Exercise: Let I be a bounded interval, and let $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ be Riemann integrable functions on I. Let $a, b \in \mathbb{R}$, prove that $a f+b g$ is Riemann integrable, and that $\int_{I}(a f+b g)=a\left(\int_{I} f\right)+b\left(\int_{I} g\right)$.

We will prove this exercise as follows:

- First we will prove a lemma for linearity and integration of piecewise constant(step) functions.
- Then we will prove that $f+g$ is Riemann integrable, and that $\int_{I}(f+g)=\int_{I} f+\int_{I} g$.
- Next we will prove that $c f$ is Riemann integrable, and that $\int_{I} c f=c\left(\int_{I} f\right)$ (first for $c \geq 0$, and then for $c<0$).
- Together, this proves that $a f+b g$ is Riemann integrable, and that $\int_{I}(a f+b g)=a\left(\int_{I} f\right)+$ $b\left(\int_{I} g\right)$.

First let us prove the following lemma.
Lemma 1. Let I be a bounded interval, $a, b \in \mathbb{R}$, and $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ be piecewise constant functions on I, then $a f+b g$ is also piecewise constant on I and p.c. $\int_{I}(a f+b g)=$ $a\left(\right.$ p.c. $\left.\int_{I} f\right)+b\left(\right.$ p.c. $\left.\int_{I} g\right)$.

Proof. First note that we can assume that f, g are piecewise constant with respect to the same partition \mathcal{P} since if they were not, we could take the common refinement.
Since f, g are piecewise constant w.r.t. \mathcal{P} we have that $f(x)=c_{J}, g(x)=d_{J} \forall x \in J \in \mathcal{P}$. So $(a f+b g)(x)=a c_{J}+b d_{J} \forall x \in J \in \mathcal{P}$. Thus $a f+b g$ is piecewise constant on I.

$$
\begin{aligned}
a\left(\text { p.c. } \int_{I} f\right)+b\left(\text { p.c. } \int_{I} g\right) & =a\left(\sum_{J \in \mathcal{P}} c_{J}|J|\right)+b\left(\sum_{J \in \mathcal{P}} d_{J}|J|\right) \\
& =\sum_{J \in \mathcal{P}}\left(a c_{J}|J|\right)+\sum_{J \in \mathcal{P}}\left(b d_{J}|J|\right) \\
& =\sum_{J \in \mathcal{P}}\left(a c_{J}+b d_{J}\right)|J| \\
& =\text { p.c. } \int_{I}(a f+b g)
\end{aligned}
$$

Giving us that $a\left(\right.$ p.c. $\left.\int_{I} f\right)+b\left(\right.$ p.c. $\left.\int_{I} g\right)=p . c . \int_{I}(a f+b g)$, as desired.

Now let us prove that $f+g$ is Riemann integrable and that $\int_{I}(f+g)=\int_{I} f+\int_{I} g$.
Proof. Since f, g are Riemann integrable, given $\epsilon>0$ we can find piecewise constant functions $\underline{f}, \bar{f}, \underline{g}, \bar{g}$ such that:

$$
\begin{equation*}
\underline{f}(x) \leq f(x) \leq \bar{f}(x) \forall x \in I \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{g}(x) \leq g(x) \leq \bar{g}(x) \forall x \in I \tag{2}
\end{equation*}
$$

and also that:

$$
\begin{gather*}
\int_{I} f-\epsilon \leq \int_{I} \underline{f} \leq \underline{\int_{I}} f=\int_{I} f=\int_{I} f \leq \int_{I} \bar{f} \leq \int_{I} f+\epsilon \tag{3}\\
\int_{I} g-\epsilon \leq \int_{I} \underline{g} \leq \underline{\int_{I}} g=\int_{I} g=\overline{\int_{I}} g \leq \int_{I} \bar{g} \leq \int_{I} g+\epsilon \tag{4}
\end{gather*}
$$

From (1) and (2) we get that

$$
\underline{f}(x)+\underline{g}(x) \leq f(x)+g(x) \leq \bar{f}(x)+\bar{g}(x) \forall x \in I
$$

which implies that we have:

$$
\begin{equation*}
\int_{I}(\underline{f}+\underline{g}) \leq \int_{I}(f+g) \leq \int_{I}(f+g) \leq \int_{I}(\bar{f}+\bar{g}) \tag{5}
\end{equation*}
$$

From (3),(4),(5), and Lemma 1, we get that:

$$
\begin{aligned}
0 \leq \bar{\int}_{I}(f+g)- & \int_{I}(f+g) \leq \int_{I}(\bar{f}+\bar{g})-\int_{I}(\underline{f}+\underline{g})=\left(\int_{I} \bar{f}+\int_{I} \bar{g}\right)-\left(\int_{I} \underline{f}+\int_{I} \underline{g}\right) \\
& \leq\left(\int_{I} f+\epsilon+\int_{I} g+\epsilon\right)-\left(\int_{I} f-\epsilon+\int_{I} g-\epsilon\right)=4 \epsilon
\end{aligned}
$$

Hence, $0 \leq \overline{\int_{I}}(f+g)-\underline{\int_{I}}(f+g) \leq 4 \epsilon$. Let $\epsilon \rightarrow 0$ then we get that $\overline{\int_{I}}(f+g)=\underline{\int_{I}}(f+g)$ and so $f+g$ is Riemann integrable.

To show that $\int_{I}(f+g)=\int_{I} f+\int_{I} g$ let us do the following:
Add (3) and (4), use (5), Lemma 1, and that $f+g$ is Riemann integrable to get the following inequalities:

$$
\begin{aligned}
\int_{I} f+\int_{I} g-2 \epsilon & \leq \int_{I} \underline{f}+\int_{I} \underline{g} \\
\leq \int_{\underline{\int_{I}}} f+\underline{\int_{I}} g=\int_{I} f+\int_{I} g & =\overline{\int_{I} f+\overline{\int_{I}} g} \\
& \leq \int_{I} \bar{f}+\int_{I} \bar{g} \leq \int_{I} f+\int_{I} g+2 \epsilon
\end{aligned}
$$

Therefore we have that:

$$
\int_{I} f+\int_{I} g-2 \epsilon \leq \int_{I}(f+g) \leq \int_{I} f+\int_{I} g+2 \epsilon
$$

So now we can let $\epsilon \rightarrow 0$ (since we no longer have anything that depends on ϵ) and conclude that $\int_{I}(f+g)=\int_{I} f+\int_{I} g$.

Thus $f+g$ is Riemann integrable and $\int_{I}(f+g)=\int_{I} f+\int_{I} g$

Now let us prove that for $c \in \mathbb{R}, c \geq 0$ and f Riemann integrable, that $c f$ is Riemann integrable, and that $\int_{I} c f=c \int_{I} f$.

Proof. Since f is Riemann integrable, we know that given $\epsilon>0$ there are functions, say \underline{f}, \bar{f} such that

$$
\begin{equation*}
\underline{f}(x) \leq f(x) \leq \bar{f}(x) \forall x \in I \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{I} f-\epsilon \leq \int_{I} \underline{f} \leq \int_{\underline{I}} f=\int_{I} f=\int_{I} f \leq \int_{I} \bar{f} \leq \int_{I} f+\epsilon \tag{7}
\end{equation*}
$$

Multiplying (6),(7) through by our constant c we get the following:

$$
\begin{gather*}
c \underline{f}(x) \leq c f(x) \leq c \bar{f}(x) \forall x \in I \tag{8}\\
c \int_{I} f-c \epsilon \leq c \int_{I} \underline{f} \leq c \int_{\underline{I}} f=c \int_{I} f=\overline{\int_{I}} f \leq c \int_{I} \bar{f} \leq c \int_{I} f+c \epsilon \tag{9}
\end{gather*}
$$

From (8), and Lemma 1 we know that $c \underline{f}$ and $c \bar{f}$ are piecewise constant and so we have:

$$
\begin{equation*}
\int_{I} c \underline{f} \leq \underline{\int_{I}} c f \leq \bar{\int}_{I} c f \leq \int_{I} c \bar{f} \tag{10}
\end{equation*}
$$

Now from (9),(10), and Lemma 1, we get:

$$
0 \leq \overline{\int_{I}} c f-\underline{\int_{I}} c f \leq \int_{I} c \bar{f}-\int_{I} c \underline{f}=c \int_{I} \bar{f}-c \int_{I} \underline{f} \leq\left(c \int_{I} f+c \epsilon\right)-\left(c \int_{I} f-c \epsilon\right)=2 c \epsilon
$$

Hence, $0 \leq \overline{\int_{I}} c f-\underline{\int_{I}} c f \leq 2 c \epsilon$, let $\epsilon \rightarrow 0$ and we get that $\overline{\int_{I}} c f=\underline{\int_{I}} c f$ so we have that $c f$ is Riemann integrable for $c \geq 0$.

Now let us show that $\int_{I} c f=c \int_{I} f$
From (9), (10), Lemma 1, and that $c f$ is Riemann integrable we have the following inequalities:

$$
c \int_{I} f-c \epsilon \leq c \int_{I} \underline{f}=\int_{I} c \underline{f} \leq \underline{\int_{I}} c f=\int_{I} c f=\overline{\int_{I}} c f \leq \int_{I} c \bar{f}=c \int_{I} \bar{f} \leq c \int_{I} f+c \epsilon
$$

Therefore, we have:

$$
c \int_{I} f-c \epsilon \leq \int_{I} c f \leq c \int_{I} f+c \epsilon
$$

Now we can let $\epsilon \rightarrow 0$ and conclude that $\int_{I} c f=c \int_{I} f$.
Thus, $c f$ is Riemann integrable and $\int_{I} c f=c \int_{I} f$.
Now let us prove that $c f$ is Riemann integrable and that $\int_{I} c f=c \int_{I} f$ for $c<0$.
Proof. Since f is Riemann integrable, we know that given $\epsilon>0$ there are functions, say \underline{f}, \bar{f} such that

$$
\begin{equation*}
\underline{f}(x) \leq f(x) \leq \bar{f}(x) \forall x \in I \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{I} f-\epsilon \leq \int_{I} \underline{f} \leq \underline{\int_{I}} f=\int_{I} f=\overline{\int_{I}} f \leq \int_{I} \bar{f} \leq \int_{I} f+\epsilon \tag{12}
\end{equation*}
$$

Multiplying (11),(12) through by our constant c we get the following:

$$
\begin{gather*}
c \bar{f}(x) \leq c f(x) \leq c \underline{f}(x) \forall x \in I \tag{13}\\
c \int_{I} f+c \epsilon \leq c \int_{I} \bar{f} \leq c \overline{\int_{I}} f=c \int_{I} f=c \int_{\underline{I}} f \leq c \int_{I} \underline{f} \leq c \int_{I} f-c \epsilon \tag{14}
\end{gather*}
$$

Note think about flipping the upper and lower integrals.
From (13), and Lemma 1 we know that $c \underline{f}$ and $c \bar{f}$ are piecewise constant and so we have:

$$
\begin{equation*}
\int_{I} c \bar{f} \leq \int_{\underline{I}} c f \leq \overline{\int_{I}} c f \leq \int_{I} c \underline{f} \tag{15}
\end{equation*}
$$

Now from (14),(15), and Lemma 1, we get:

$$
0 \leq \bar{\int}_{I} c f-\underline{\int_{I}} c f \leq \int_{I} c \underline{f}-\int_{I} c \bar{f}=c \int_{I} \underline{f}-c \int_{I} \bar{f} \leq\left(c \int_{I} f-c \epsilon\right)-\left(c \int_{I} f+c \epsilon\right)=-2 c \epsilon
$$

Hence we have, $0 \leq \overline{\int_{I}} c f-\underline{\int_{I}} c f \leq-2 c \epsilon$, let $\epsilon \rightarrow 0$ and we get that $\overline{\int_{I}} c f=\underline{\int_{I}} c f$ so we have that $c f$ is Riemann integrable for $c<0$.

Now let us show that $\int_{I} c f=c \int_{I} f$ for $c<0$.
From (14),(15), Lemma 1, and that $c f$ is Riemann integrable we get the following inequalities:

$$
c \int_{I} f+c \epsilon \leq c \int_{I} \bar{f}=\int_{I} c \bar{f} \leq \underline{\int_{I}} c f=\int_{I} c f=\overline{\int_{I}} c f \leq \int_{I} c \underline{f}=c \int_{I} \underline{f} \leq c \int_{I} f-c \epsilon
$$

Therefore we have that:

$$
c \int_{I} f+c \epsilon \leq \int_{I} c f \leq c \int_{I} f-c \epsilon
$$

Now we have nothing that depends on ϵ, so we can let $\epsilon \rightarrow 0$ and conclude that $\int_{I} c f=c \int_{I} f$ for $c<0$.

Together, this proves that $a f+b g$ is Riemann integrable, and that $\int_{I}(a f+b g)=a\left(\int_{I} f\right)+$ $b\left(\int_{I} g\right)$.

