Exercise 11.4.2

Sara Pollock

Let $a<b \in \mathbf{R}$ and $f:[a, b] \rightarrow \mathbf{R}$ a continuous, non-negative function: $f(x) \geq 0 \forall x \in[a, b]$. Suppose $\int_{[a, b]} f=0$. Show: $f(x)=0$ for each $x \in[a, b]$.

Proof by contradiction:
Assume $\exists c \in[a, b]: f(c)=\alpha>0$.
f is continuous on $[a, b] \Longrightarrow f$ is continuous at $c \epsilon[a, b]$.
Then by the epsilon-delta definition of continuity, we may choose $\epsilon_{1}: 0<\epsilon_{1}<\alpha$. Then
$\exists \delta_{1}>0: x \in[a, b]$ s.t. $|x-c|<\delta_{1} \Longrightarrow|f(x)-\alpha|<\epsilon_{1}$.
Now, to be sure we stay within the interval $[a, b]$, define:

$$
\delta_{0} \equiv \begin{cases}\min \left\{\frac{\delta_{1}}{2}, \frac{|c-a|}{2}, \frac{|c-b|}{2}\right\}, & c \neq a, c \neq b \\ \min \left\{\frac{\delta_{1}}{2}, \frac{|b-a|}{2}\right\}, & c=a \text { or } c=b\end{cases}
$$

We have $\delta_{0} \leq \frac{\delta_{1}}{2}<\delta_{1}$, so let's now define $I_{0},\left|I_{0}\right|>0$:

$$
I_{0} \equiv \begin{cases}{\left[c-\delta_{0}, c+\delta_{0}\right],} & c \neq a, c \neq b \\ {\left[a, a+\delta_{0}\right],} & c=a \\ {\left[b-\delta_{0}, b\right],} & c=b\end{cases}
$$

Denote $I_{0}=\left[a^{\prime}, b^{\prime}\right]$. It can be verified that $I_{0} \subset[a, b]$.
We are assured that $\forall x \epsilon I_{0}: 0<\alpha-\epsilon<f(x)<\alpha+\epsilon$. In particular, $0<\alpha-\epsilon<f(x)$. By property (h):

$$
0=\int_{[a, b]} f=\int_{\left[a, a^{\prime}\right]} f+\int_{\left[a^{\prime}, b^{\prime}\right]} f+\int_{\left[b^{\prime}, b\right]} f
$$

Since $0<\alpha-\epsilon<f(x) \forall x \epsilon I_{0}$, we have $\int_{\left[a^{\prime}, b^{\prime}\right]} f>\left|I_{0}\right|(\alpha-\epsilon)>0$.
Now by property (d), $f(x) \geq 0 \forall x \in I \Longrightarrow \int_{I} f \geq 0$, for I any subinterval of $[a, b]$.
So then

$$
0=\int_{[a, b]} f \geq \underbrace{\int_{\left[a, a^{\prime}\right]} f}_{\geq 0}+\underbrace{\left|I_{0}\right|(\alpha-\epsilon)}_{>0}+\underbrace{\int_{\left[b^{\prime}, b\right]} f}_{\geq 0}>0, \text { a contradiction! }
$$

As our assumption that $\exists c \in[a, b]: f(c)=\alpha>0$ led to a contradiction, we conclude that $f(x)=0$ for each $x \in[a, b]$.

