Review - MATH 401/501 - Spring 2009

May 6, 2009
Instructor: C. Pereyra

1. Suppose $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are uniformly continuous on \mathbb{R}.
(a) Show that the sum $(f+g)$ and the composition $(f \circ g)$ are uniformly continuous on \mathbb{R}.
(b) Show that the product $(f g)$ is not necessarily uniformly continuous. However if both functions are bounded then the product is uniformly continuous.
2. Assume known that the derivative of $f(x)=e^{x}$ equals f, that is, f is differentiable on \mathbb{R} and $f^{\prime}(x)=e^{x}$.
Show that $f: \mathbb{R} \rightarrow(0, \infty)$ is invertible, and that its inverse $f^{-1}:(0, \infty) \rightarrow \mathbb{R}$ is differentiable. Find the derivative of the inverse function.
3. (20 points) Let h be a differentiable function defined on the interval $[0,3]$, and assume that $h(0)=1, h(1)=2$ and $h(3)=2$.
(a) Show that there exists a point $d \in[0,3]$ such that $h(d)=d$.
(b) Show that there exists a point $c \in(0,3)$ such that $h^{\prime}(c)=1 / 3$.
(c) Show that there exists a point $b \in(0,3)$ such that $h^{\prime}(b)=1 / 4$.
4. (L'Hopital's Rule). Show that if $f, g: X \rightarrow \mathbb{R}, x_{0} \in X$ is a limit point of X such that $f\left(x_{0}\right)=g\left(x_{0}\right)=0, f, g$ are differentiable at x_{0}, and $g^{\prime}\left(x_{0}\right) \neq 0$, then there is some $\delta>0$ such that $g(x) \neq 0$ for all $x \in X \cap\left(x_{0}-\delta, x_{0}+\delta\right)$ and

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}
$$

Hint: Use Newton's approximation theorem.
Show that the following version of L'Hopital's Rule is not correct: Under the above hypothesis then,

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Hint: Consider $f(x)=x^{2} \sin 1 / x$ for $x \neq 0$ and $f(0)=0$, and $g(x)=x$ at $x_{0}=0$. The problem arises when one of the derivatives is not continuous at x_{0}, as we showed to be the case for $g(x)$ at $x_{0}=0$.

