Instructor: C. Pereyra

1. Let $X \subset \mathbb{R}, \alpha$ and C positive real numbers. Suppose a function $f: X \rightarrow \mathbb{R}$ satisfies the following Hölder continuity property:

$$
|f(x)-f(y)| \leq C|x-y|^{\alpha}, \quad \text { for all } x, y \in X
$$

Show that f is uniformly continuous on X.
2. (Squeeze Theorem). Let f, g and h satisfy $f(x) \leq g(x) \leq h(x)$ for all x in some common domain $X \subset \mathbb{R}$. If $\lim _{x \rightarrow x_{0}} f(x)=L=\lim _{x \rightarrow x_{0}} h(x)$ at some adherent point x_{0} of X, show that $\lim _{x \rightarrow x_{0}} g(x)$ exists and is L. (You might want to use the squezze theorem for sequences and the sequential characterization of limits of functions).
3. Show that any function f with domain the integers \mathbb{Z} will necessarily be continuous at every point on its domain. More generally, show that if $f: X \rightarrow \mathbb{R}$, and x_{0} is an isolated point of $X \subset \mathbb{R}$, then f is continuous at x_{0}.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies the additive property $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$.
(i) Show that $f(0)=0$ and that $f(-x)=-f(x)$ for all $x \in \mathbb{R}$.
(ii) Show that if f is continuous at $x=0$, then f is continuous at every point in \mathbb{R}.
(iii) Let $k=f(1)$. Show that $f(n)=k n$ for all $n \in \mathbb{N}$, and then prove that $f(z)=k z$ for all $z \in \mathbb{Z}$. Now show that $f(r)=k r$ for all $r \in \mathbb{Q}$.
(iv) Assume f is continuous at zero, use (ii) and (iii) to conclude that $f(x)=k x$ for all $x \in \mathbb{R}$. Thus an additive function that is continuous at $x=0$ must necessarily be a linear function through the origin.
5. For each choice of subsets A of the real numbers, construct a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that has discontinuities at every point $x \in A$ and is continuous on its complement $\mathbb{R} \backslash A$.
(a) $A=\mathbb{Z}$.
(b) $A=\{x: 0<x<1\}=(0,1)$.
(c) $A=\{x: 0<x \leq 1\}=(0,1]$.
(d) $A=\{1 / n: 0<n \in \mathbb{N}\}$.
6. Assume g is defined on an open interval (a, c) and it is known to be uniformly continuous on $(a, b]$ and on $[b, c)$ where $a<b<c$. Prove that g is uniformly continuous on (a, c).
Show that if f is uniformly continuous on (a, b) and (b, c), for some $b \in(a, c)$, then f is uniformly continuous on (a, c) if and only if f is continuous at b.
7. Assume $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are uniformly continuous on \mathbb{R}.
(a) Show that $(f+g)$ is uniformly continuous on \mathbb{R}.
(b) Show that the composition $(f \circ g)$ is uniformly continuous.
(c) Show that the product $(f g)$ is not necessarily uniformly continuous unless one of the functions is bounded.
8. Is it true that if f is continuous on \mathbb{R} then

$$
f\left(\limsup _{n \rightarrow \infty} x_{n}\right)=\limsup _{n \rightarrow \infty} f\left(x_{n}\right) ?
$$

9. Verify the quotient rule for differentiation.
10. (Intermediate Value Theorem for Derivatives or Darboux's Theorem). If f is differentiable on $[a, b]$, and if α is a real number in between $f^{\prime}(a)$ and $f^{\prime}(b)$ say $f^{\prime}(a)<\alpha<f^{\prime}(b)$ (or $f^{\prime}(b)<\alpha<f^{\prime}(a)$), then there exists a point $c \in(a, b)$ such that $f^{\prime}(c)=\alpha$. (Warning: you can not assume that f^{\prime} is continuous even if it is defined on all of $[a, b]$, so you cannot use the IVT for continuous functions. Consider the example discussed in class $f(x)=x^{2} \sin (1 / x)$ it is differentiable on $[-1,1]$ but the derivative is not continuous at $x=0$.) Hint: to simplify define a new function $g(x)=f(x)-\alpha x$ on $[a, b]$. This function g is differentiable on $[a, b]$ and show that our hypothesis on f imply that $g^{\prime}(a)<0<g^{\prime}(b)$ (or $g^{\prime}(b)<0<g^{\prime}(a)$). Now show that there is a $c \in(a, b)$ such that $g^{\prime}(c)=0$. To do the later, show that there exists a point $x \in(a, b)$ such that $g(a)>g(x)$, and a point $y \in(a, b)$ such that $g(b)<g(y)$. Now finish the proof of Darboux's theorem.
11. Assume known that the functions $\sin x$ and $\cos x$ are differentiable, and that their derivatives are $\cos x$ and $-\sin x$ respectively. Let $g_{a}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
g_{a}(x)=\left\{\begin{array}{cc}
x^{a} \sin (1 / x) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}\right.
$$

Find particular (potentially noninteger) values of a so that
(a) g_{a} is differentiable on \mathbb{R} but g_{a}^{\prime} is unbounded on $[0,1]$.
(b) g_{a} is differentiable on \mathbb{R} with g_{a}^{\prime} continuous but not differentiable at zero.
(c) g_{a} is differentiable on \mathbb{R} and g_{a}^{\prime} differentiable on \mathbb{R}, but such that $g_{a}^{\prime \prime}$ is not continuous at zero.
12. Give an example of a function on \mathbb{R} that has the intermediate value property for every interval (that is it takes on all values between $f(a)$ and $f(b)$ on $a \leq x \leq b$ for all $a<b$), but fails to be continuous at a point. Can such function have a jump discontinuity?
13. (L'Hopital's Rule). Show that if $f, g: X \rightarrow \mathbb{R}, x_{0} \in X$ is a limit point of X such that $f\left(x_{0}\right)=g\left(x_{0}\right), f, g$ are differentiable at x_{0}, and $g^{\prime}\left(x_{0}\right) \neq 0$, then there is some $\delta>0$ such that $g(x) \neq 0$ for all $x \in X \cap\left(x_{0}-\delta, x_{0}+\delta\right)$ and

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)} .
$$

Hint: Use Newton's approximation theorem.
Show that the following version of L'Hopital's Rule is not correct. Under the above hypothesis then,

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Hint: Consider $f(x)=g_{2}(x)$ (as in exercise 11), and $g(x)=x$ at $x_{0}=0$.

