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Abstract. In this note will see that in the setting of ordinary differential equations we
are able to use the Contraction Mapping Theorem to prove existence and uniqueness of a
solution to an initial value problem under certain conditions. In this case, X will be a closed
ball in the complete metric space of continuous functions on a closed and bounded interval
with the uniform metric, and F : X → X will be an integral operator. The technicalities
come in determining the bounded interval, and the contraction mapping property for F .

1. The contraction mapping theorem

On Tuesday April 11, I stated and proved the Contraction Mapping Theorems for you.
See Section 6.6 in Analysis II.

Theorem 1.1 (Contraction Mapping Theorem). Let (X, d) be a complete metric space, let
F : X → X be continuous function such that there is a real number α, with 0 ≤ α < 1 and
satisfying

(1.1) d
(
F (x), F (y)

)
≤ αd(x, y), for all x, y ∈ X.

Then there exists a unique point x0 ∈ X such that F (x0) = x0 (i.e. x0 is a fixed point for
F ). Moreover given any y0 ∈ X, the sequence {yn}n≥0, defined recursively by yn := F (yn−1)
for all n ≥ 1, is a Cauchy sequence in X, convergent to x0 the unique fixed point of F .

Remark 1.2. Functions that obey (1.1) with 0 ≤ α ≤ 1 are called contractions, and with
0 ≤ α < 1 are called strict contractions by Tao.

Sketch of the proof. (Existence) First show that the sequence {yn}n≥0 is Cauchy, since X is
complete, the sequence is convergent to a point x0 ∈ X. Second show that x0 = limn→∞ yn,
is a fixed point. This takes care of the existence.

To show the sequence is Cauchy, use repeatedly the fact that F is a contraction map to
conclude that for consecutive points we can estimate the distance

d(yk+1, yk) ≤ αkd(y1, y0).

The distance between yn and ym, for all n > m ≥ N , can then be estimated using the
triangle inequality to interspace consecutive terms by the tail of convergent geometric series:

d(yn, ym) ≤ d(yn, yn−1) + d(yn−1, yn−2) + ...+ d(ym+1, ym)

≤ (αn−1 + αn−2 + ...+ aαm)d(y1, y0)

≤ αN

1− a
d(y1, y0).
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The right-hand-side can be made less than a given ε > 0 by choosing N large enough since
0 < α < 1 implies that αN goes to zero as N goes to infinity. To show that the limit point
x0 is a fixed point use the fact that F is continuous, hence since yn converges to x0, then
F (yn) converges to F (x0), however by definition of the sequence {yn}, F (yn) = yn+1, and
the shifted sequence converges to x0 (why?). All together the sequence F (yn) converges to
two limits: F (x0) and x0, but limits are unique, therefore F (x0) = x0, and x0 is a fixed point
for F as claimed.

(Uniqueness) Assume there are two fixed points reach a contradiction (use the fact that F
is a contraction map to reach the contradiction that α ≥ 1). �

Example 1.3. Given real numbers a < b, let f : [a, b] → [a, b] be a continuous function,
differentiable on (a, b) with |f ′(x)| ≤ α for all x ∈ (a, b) and for some α < 1. Then f is a
(strict) contraction (why? by the Mean Value Theorem), and X = [a, b] with the Euclidean
metric, is a complete metric space. By the Contraction Mapping Theorem there exists a
unique fixed point c ∈ [a, b] such that f(c) = c, and we have an algorithm to find c.

Note that the existence of a fixed point in this case is a consequence of the Intermediate
Value Theorem applied to the continuous function g(x) = f(x)− x. More precisely, since f
maps into [a, b] it means a ≤ f(x) ≤ b for all x ∈ [a, b], hence g(b) ≤ 0 ≤ g(a), therefore there
is c ∈ [a, b] such that g(c) = 0, this implies f(c) = c. This argument is purely existencial, it
does not give us an algorithm to find c.

The contraction mapping theorem is a extremely useful result, it will imply the inverse
function theorem, which in turn implies the implicit function theorem (these two theorems,
which imply each other, will be the subject of my last two lectures). Another application
of the contraction mapping theorem is to the existence and uniqueness of solutions to an
initial value problem for ordinary differential equations. I tried to illustrate this on Tuesday,
I stated exactly what we were going to proof, and outlined most of the issues, but I did not
have time to finish. I promised I will type this for you in laTeX and distribute it, as this is
not in our textbook, for your future reference. You can find this and more in [Ro].

2. Application to an Initial Value Problem

Let E be an open subset of R2. Given a continuous function f : E → R and a point
(a, b) ∈ E, we seek a solution to the following Initial Value Problem:

dy

dx
= f(x, y),(2.1)

y(a) = b.(2.2)

This means we want to find an h > 0 and a differentiable function φ : [a− h, a+ h]→ R
such that φ′(x) = f

(
x, φ(x)

)
for all x ∈ [a−h, a+h] and φ(a) = b. Necessarilly

(
x, φ(x)

)
∈ E

for all x ∈ [a− h, a + h]. If E = R2 this is no longer an issue, since for all x in the domain
of φ, it will hold that

(
x, φ(x)

)
is in R2 the domain of f .

Remark 2.1. Even if f is defined on all R2 and a very nice function, the domain of the
solution can be very small (h > 0 maybe very small). Also, there could be more than one
solution. We will stipulate certain hypothesis which will guarantee the existence of a unique
solution.



APPLICATION OF THE CONTRACTION MAPPING THEOREM TO ODES 3

Theorem 2.2. Let E be an open subset of R2. Given a continuous function f : E → R and
a point (a, b) ∈ E, assume f is Lipschitz on the y-variable, that is, there is M > 0 such that

(2.3) |f(x, y)− f(x, z)| ≤M |y − z|, for all (x, y), (x, z) ∈ E.

Then there is h > 0 such that there is a unique function φ : (a − h, a + h) → R solving the
initial value problem φ′(x) = f

(
x, φ(x)

)
for all x ∈ [a− h, a+ h] and φ(a) = b.

Proof. The first observation is that by the Fundamental Theorem of calculus, we can replace
the initial value problem by an equivalent integral equation. If indeed φ′(x) = f

(
x, φ(x)

)
for

all x ∈ [a− h, a+ h] and φ(a) = b, then

φ(x)− b = φ(x)− φ(a) =

∫ x

a

φ′(t) dt =

∫ x

a

f
(
t, φ(t)

)
dt.

Hence the function φ that we are looking for solves the following integral equation,

(2.4) φ(x) = b+

∫ x

a

f
(
t, φ(t)

)
dt.

Notice that if a function φ satisfies (2.4) then φ is differentiable by the FTC and φ′(x) =
f
(
x, φ(x)

)
for all x ∈ [a − h, a + h] and φ(a) = b. Also note that since f is assumed to be

continuous on E then the function g : [a− h, a+ h]→ R by g(t) = f(t, ψ(t)) is a continuous
function, hence Riemann integrable.

Our goal then is to find h > 0 so that if ψ : [a − h, a + h] → R then (x, ψ(x)) ∈ E
for all x ∈ [a − h, a + h]. To achieve that we will enforce that ψ be continuous and that
|ψ(x)−b| ≤ Nh for all |x−a| ≤ h and for some N > 0 to be specified in a couple paragraphs,
in other words, ψ is in the closed ball B centered at the constant (hence continuous) function
ψ0(x) = b and with radius Nh in the complete metric space C([a− h, a+ h]) of continuous
functions on [a− h, a+ h]. The closed ball B is closed in this complete metric space, hence
B is itself a complete metric space with uniform distance d : B ×B → [0,∞) given by

d(ψ1, ψ2) = sup
x∈[a−h,a+h]

|ψ1(x)− ψ2(x)|.

Suppose we have found h with the properties described in the previous paragraph. Then
let F : B → C[a− h, a+ h] be defined by

(2.5) F (ψ)(x) := b+

∫ x

a

f
(
t, ψ(t)

)
dt, for all ψ ∈ B, x ∈ [a− h, a+ h].

Since f is continuous, then F (ψ) is well defined and continuous on [a − h, a + h] by
Fundamental Theorem of Calculus.
Claim: (i) F : B → B, that is if ψ ∈ B then F (ψ) ∈ B.

(ii) F is a (strict) contraction provided h is chosen small enough (h < 1/M suffices, where
M is the Lipschitz constant of f).

Assuming the claim (hence the existence of h small enough, givenN > 0, so that everything
said holds) we can now use the Contraction Mapping Theorem for X = B = {ψ ∈ C([a −
h, a + h)) : |ψ(x) − b| ≤ Nh for all x ∈ [a − h, a + h]} a complete metric space with the
uniform metric d, and F : B → B the integral operator defined in (2.5). Hence there is a
unique function φ ∈ B such that F (φ) = φ, but this is precisely the integral equation (2.4),
and as a consequence, φ′(x) = f

(
x, φ(x)

)
for all x ∈ [a− h, a+ h] and φ(a) = b.
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To find h > 0. Choose N > 0 such that |f(a, b)| < N , by continuity of f at (a, b), there
is r > 0 such that BR2

(
(a, b), r

)
⊂ E and |f(x, y)| ≤ N for all (x, y) ∈ BR2

(
(a, b), r

)
. Let

(2.6) h := min{r/2, r/2N, 1/M} > 0,

this choice enforces that h ≤ r/2, Nh ≤ r/2, and Mh ≤ 1. The first two constraints on h
imply that the rectangle R = [a − h, a + h] × [b − Nh, b + Nh] is a subset of E. Indeed, R
is contained in the square [a− r/2, a+ r/2]× [b− r/2, b+ r/2] which is clearly contained in
the ball BR2

(
(a, b), r

)
⊂ E. The third constarint ensures that α = Mh < 1, where α will be

the contraction constant for the mapping F .

Proof of the Claim. (i) Assume ψ ∈ B ⊂ C([a − h, a + h]) we need to show that
F (ψ) ∈ B. If ψ ∈ B then |ψ(x)−b| ≤ Nh for all |x−a| ≤ h and this implies (x, ψ(x)) ∈ R ⊂
BR2

(
(a, b), r

)
⊂ E for all |x−a| ≤ h. Hence we can evaluate f(t, ψ(t)) for all t ∈ [a−h, a+h]

and moreover |f(t, ψ(t))| ≤ N , by definition of the ball B. With this in mind we estimate
|F (ψ)(x)− b| for each x ∈ [a− h, a+ h] using the triangle inequality for integrals,

|F (ψ)(x)− b| ≤
∫ x

a

|f
(
t, ψ(t)

)
| dt ≤ Nh.

This is precisely saying that F (ψ) ∈ B.
(ii) To show that F : B → B is a contraction we estimate the difference between the

images under F of two functions ψ1, ψ2 ∈ B, we use the triangle inequality for integrals and
the Lipschitz condition (2.3) for f , namely, for all |x− a| ≤ h,

|F (ψ1)(x)− F (ψ2)(x)| =

∣∣∣∣∫ x

a

(
f
(
t, ψ1(t)

)
− f

(
t, ψ2(t)

))
dt

∣∣∣∣
≤

∫ x

a

|f
(
t, ψ1(t)

)
− f

(
t, ψ2(t)

)
| dt

≤
∫ x

a

M |ψ1(t)− ψ2(t)| dt

≤ hMd(ψ1, ψ2).

Taking the supremum over all x ∈ [a− h, a+ h] we conclude that

d
(
F (ψ1), F (ψ2)

)
≤ hMd(ψ1, ψ2),

where α := hM < 1 by our definition of h > 0.
�
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