral, which we will define in Chapter 19. Another is
the Riemann-Stieltjes integral |, ; fda, where o : I — R is a monotone
increasing function, which we define in the next section.

11.8 The Riemann-Stieltjes integral

Let I be a bounded interval, let «« : I — R be a monotone increasing
function. and let f : I — R be a function. Then there is a generalization
of the Riemann integral, known as the Riemann-Stieltjes integral. This
integral is defined just like the Riemann integral, but with one twist:
instead of taking the length |J| of intervals J,- we take the a-length
afJ). defined as follows. If J is a point or the empty set. then afJ] := 0.
If J is an interval of the form [a,b], (a,b), (a,d], or [a,b), then afJ] :=
a(b)—af(a). Note that in the special case where « is the identity function
o(z) := z, then afJ] is just the same as |J|. However, for more general
monotone functions a. the a-length «[J] is a different quantity from |J|.
Nevertheless, it turns out one can still do much of the above theory. but
replacing |J| by a[J] throughout.

Definition 11.8.1 (a-length). Let I be a bounded interval, and let
a: X — R be a function defined on some domain X which contains I.
Then we define the a-length afI] of I as follows. If I is a point or the
empty set, we set a[l] = 0. If I is an interval of the form [a,b]. [a,b),
(a.b], or (a,b) for some b > a, then we set a(I] = a(b) — a(a).

Example 11.8.2. Let o : R — R be the function a(zx) := 2. Then
a[2,3]] = a(3) — a(2) = 9 — 4 =5, while (-3, —2)] = —5. Meanwhile
al{2}] = 0 and aff] = 0.
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Example 11.8.3. Let o : R — R be the identity function a(z) := z.
Then ofI] = || for all bounded intervals I (why?) Thus the notion of
length is a special case of the notion of a-length.

We sometimes write |8 or a(2)[2Z% instead of af[a, b]].

One of the key theorems for the theory of the Riemann integral
was Theorem 11.1.13, which concerned length and partitions, and in
particular showed that |I| = )~ ;.p |J| whenever P was a partition of .
We now generalize this slightly.

Lemma 11.8.4. Let I be a bounded interval. let @ : X — R be a
function defined on some domain X which contains I, and let P be a
partition of I. Then we have

all] = MU alJ].
JeP

Proof. See Exercise 11.8.1. 0

We can now define a generalization of Definition 11.2.9.

Definition 11.8.5 (P.c. Riemann-Stieltjes integral). Let I be a
bounded interval, and let P be a partition of . Let « : X — R be a
function defined on some domain X which contains 7, and let f: ] = R
be a function which is piecewise constant with respect to P. Then we

define
v.a.\. [ da = MU«CQ_,:
(P)

JeP

where c¢; is the constant value of f on J.
Example 11.8.6. Let f:[1.3] —» R be the function

flz) = A 4 when z € [1,2)

2 when z € [2,3].

let & : R — R be the function a(z) := 22, and let P be the partition
P = {[1,2),(2,3]}. Then

p.c. \_,1_ [ da = cpga(1,2)] + cipg¢([2, 3]

=4Ha(2) —a(1)) +2(a(8) —a(2)) =4 x 3+ 2 x 5 = 22,
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Example 11.8.7. Let & : R — R be the identity function a(z) := z.
Then for any bounded interval I, any partition P of I, and any function
f that is piecewise constant with respect to P, we have p.c. bv_ fda=

p.C. %:u_\ (why?).

We can obtain an exact analogue of Proposition 11.2.13 by replacing
all the integrals p.c. bw_ f in the proposition with p.c. bv_ f da (Exer-
cise 11.8.2). We can thus define p.c. [, f do for any piecewise constant
function f: I — R and any «: X — R defined on a domain containing
I, in analogy to before. by the formula

E.n.\vx da = p.c. f da

1 [P]

for any partition P on I with respect to which f is piecewise constant.
Up until now, our function & : R — R could have been arbitrary.

Let us now assume that « is monotone increasing, i.e.. a(y) > af(z)

whenever ¢,y € X are such that y > 2. This implies that () > 0

for all intervals in X (why?). From this one can easily verify that all

the results from Theorem 11.2.16 continue to hold when the integrals

p.c. [, f are replaced by p.c. f; f da. and the lengths |I| are replaced by

the a-lengths a(I); see Exercise 11.8.3.

_ We can then define upper and lower Riemann-Stieltjes integrals

J;f daand | ; f do whenever f : I — R is bounded and « is defined on

a domain containing I, by the usual formnlae

\ f da = Em?.n.\m da : g is p.c. on I and majorizes f}
I I
and
\ f do :=sup{p.c. \..@ da : g is p.c. on I and minorizes f}.
J g I

We then say that f is Riemann-Stieltjes integrable on I with respect to o
if the upper and lower Riemann-Stieltjes integrals match. in which case

we set —
N\&Q“\\&QHN\&Q.

As before, when « is the identity function a(z) := x then the
Riemann-Stieltjes integral is identical to the Riemann integral; thus the
Riemann-Stieltjes integral is a generalization of the Riemann integral.
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{We shall see another comparison between the two integrals a little later,
in Corollary 11.10.3.) Because of this, we sometimes write || (fas [, fdx
or [} f(z) dz.

Most (but not all) of the remaining theory of the Riemann integral
then can be carried over without difficulty, replacing Riemann integrals
with Riemann-Stieltjes integrals and lengths with a-lengths. There are a
couple results which break down; Theorem 11.4.1(g), Proposition 11.5.3,
and Proposition 11.5.6 are not necessarily true when « is discontinuous
at key places (e.g., if f and a are both discontinuous at the same point,
then % ; f dois unlikely to be defined. However, Theorem 11.5.1 is still
true (Exercise 11.8.4).

— Exercises —

Exercise 11.8.1. Prove Lemma 11.8.4. (Hint: modify the proof of Theorem
11.1.13)

Ezercise 11.8.2. State and prove a version of Proposition 11.2.13 for the
Riemann-Stieltjes integral.

E'zercise 11.8.3. State and prove a version of Theorem 11.2.16 for the Riemann-
Stieltjes integral.

Ezercise 11.8.4. State and prove a version of Theorem 11.5.1 for the Riemann-
Stieltjes integral. (Hint: one has to be careful with the proof; the problem here
is that some of the references to the length of |Ji| should remain unchanged,
and other references to the length of |Ji| should be changed to the a-length
a(Ji) - basically. all of the occurrences of |Ji| which appear inside a summation
should be replaced with o(Ji). but the rest should be unchanged.)

Exercise 11.8.5. Let sgn: R — R be the signum function

1 when z > 0
sgn(z):=< 0 when 2 =0
—1 whenz <0.

Let f: [-1.1] — R be a continuous function. Show that f is Riemann-Stieltjes
integrable with respect to sgn. and that

\, f dsgn = 2f(0).
-1.1]

(Hint: for every & > 0, find piecewise constant functions majorizing and mi-
norizing f whose Riemann-Stieltjes integral is e-close to 2£(0).)

11.9 The two fundamental theorems of calculus

We now have enough machinery to connect integration and differentia-
tion via the familiar fundamental theorem of calculus. Actually, there
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are two such theorems, one involving the derivative of the integral, and
the other involving the integral of the derivative.

Theorem 11.9.1 (First Fundamental Theorem of Calculus). Leta < b
be real numbers, and let f : [a,b] — R be a Riemann integrable function.
Let F : [a,b] = R be the function

F(z):= f

.z}

Then F' is continuous. Furthermore, if 2o € [a,b] and f is continuous
at zg. then F is differentiable at 2o, and F'(xo) = f(zo).

Proof. Since f is Riemann integrable, it is bounded (by Definition
11.3.4). Thus we have some real number M such that —M < f(z) < M
for all z € [a,b].

Now let 2 < y be two elements of [a, b]. Then notice that

Fo)-F@=[ 7-[ f=[ 1
[a.y] [a.x] ﬁ.ur.\.
by Theorem 11.4.1(h). By Theorem 11.4.1(e) we thus have

.\ f< \:HB.O.\V M=My-z)
(9] (9] [=.4]

\ fz \ -M n@.n.\ -M=-M(y-z)
=y} fz.y} 9]

|F(y) - F(z)| < M(y — ).

This is for y > z. By interchanging z and y we thus see that

and

and thus

|F'(y) — F(z)| < M(z —y)

when z > y. Also, we have F(y) — F(z) = 0 when z = y. Thus in all
three cases we have

|F(y) — F(x)| < Mz —y|.

Now let z € [a,b], and let (z,)%%, be any sequence in [a,b] converging
to . Then we have

~M|z, — z| < F(z,) — F(z) < M|z, — 7|
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for each n. But —M|z, —z| and M|z, —z| both converge to 0 as n — oo,
so by the squeeze test F(z,) — F(z) converges to 0 as n — o0, and thus
lim, oo F(z,) = F(z). Since this is true for all sequences z, € [a,b]
converging to x, we thus see that F is continuous at z. Since x was an
arbitrary element of [a, b], we thus see that F is continuous.

Now suppose that zg € [a,b], and f is continuous at zg. Choose any
€ > 0. Then by continuity, we can find a § > 0 such that | f(z) - f(z)| <
e for all z in the interval I := [zg — 8, z¢ + 6] N [a, b], or in other words

flzo) —e < f(z) < f(zo)+eforallz el

We now show that

|F(y) — F(zo) — f(zo)(y — zo)| < €|y — 2o

for all y € I, since Proposition 10.1.7 will then imply that F is differen-
tiable at 2o with derivative F'(zp) = f(zo) as desired.

Now fix y € I. There are three cases. If y = zg, then F(y) — F(zp) —
f(zo)(y — o) = 0 and so the claim is obvious. If y > zp, then

w@-w@an\ .

fxo.y)

Since o,y € I, and I is a connected set, then [zo,y] is a subset of I,
and thus we have

f(zo) — € < f(z) < f(xo) + ¢ for all z € [zq,y].

and thus

:@a|a@|&em\. £ < (f(zo) + )y — o)

{zo.y]

and so in particular

|F(y) ~ F(zo) ~ f(zo)(y — zo)| < ely — zol

as desired. The case y < zg is similar and is left to the reader. O

Example 11.9.2. Recall in Exercise 9.8.5 that we constructed a
monotone function f : R — R which was discontinuous at every rational
and continuous everywhere else. By Proposition 11.6.1, this monotone
function is Riemann integrable on [0,1]. If we define F : {0,1] — R by
F(z) := bo_i f, then F is a continuous function which is differentiable
at every irrational number. On the other hand, F' is non-differentiable
at every rational number; see Exercise 11.9.1.
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Informally, the first fundamental theorem of calculus asserts that

xuxﬁsu:s

given a certain number of assumptions on f. Roughly, this means that
the derivative of an integral recovers the original function. Now we

show the reverse, that the integral of a derivative recovers the original
function.

Definition 11.9.3 (Antiderivatives). Let I be a bounded interval, and
let f:I — R be a function. We say that a function F : I — R is an
antiderivative of f if F is differentiable on I and F'(z) = f(z) for all
zel

Theorem 11.9.4 (Second Fundamental Theorem of Calculus). Let
a < b be real numbers, and let f : [a,b] —» R be a Riemann integrable
function. If F : [a.b] — R is an antiderivative of f, then

f = F(b) - F(a).

J (b

Proof. We will use Riemann sums. The idea is to show that
U(f,P) > F(b) — F(a) > L(f.P)

for every partition P of [a, b]. The left inequality asserts that F(b)—F(a)
is a lower bound for {U(f,P) : P is a partition of [a, 5]}, while the right
inequality asserts that F'(b) — F'(a) is an upper bound for {L(f,P) : P
is a partition of [a,b]}. But by Proposition 11.3.12. this means that

[ s2re-r@> [ g

fa.} Z_la,b]

but since f is assumed to be Riemann integrable, both the upper and
lower Riemann integral equal b a.b] f. The claim follows.

We have to show the bound U(f,P) > F(b) — F(a) > L(f,P). We
shall just show the first inequality U(f,P) > F(b) — F(a); the other
inequality is similar.

Let P be a partition of [a,b]. From Lemma 11.8.4 we have

F)-Fl@) =) FUl= > FlI

Jep JEP:J#D
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while from definition we have

U(f,P)= Y supf(z)lJ].

JeP.J0 €/

Thus it will suffice to show that

F[J] < sup f(z)|J|

reJ

for all J € P (other than the empty set).

When J is a point then the claim is clear, since both sides are zero.
Now suppose that J = [¢,d], (¢, d], [¢,d), or (¢,d) for some ¢ < d. Then
the left-hand side is F[J] = F(d) — F(c). By the mean-value theorem,
this is equal to (d — ¢)F'(e) for some e € J. But since F'(e) = f(e), we
thus have

FlJ} = (d - c)f(e) = f(e)|J| < sup f(z)|J]|

TeS

as desired. d

Of course, as you are all aware, one can use the second fundamental
theorem of calculus to compute integrals relatively easily provided that
you can find an anti-derivative of the integrand f. Note that the first
fundamental theorem of calculus ensures that every continuous Riemann
integrable function has an anti-derivative. For discontinuous functions,
the situation is more complicated, and is a graduate-level real analysis
topic which will not be discussed here. Also, not every function with
an anti-derivative is Riemann integrable; as an example, consider the
function F : [=1.1] — R defined by F(z) := z2sin(1/z3) when z # 0,
and F(0) := 0. Then F is differentiable everywhere (why?), so F’ has
an antiderivative. but F’ is unbounded (why?), and so is not Riemann
integrable.

We now pause to mention the infamous “+C” ambiguity in anti-
derivatives:

Lemma 11.9.5. Let I be a bounded interval, and let f : I — R be a
function. Let F: 1 — R and G : I — R be two antiderivatives of f.
Then there exists a real number C such that F(z) = G(z) + C for all
zel.

Proof. See Exercise 11.9.2. 0
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) — Exercises —
Erercise 11.9.1. Let f : [0,1] — R be the function in Exercise 9.8.5. Show that
for every rational number ¢ € QN [0,1], the function F : [0,1] — R defined
by the formula F(x) := %oa f(y) dy is not differentiable at ¢. (Hint: use the
mean-value theorem, Corollary 10.2.9.)

Ezercise 11.9.2. Prove Lemma 11.9.5. (Hint: apply the mean-value theorem,
Corollary 10.2.9. to the function F' — G. One can also prove this lemma using
the second Fundamental theorem of calculus (how?), but one has to be careful
since we do not assume f to be Riemann integrable.)

Egercise 11.9.3. Let a < b be real numbers, and let f : {a,b) = R be a
Inonotone increasing function. Let F : [¢,b] — R be the function F(z) :=
ba.n_ f. Let zg be an element of AP &v. Show that F is differentiable at zq if

and only if f is continuous at zo. (Hint: one direction is taken care of by one
of the fundamental theorems of calculus. For the other, consider left and right
limits of f and argue by contradiction.)

11.10 Consequences of the fundamental theorems

We can now give a number of useful consequences of the fundamental
theorems of calculus (beyond the obvious application, that one can now
compute any integral for which an anti-derivative is known). The first
application is the familiar integration by parts formula.

Proposition 11.10.1 (Integration by parts formula). Let I = [a, b],
and let ' : [a,b] = R and G : [a,b] — R. be differentiable functions on
[a,b] such that F' and G’ are Riemann integrable on I. Then we have

\ FG' = F(b)G(b) - F(a)G(a) — \ FG.
0t

la.b]
Proof. See Exercise 11.10.1. 0

Next, we show that under certain circumstances, one can write a
Riemann-Stieltjes integral as a Riemann integral. We begin with piece-
wise constant functions.

Theorem 11.10.2. Let o : [a,b] — R be a monotone increasing func-
tion, and suppose that « is also differentiable on [a,b], with o being
Riemann integrable. Let f : [a,b] — R be a piecewise constant function
on [a,b]. Then fa' is Riemann integrable on [a,b], and

\ fdo= fa'.
[a,b] [a,b}
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Proof. Since f is piecewise constant, it is Riemann integrable, and since
' is also Riemann integrable, then fo' is Riemann integrable by Theo-
rem 11.4.5.

Suppose that f is piecewise constant with respect to some partition
P of |a,b]; without loss of generality we may assume that P does not
contain the empty set. Then we have

fda=pe [ fda="csalJ]
(P)

[a.b] JeP

where ¢, is the constant value of f on J. On the other hand, from
Theorem 11.2.16(h) (generalized to partitions of arbitrary length - why
is this generalization true?) we have

\Q\HMU\.M\Q\HM\MQQ\HMUQ\*&.

[a.8] JEP JeP JeP

But by the second fundamental theorem of calculus (Theorem 11.9.4),
J; @' = alJ], and the claim follows. O

Corollary 11.10.3. Let o : [a,b] — R be a monotone increasing func-
tion, and suppose that a is also differentiable on [a,b], with o/ being
Riemann integrable. Let f : [a,b] — R be a function which is Riemann-
Stieltjes integrable with respect to a on [a,b]. Then fo' is Riemann
integrable on [a,b], and

\. fda= fo'.
[a,b] la.b)

Proof. Note that since f and o' are bounded, then fa' must also be
bounded. Also, since a is monotone increasing and differentable, ¢ is
non-negative.

Let € > 0. Then, we can find a piecewise constant function f ma-
jorizing f on [a,b], and a piecewise constant function Jf minorizing f on
(a, b}, such that

fda—-e< fda< fda< fda+e.
[a,b) [a,b] — fa.b) la,b]

Applying Theorem 11.10.2, we obtain

\ fda—e< \Q\m\ fo' < fda+e.
[a.0] [a,b) [a.b]

[a,b] ~
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Since o' is non-negative and f minorizes f, then fa/ minorizes fo'.

Thus bi_ fo' < b.i_ fo! (why?). Thus

fda—-e< \ fo'.
[a,b] <_[a,b}

\ fa' < \. fdo+e.
QD.E ?;E

Since these statements are true for any € > 0, we must have

Similarly we have

?&m\ ?\m\ fa'< [ fda
[a.,b) 2 [ab] [a.b] [a,b]

and the claim follows. 0

Remark 11.10.4. Informally, Corollary 11.10.3 asserts that f dais
essentially equivalent to f ulm&.ﬁ when a is differentiable. However, the
advantage of the Riemann-Stieltjes integral is that it still makes sense
even when « is not differentiable.

We now build up to the familiar change of variables formula. We
first need a preliminary lemma.

Lemma 11.10.5 (Change of variables formula I). Let |a,b] be a closed
interval, and let ¢ : [a,b] — [@(a), #(b)] be a continuous monotone in-
creasing function. Let f : [¢(a), #(b)] — R be a piecewise constant func-
tion on [$(a), p(b)]. Then fo o : [a,b] — R is also piecewise constant

on [a.b], and
[ fepas= ;.
{a.b] [B(a).6(b)]

Proof. We give a sketch of the proof, leaving the gaps to be filled in
Exercise 11.10.2. Let P be a partition of [¢(a), #(b)] such that f is
piecewise constant with respect to P; we may assume that P does not
contain the empty set. For each J € P, let ¢; be the constant value of

fon J, thus
f= el
\_e?v.&s_ MU

JepP
For each interval J, let ¢™!(J) be the set ¢71(J) := {z € [a,b] : (z) €
J}. Then ¢~1(J) is connected (why?), and is thus an interval. Further-
more, ¢y is the constant value of f o ¢ on ¢~1(J) (why?). Thus, if we
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define Q := {¢~!(J) : J € P} (ignoring the fact that Q has been used
to represent the rational numbers), then Q partitions (a,b] (why?), and
f o ¢ is piecewise constant with respect to Q (why?). Thus

fopdp= | foddp=>3 csplp7'(J))
LR [l Jep
But ¢[¢~!(J)] = |J| (why?), and the claim follows. O

Proposition 11.10.6 (Change of variables formula IT). Let [a,b] be a
closed interval, and let ¢ : [a,b] — [p(a), #(b)] be a continuous monotone
increasing function. Let f : [¢(a),p(b)] — R be a Riemann integrable
function on [¢(a), ¢(b)]. Then fo ¢ : [a,b] — R is Riemann-Stieltjes
integrable with respect to ¢ on |[a, b, and

foddp= f
fa.b) (#(a).6()]

Proof. This will be obtained from Lemma 11.10.5 in a similar manner
to how Corollary 11.10.3 was obtained from Theorem 11.10.2. First
observe that since f is Riemann integrable, it is bounded, and then fo¢
must also be bounded (why?).

Let € > 0. Then, we can find a piecewise constant function f ma-
Jorizing f on [¢(a), #(b)], and a piecewise constant function f minorizing
f on [@(a), #(b)], such that

\ Tmm\ \m\ Mm\ f+e
[p(a). (b)) {o(a),0(b)] — [#(a).0(b)} [#(a).0(b)]

Applying Lemma 11.10.5, we obtain

\ Tmm\ ?iﬁ\ ??&m\ fte.
[#(a).0(b)} fab] [a.b] [é(a).8(b)]

Since f o ¢ is piecewise constant and minorizes f o ¢, we have

\ fosdp< [ foods

la.b] L {ab)

while similarly we have

\E_?iew\i?ie.

e
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Thus

\ Tmm\ ??&m\ ?@%m\ f g
[p(a).(8) J oty fa) [6(a).(b)

Since € > 0 was arbitrary, this implies that

\ R\ ??am\ ?e%m\ f
[#(a),6(b)} < a,b) {a.b] [o(a).d(b))

and the claim follows. O

Combining this formula with Corollary 11.10.3, one immediately ob-
tains the following familiar formula:

Proposition 11.10.7 (Change of variables formula II). Let [a,b] be
a closed interval, and let ¢ : [a,b] — [#(a), d(b)] be a differentiable
monotone increasing function such that ¢’ is Riemann integrable. Let
f o [#(a),d()] = R be a Riemann integrable function on (¢(a), $(b)].
Then (f o )¢’ : [a.b] — R is Riemann integrable on [a,b], and

o¢ «v\ = .
\_“rsq ) \_&3.23_ g

— Exercises —

Ezercise 11.10.1. Prove Proposition 11.10.1. (Hint: first use Corollary 11.5.2
and Theorem 11.4.5 to show that FG’ and F'G are Riemann integrable. Then
use the product rule (Theorem 10.1.13(d)).)

Ezercise 11.10.2. Fill in the gaps marked (why?) in the proof of Lemma 11.10.5.

Ezercise 11.10.3. Let @ < b be real numbers, and let f:lab] - R be a
Riemann integrable function. Let g : [—b. —a] = R be defined by g(z) :=
f(—=). Show that g is also Riemann integrable. and %_leﬁa_ g= ba.g f

Ezercise 11.10.4. What is the analogue of Proposition 11.10.7 when ¢ is
monotone decreasing instead of monotone increasing? (When ¢ is neither
monotone increasing or monotone decreasing. the situation becomes signifi-
cantly more complicated.)




