Instructor: C. Pereyra

1. Show by induction that the statement $P(n): \quad 1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x}$
is true for all natural numbers n, and any fixed rational number $x \neq 1$.
2. Given functions $f: X \rightarrow Y, g: Y \rightarrow Z$, show that if $g \circ f$ is surjective (onto) then g must be surjective. Is it true that f must also be surjective? If instead of surjective we ask about injective what is the correct statement? And bijective?
3. Given a set X and subsets A and B of X. Show that $A \cup B=(A \backslash B) \cup(A \cap B) \cup(B \backslash A)$.
4. Let a, b and c be integer numbers, $c \neq 0$. Show that $a c=b c$ then $a=b$. (You may assume corresponding result for naturals.)
5. Let r and q be rational numbers. Show that if $r q=0$ then $r=0$ or $q=0$. (You may assume corresponding result for integers.)
6. Given finite sets $A_{1}, A_{2}, \ldots, A_{n}$ their union is a finite set. If the given sets are pairwise disjoint, that is $A_{i} \cap A_{j}=\emptyset$ for all $i \neq j$, show that the cardinality of their union is the sum of the cardinalities of the sets:

$$
\#\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=\# A_{1}+\# A_{2}+\cdots+\# A_{n}
$$

Use the fact that the statement is true for $n=2$ (Proposition 3.6.14(b) in Cardinal Arithmetic).
7. Given a rational number r, and natural numbers n and m. We define $r^{0}:=1$ and given the rational number r^{n} then we define the rational number $r^{n+1}:=r^{n} \times r$.
(a) Show that $\left(r^{n}\right)^{m}=r^{n \times m}$.

Hint: fix one of the natural numbers and induct on the other.
(b) Assume now that $r \neq 0, p$ and q are integers, and show that $\left(r^{p}\right)^{q}=r^{p \times q}$. Where we define for a negative integer $p=-n, n \in \mathbb{N}, r^{p}=r^{-n}:=\left(r^{n}\right)^{-1}$. Useful auxiliary lemma is to show that: $\left(r^{n}\right)^{-1}=\left(r^{-1}\right)^{n}$.
8. Let $\epsilon>0$ be a positive rational number (a "step" or "unit"). Show that given a positive rational number $x>0$, there exists a natural number n (depending both on the step ϵ and on x) such that $x<n \epsilon$. In words: given any positive step size we can overcome any fixed positive rational number with a finite number of steps.
9. Given a rational number x, show directly from the definition of absolute value, that $|-x|=|x|$.
10. In this problem, use any property of absolute value you wish, make sure you state properly the properties you are using.
(a) Show that if $x, y, z \in \mathbb{Q}, z \neq 0$, and $|x-y|<1 / 2$, then $|x z-y z|<|z| / 2$.
(b) Show that if $|x-y| \leq 1 / 3,|z-w| \leq 1 / 4$ then $x z$ and $y w$ are $(|z| / 3+|x| / 4+1 / 12)$-close. Show this is optimal, that is, find x, y, z, w satisfying the hypothesis and such that $|x z-y w|=$ $|z| / 3+|x| / 4+1 / 12$.
11. Show that the "reverse triangle inequality" holds for $x, y \in \mathbb{Q}:||x|-|y|| \leq|x-y|$.

