
Inverse vs Implicit function theorems - MATH 402/502 - Spring 2017

Instructor: C. Pereyra

On Tuesday April 25, I stated the Inverse Function and Implicit Function Theorems for
you. I gave you some intuition for both theorems (steaming from considering linearizations
of the problems, see below). I briefly discussed a few examples on where an implicit function
theorem could be useful:

(1) The inverse function problem can be turned into an implicit function theorem (more
in the notes).

(2) An exact differential equation can be turned into an implicit function problem so
existence and uniqueness of a solution is a direct implication of these theorems.

(3) Geometric regions can be defined via systems of equations, being able to locally
describe the region as the graph of a function is very important.

Tao presents a proof of the Inverse function theorem, and deduces from it the implicit
function theorem (a less general version than ours, m = 1). As it turns out these two
theorems are equivalent in the sense that one could have chosen to prove the general Implicit
Function Theorem (0 < m ∈ N) and deduce the Inverse Function Theorem from it (we need
m = 2n), I did not have time on Tuesday to show you this. I did show you how to get from
the inverse function theorem the general implicit function theorem. In these notes I present
both arguments in detail.

Inverse Funtion Theorem

The inverse function theorem gives conditions on a differentiable function so that locally
near a base point we can guarantee the existence of an inverse function that is differentiable
at the image of the base point, furthermore we have a formula for this derivative: the
derivative of the function at the image of the base point is the reciprocal of the derivative
of the function at the base point. (See Tao’s Section 6.7.)

Theorem 0.1 (Inverse Funtion Theorem). Let E be an open subset of Rn, and let f :
E → Rn be a continuously differentiable function on E. Assume x0 ∈ E (the base point)
and f ′(x0) : Rn → Rn is invertible. Then there exists an open set U ⊂ E containing x0,
and an open set V ⊂ Rn containing f(x0) (the image of the base point), such that f is a
bijection from U to V . In particular there is an inverse map f−1 : V → U . Moreover f−1 is
differentiable at y0 and

(0.1) (f−1)′(y0) = (f ′(x0))
−1.

When n = 1 this is the familiar one-variable inverse function theorem (Theorem 10.4.2)
that we discussed in Math 401.

Heuristics: To understand where formula (2.2) comes from, it is illuminating to consider
the linear approximation y in Rn to f(x) near the base point x0

y = y0 + f ′(x0)(x− x0).

We can solve for x in terms of y provided f ′(x0) is invertible, which is our driving hypothesis,

x = x0 + (f ′(x0))
−1(y − y0).

This time we expect x to be a linear approximation to f−1(y) near y0, in which case we will
conclude that (f−1)′(y0) = (f ′(x0))

−1, the formula in the theorem.
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1. Implicit Function Theorem

The implicit function theorem gives sufficent conditions on a function F so that the equa-
tion F (x, y) = 0 can be solved for y in terms of x (or solved for x in terms of y) locally near
a base point (x0, y0) that satisfies the same equation F (x0, y0) = 0.

Here is a slightly different version of the implicit function theorem I stated in class on
Tuesday, it is designed to be able to deduce the inverse function theorem from it.

Theorem 1.1 (Implicit Function Theorem I). Let m,n be positive integers. Let A be an
open subset of Rn+m, and let F : A→ Rm be a continuously differentiable function on A. Let
(x0, y0) ∈ A such that F (x0, y0) = 0. Assume that DY F (x0, y0) is invertible1. Then there are
open sets U ⊂ Rn and V ⊂ Rm such that x0 ∈ U , y0 ∈ V , and there is a function g : U → V
differentiable at x0 such that (x, g(x)) ∈ A and F (x, g(x)) = 0 for all x ∈ U . Moreover

(1.1) g′(x0) = −
(
DY F (x0, y0)

)−1
DXF (x0, y0).

Heuristics: To understand where formula (1.1) comes from, it is illuminating to use a linear
approximation z in Rm to F (x, y) near the base point (x0, y0) with z0 = F (x0, y0) = 0,

z = z0 + F ′(x0, y0)(x− x0, y − y0) where z ∼ F (x, y).

Remember we are solving the equation z = F (x, y) = 0 so this becomes

0 = [DXF (x0, y0), DY F (x0, y0)](x−x0, y−y0)
t = DXF (x0, y0)(x−x0)+DY F (x0, y0)(y−y0).

We can solve the linear equation for y in terms of x provided DY F (x0, y0) is invertible which
is the assumption to get,

y = y0 − (DY F (x0, y0))
−1DXF (x0, y0)(x− x0).

We expect y to be a linear approximation to g(x) for x near x0, and hence g′(x0) =
−(DY F (x0, y0))

−1DXF (x0, y0) as expected.

Proof of Inverse Funtion Theorem given Implicit Function Theorem I. We are given f : E →
Rn a continuously differentiable function on the open E ⊂ Rn, x0 ∈ E (the base point), let
y0 = f(x0), and we are given that f ′(x0) : Rn → Rn is invertible. Let us define F : A→ Rn

where A = E × Rn ⊂ Rn+n = R2n by

F (x, y) = y − f(x), F (x0, y0) = 0

We wish to apply the implicit function theorem to this function but we want to write x in
terms of y, so the roles of x and y are interchanged in the statement of the implicit function
theorem above and m = n, we must verify that DXF (x0, y0) is invertible. A calculation
shows that

F ′(x0, y0) = [−f ′(x0), In×n],

where In×n is the n × n identity matrix. Hence DXF (x0, y0) = −f ′(x0), and is invertible
by assumption on f , and DY F (x0, y0) = In the n × n identity matrix. We can apply the
theorem, there are open sets U ⊂ Rn and V ⊂ Rn such that x0 ∈ U , y0 ∈ V and a a function
g : V → U differentiable at y0 such that (g(y), y) ∈ A and F (g(y), y) = 0 for all y ∈ V .

Moreover g is differentiable at y0 and g′(y0) = −
(
DXF (x0, y0)

)−1
DY F (x0, y0). Notice that

1Note that F ′(x0, y0) = [DXF (x0, y0), DY F (x0, y0)] and DXF (x0, y0) is an m × n matrix, DY F (x0, y0)
is an m×m matrix.
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because of our choice of function F , 0 = F (g(y), y) = y − f(g(y)), that is we conclude that
y = f(g(y)) for all y ∈ V , that is g = f−1 on V and

(f−1)′(y0) = −
(
− f ′(x0)

)−1
In×n = (f ′(x0))

−1.

�

2. Inverse implies Implicit

Here is the version of the implicit function theorem that I stated on Tuesday. It can be
deduced as a corollary of the inverse function theorem. Here I am including all the details,
whereas on Tuesday I just gave you the general idea, without bothering with the pesky
details.

Theorem 2.1 (Implicit Function Theorem II). Let m,n be positive integers. Let E be an
open subset of Rn+m, and let F : E → Rm be a continuously differentiable function on E.
Let (x0, y0) ∈ E such that F (x0, y0) = 0. Assume that DY F (x0, y0) is invertible2. Then there
are open sets W ⊂ Rn and U ⊂ E ⊂ Rn+m such that x0 ∈ W , (x0, y0) ∈ U , and there is a
function G : W → Rm differentiable at x0 such that

(2.1) {(x, y) ∈ U : F (x, y) = 0} = {(x,G(x)) : x ∈ W}.

Moreover

G′(x0) = −
(
DY F (x0, y0)

)−1
DXF (x0, y0).

Proof of Implicit Funtion Theorem given Inverse Function Theorem. We are given a contin-
uously differentiable function F : E → Rm, E open subset of Rn+m, (x0, y0) ∈ E such that
F (x0, y0) = 0, and we are given that DY F (x0, y0) is invertible. Define a new continuously
differentiable function f : E → Rn+m by

f(x, y) =: (x, F (x, y)),

to which we want to apply the inverse function theorem at the base point z0 = (x0, y0), and
at its image point under f , f(z0) = (x0, F (x0, y0)) = (x0, 0). We must first verify that f ′(z0)
is invertible. The (n+m)× (n+m) matrix representation of the linear transformation f ′(z0)
is given by the following block matrix

f ′(z0) =


In×n 0n×m

DXF (x0, y0) DY F (x0, y0)

 ,

where In×n is the n× n identity matrix and 0n×m is the n×m zero matrix. One can operate
with block matrices like if we had a 2 × 2 lower triangular matrix with no zeros in the

2Note that F ′(x0, y0) = [DXF (x0, y0), DY F (x0, y0)] and DXF (x0, y0) is an m × n matrix, DY F (x0, y0)
is an m×m matrix.



4

diagonal3 and verify that

(
f ′(z0)

)−1
=


In×n 0n×m

−(DY F (x0, y0))
−1DXF (x0, y0) (DY F (x0, y0))

−1

 ,

So f ′(z0) is invertible and the inverse function theorem ensures that there exists an open
set U ⊂ E ⊂ Rn+m containing z0, and an open set V ⊂ Rn+m containing f(z0) =
(x0, F (x0, y0)) = (x0, 0) (the image of the base point), such that f is a bijection from U
to V . In particular there is an inverse map f−1 : V → U . Moreover f−1 is differentiable at
f(z0) and

(2.2) (f−1)′(f(z0)) = (f−1)′(x0, 0) =
(
f ′(x0, y0)

)−1
.

Let us write f−1 in coordinates, f−1 = (h, g) where h = (h1, h2, . . . , hn) and g = (g1, g2, . . . , gm),
note that the domain of each of the gi and hi is V . Since by definition of f ,

(h(x, y), F (h(x, y), g(x, y))) = f(f−1(x, y)) = (x, y)

then h(x, y) = x and F (h(x, y), g(x, y)) = F (x, g(x, y)) = y. Also g is differentiable at
(x0, 0) ∈ V . We now define W ⊂ Rn and function G : W → Rm as follows

W := {x ∈ Rn : (x, 0) ∈ V }, G(x) := g(x, 0).

Note that x0 ∈ W , and since V is open in Rn+m, W is also open in Rn, finally G so defined
is differentiable at x0. We now prove (2.1), namely

A := {(x, y) ∈ U : F (x, y) = 0} = {(x,G(x)) : x ∈ W} =: B.

Assume (x, y) ∈ U and F (x, y) = 0 then f(x, y) = (x, 0) ∈ V therefore x ∈ W . Applying
f−1, we see that (x, y) = f−1(x, 0) in particular y = g(x, 0) = G(x) , therefore A ⊂ B. All
the steps can be reversed since f is a bijection from U to V to conclude that B ⊂ A.

By previous discussion F (x,G(x)) = 0 for all x ∈ W , F is differentiable at (x0, G(x0)) =
(x0, y0) and G is differentiable at x0, the formula for the derivative follows by the chain rule:

DXF (x0, y0) + DY F (x0, y0)G
′(x0) = 0,

and by simple algebra we conclude that G′(x0) = −
(
DY F (x0, y0)

)−1
DXF (x0, y0). �

Remark 2.2. Tao only proves the implicit function theorem when m = 1, but basically is the
same argument I just presented, see Section 6.8 in Book II. With only the case m = 1 he
couldn’t go from implicit to inverse function theorem except in the case n = m = 1, because
one needs the implicit function theorem from R2n into Rn, that is the case n = m.

Remark 2.3. Final comment, under the hypothesis that the functions are continuously dif-
ferentiable one gets more differentiability than just at the base point, because the hypothesis
of invertibility of the matrices f ′(x0) or DY F (x0, y0) will persist in a neighborhood of x0

or (x0, y0) respectively. The Theorems can be streghtened to say that f−1 is continuously
differentiable on a possibly smaller open set V , and G is continuously differentiable on a
possibly smaller open set W .

3 In this case 1 6= 0 and c 6= 0: A =

[
1 0
b c

]
, A−1 =

[
1 0

−c−1b c−1

]
.
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