Name:

Review - MATH 401/501 - Spring 2009 May 6, 2009

Instructor: C. Pereyra

- 1. Suppose $f, g : \mathbb{R} \to \mathbb{R}$ are uniformly continuous on \mathbb{R} .
 - (a) Show that the sum (f+g) and the composition $(f \circ g)$ are uniformly continuous on \mathbb{R} .

(b) Show that the product (fg) is not necessarily uniformly continuous. However if both functions are bounded then the product is uniformly continuous.

2. Assume known that the derivative of $f(x) = e^x$ equals f, that is, f is differentiable on \mathbb{R} and $f'(x) = e^x$.

Show that $f : \mathbb{R} \to (0, \infty)$ is invertible, and that its inverse $f^{-1} : (0, \infty) \to \mathbb{R}$ is differentiable. Find the derivative of the inverse function.

- 3. (20 points) Let h be a differentiable function defined on the interval [0,3], and assume that h(0) = 1, h(1) = 2 and h(3) = 2.
 - (a) Show that there exists a point $d \in [0,3]$ such that h(d) = d.
 - (b) Show that there exists a point $c \in (0,3)$ such that h'(c) = 1/3.
 - (c) Show that there exists a point $b \in (0,3)$ such that h'(b) = 1/4.
- 4. (L'Hopital's Rule). Show that if $f, g : X \to \mathbb{R}$, $x_0 \in X$ is a limit point of X such that $f(x_0) = g(x_0) = 0$, f, g are differentiable at x_0 , and $g'(x_0) \neq 0$, then there is some $\delta > 0$ such that $g(x) \neq 0$ for all $x \in X \cap (x_0 \delta, x_0 + \delta)$ and

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)}{g'(x_0)}.$$

Hint: Use Newton's approximation theorem.

Show that the following version of L'Hopital's Rule is not correct: Under the above hypothesis then,

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Hint: Consider $f(x) = x^2 \sin 1/x$ for $x \neq 0$ and f(0) = 0, and g(x) = x at $x_0 = 0$. The problem arises when one of the derivatives is not continuous at x_0 , as we showed to be the case for g(x) at $x_0 = 0$.