Practice Problems for Exam \# 1 - MATH 401/501 - Spring 2014
Instructor: C. Pereyra

1. Show by induction that the statement

$$
P(n): \quad 1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x}
$$

is true for all natural numbers n, and any fixed rational number $x \neq 1$.
2. Given a set X and subsets A and B of X. Show that

$$
X \backslash(A \cup B)=(X \backslash A) \cap(X \backslash B)
$$

3. Let r and q be rational numbers. Show that if $r q=0$ then $r=0$ or $q=0$.
4. Suppose $f: X \rightarrow Y$, and suppose that A, B are subsets of X and C, D are subsets of Y. Determine which inclusion relationship must hold for the following pair of sets:
(a) $f(A \cap B)$ and $f(A) \cap f(B)$,
(b) $f^{-1}(C \cap D)$ and $f^{-1}(C) \cap f^{-1}(D)$.

Remember that for $A \subset X, f(A)=\{y \in Y: y=f(x), x \in A\}$ (the direct image of A under f); and for $C \subset Y, f^{-1}(C)=\{x \in X: f(x) \in B\}$ (the inverse image of B under f).
5. Show that given any sets (finite or not) A, B, C such that $B \cap C=\emptyset$ then

$$
\#\left(A^{B} \times A^{C}\right)=\#\left(A^{B \cup C}\right)
$$

Remember that the set A^{B} consists of all functions $f: B \rightarrow A$.
6. Given a rational number r, and natural numbers n and m. We define $r^{0}:=1$ and given the rational number r^{n} then we define the rational number $r^{n+1}:=r^{n} \times r$.
(a) Show that

$$
\left(r^{n}\right)^{m}=r^{n \times m}
$$

Hint: fix one of the natural numbers and induct on the other.
(b) Assume now that $r \neq 0, p$ and q are integers, and show that $\left(r^{p}\right)^{q}=r^{p \times q}$. Where we define for a negative integer $p=-n, n \in \mathbb{N}, r^{p}=r^{-n}:=\left(r^{n}\right)^{-1}$. Useful auxiliary lemma is to show that: $\left(r^{n}\right)^{-1}=\left(r^{-1}\right)^{n}$.
7. Let $\epsilon>0$ be a positive rational number (a "step" or "unit"). Show that given a positive rational number $x \geq 0$, there exists a natural number n (depending both on the step ϵ and on x) such that $|x|<n \epsilon$. In words: given any positive step size we can overcome any fixed rational number with a finite number of steps.
8. Given a rational number x, show directly from the definition of absolute value, that $|-x|=|x|$.
9. In this problem, use any property of absolute value you wish, make sure you state properly the properties you are using.
(a) Show that if $x, y, z \in \mathbb{Q},|x-y|<1 / 2$, then $|x z-y z|<|z| / 2$.
(b) Show that if $w, x, y, z \in \mathbb{Q},|w-x| \leq 1 / 2$ and $|y-z| \leq 1 / 2$ then $|(w+y)-(x+z)| \leq 1$. Can you find rational numbers x, w, x, y, z such that the hypothesis are satisfied and $|(w+y)-(x+z)|=1$?
10. Show that the "reverse triangle inequality" holds for $x, y \in \mathbb{Q}:||x|-|y|| \leq|x-y|$.

