Review and Practice Problems for Exam # 2 - MATH 401/501 - Fall 2017

Instructor: C. Pereyra

Real numbers

- Real numbers are closed under addition, multiplication, negation, subtraction and division by non-zero real numbers. You are free to use usual arithmetic properties (commutative and associative properties of addition and multiplication, distributive property, etc).
- Real numbers have an order, and obey a trichotomy if x, y are real numbers then exactly one of the following holds: x = y, x < y or x > y.
- Should know and be able to use
 - (i) the definition of absolute value of a real number,
 - (ii) the triangle inequality (and "reverse" triangle inequality).
- Understand Archimedean properties and their implications: interspersing of integers by \mathbb{R} , density of rationals and irrationals.
- Understand the meaning of upper and lower bounds for a set in ℝ, and the meaning of the supremum (least upper bound or l.u.b.) and infimum (greatest lower bound or g.l.b.) of a set of real numbers.
- Be able to show that a given number is the supremum (infimum) of a set by showing that
 - (i) it is an upper (lower) bound for the set,
 - (ii) it is the smallest upper (largest lower) bound.
- Appreciate the Least Upper Bound and Greatest Lower Bound properties of real numbers: every non-empty and bounded set of real numbers has a unique supremum and a unique infimum.

Sequences of real numbers

- Know the definition of bounded sequences, bounded above sequences and bounded below sequences. More precisely a sequence $\{x_n\}_{n\geq 0}$ is bounded (respectively bounded above or bounded below) iff there is M > 0 such that for all $n \geq 0$ we have $|x_n| \leq M$ (respectively $x_n \leq M$ or $M \leq x_n$).
- Know the ϵ , N definition of Cauchy sequences and of convergent sequences in \mathbb{R} to a limit $L \in \mathbb{R}$. More precisely, a sequence $\{x_n\}_{n>0}$ of real numbers
 - is Cauchy iff given $\epsilon > 0$ there is N > 0 such that for all $n, m \ge N$ then $|x_n x_m| \le \epsilon$,
 - converges to L iff given $\epsilon > 0$ there is N > 0 such that for all $n \ge N$ then $|x_n L| \le \epsilon$.
- Be able to show that limits are unique (that is if a sequence converges it converges to a unique limit).
- Be able to prove or disprove that a given sequence converges or is Cauchy by using the " ϵ , N definition". E.g. $a_n = 1/n$, $b_n = 2^{-n}$.
- Be able to show that a convergent sequence is a Cauchy sequence.
- Be able to show and use that Cauchy sequences (and hence convergent sequences) are bounded sequences. However not all bounded sequences are convergent, e.g. $b_n = (-1)^n$ for all $n \ge 0$.
- Be able to show that the sum/product of two Cauchy sequences (or two convergent sequences) is a Cauchy sequence (or a convergent sequence and convergent to the sum/product of the limits of the given convergent sequences "limit laws").
- Understand that if a Cauchy (convergent) sequence is bounded away from zero then the sequence of reciprocals is Cauchy (hence convergent and to the reciprocal of the limit which is necessarily non-zero, another "limit law").
- Be able to prove or disprove that a given sequence converges by appealing to additive/multiplicative/reciprocal properties of limits (limit laws), and using known basic limits.

- Know and be able to use the Monotone Bounded Sequence Convergence Theorem:
 - (i) an increasing and bounded above sequence is convergent and to the sequence's supremum,
 - (ii) a decreasing and bounded below sequence is convergent and to the sequence's infimum.
- You should know and use some basic limits :
 - $-\lim_{n\to\infty} x^n = 0$ if |x| < 1, is 1 if x = 1, and does not exist if x = -1 or |x| > 1;
 - $-\lim_{n \to \infty} x^{1/n} = 1 \text{ if } x > 0; \qquad -\lim_{n \to \infty} 1/n^{1/k} = 0 \text{ for all integers } k \ge 1.$
 - $-\lim_{n\to\infty} n^{1/n} = 1; \qquad \text{Let } a_n > 0, \ q \in \mathbb{R}, \text{ if } \lim_{n\to\infty} a_n = 1 > 0 \text{ then } \lim_{n\to\infty} a_n^q = 1.$
- Appreciate the deep fact that Cauchy sequences are convergent sequences in \mathbb{R} (completeness of the real numbers) .

Limit points, limsup, liminf

- Appreciate the definition of "limit points" of a sequence as the collection of "subsequencial limits" (the limits of convergent subsequences of the sequence.
- Know that c is a limit point for a sequence $\{x_n\}$ if for all $\epsilon > 0$ there are "infinitely many" terms of the sequence in the interval $[c \epsilon, c + \epsilon]$. More precisely, for all $\epsilon, N > 0$ there is an $n_N \ge N$ such that $|x_{n_N} c| \le \epsilon$ (necessarily the set of labels $\{n_N\}_{N\ge 0}$ is an infinite set!).
- Be able to identify the "limit points" (or "subsequencial limits") of a concrete sequence e.g: $a_n = 3$ for all $n \ge 0$, $b_n = (-1)^n$ for all $n \ge 0$, $c_n = (-1)^n n$ for all $n \ge 0$.
- Know that bounded sequences in \mathbb{R} have limit superior/inferior in \mathbb{R} , defined as $\limsup \{x_n\} := \lim_{N \to \infty} \sup_{n \ge N} x_n$ and $\liminf \{x_n\} := \lim_{N \to \infty} \inf_{n \ge N} x_n$.
- Be aware of the ϵ characterization of limsup (similarly liminf): for all $\epsilon > 0$
 - (i) Finitely many terms of the sequence $\{x_n\}$ are larger than $\limsup\{x_n\} + \epsilon$. More precisely for all $\epsilon > 0$ there is N > 0 such that for all $n \ge N$ we have $x_n \le \limsup\{x_n\} + \epsilon$.
 - (ii) Infinitely many terms of the sequence $\{x_n\}$ are in between $\limsup\{x_n\} \epsilon$ and $\limsup\{x_n\} + \epsilon$. More precisely, for all $\epsilon > 0$ and N > 0 there is $n_N \ge N$ such that $|x_{n_N} - \limsup\{x_n\}| \le \epsilon$.

And its consequences:

- $\limsup\{x_n\}$ and $\liminf\{x_n\}$ are limit points (subsequencial limits) of the sequence.
- A sequence of real numbers converges if and only if the limsup and the liminf coincide.
- The limsup is the "largest limit point" (or "largest subsequential limit") of the sequence, and liminf is the "smallest limit point" (or "smallest subsequential limit") of the sequence.
- A sequence converges to L iff all its subsequences converge to L iff the unique limit point of the sequence is L.
- Every bounded sequence has a at least one convergent subsequence or equivalently at least one "limit point" (Bolzano-Weierstrass theorem).
- Be able to identify the lim sup and lim inf of a given sequence. Use this knowledge to conclude that if $\limsup a_n = \liminf a_n = L$ then the sequence $\{a_n\}$ converges AND $\lim_{n\to\infty} a_n = L$.
- Be able to use the squeeze theorem to deduce convergence of the sequence being squeezed.

Series

- Understand that convergence of a series is by definition convergence of the sequence of partial sums.
- Be able to deduce from the theory of sequences basic convergence tests: Cauchy test, divergence test, absolute convergence test, comparison test.
- Be familiar with other useful tests such as: alternating series test, p-test, root test, and ratio test. Be able to use these tests to deduce convergence or divergence of specific series.

• Be able to exploit convergence properties of geometric series: $\sum_{n=0}^{\infty} r^n$ converges to 1/(1-r) if |r| < 1, diverges otherwise.

Limits and continuity of functions $f: E \to \mathbb{R}, E \subset \mathbb{R}$

- Know definition of a bounded function: $\exists M > 0$ such that $|f(x)| \leq M$ for all $x \in E$.
- Know the equivalent "definitions" of $\lim_{x \to x_0} f(x) = L$. Let $E \subset \mathbb{R}$ and $f : E \to \mathbb{R}$, x_0 is an adherent point¹ of E, then $\lim_{x \to x_0, x \in E} f(x) = L$ if and only if
 - $(\epsilon \delta \text{ definition}) \ \forall \epsilon > 0 \ \exists \delta > 0 \text{ such that } |f(x) L| \le \epsilon \ \forall x \in E \text{ such that } |x x_0| \le \delta.$
 - (Sequential definition) For all sequences $\{x_n\}_{n\geq 0}$ in E if $\lim_{n\to\infty} x_n = x_0$ then $\lim_{n\to\infty} f(x_n) = L$.
- Know the equivalent "definitions" of continuity at a point x_0 . Let $E \subset \mathbb{R}$ and $f : E \to \mathbb{R}$, $x_0 \in E$, then f is continuous at x_0 if and only if
 - (Limit definition) $\lim_{x \to x_0, x \in E} f(x) = f(x_0).$
 - $-(\epsilon \delta \text{ definition}) \ \forall \epsilon > 0 \ \exists \delta > 0 \text{ such that } |f(x) f(x_0)| \le \epsilon \ \forall x \in E \text{ such that } |x x_0| \le \delta.$
 - (Sequential definition) For all sequences $\{x_n\}_{n\geq 0}$ in E if $\lim_{n\to\infty} x_n = x_0$ then $\lim_{n\to\infty} f(x_n) = f(x_0)$.
- Be able to decide whether a function is bounded or not and whether a function is continuous or not.
- Know that basic functions are continuous such us: constant function (f(x) = c), identity function (f(x) = x), absolute value function (f(x) = |x| for $x \in \mathbb{R})$, and exponential functions $(f(x) = x^p)$ for x > 0, and $g(x) = a^x$ for a > 0 and $x \in R$.
- Know the limit laws for functions and be able to prove them and use them to compute limits.
- Know and be able to prove that composition and arithmetic operations preserve continuity. Use these properties to conclude that more complex functions are continuous such us: polynomials $(p(x) = a_0 + a_1x + \cdots + a_nx^n)$, rational functions (quotients of polynomials, wherever the denominator is non-zero), exponentials with continuous base or exponent $(f(x) = a^{p(x)} \text{ or } g(x) = f(x)^q$ where f is a positive and continuous function and $q \in \mathbb{R}$.
- Use your knowledge of continuous functions to compute limits for example:

$$-\lim_{x\to x_0} x^q = x_0^q$$
 for $x, x_0 > 0$ and $q \in \mathbb{R}$.

 $-\lim_{x \to x_0} a^x = a^{x_0} \text{ for } x, x_0 \in \mathbb{R} \text{ and } a > 0.$

Practice Problems for Midterm #2

- 1. If the real number x is not rational we say x is "irrational".
 - (a) Show that if $p \in \mathbb{Q}$, $p \neq 0$, and x is irrational then px is irrational.
 - (b) Show that if $x, y \in \mathbb{R}$ and x < y then there is an irrational number w such that x < w < y (density of the irrational numbers).
- 2. For each subset A of real numbers decide whether is bounded (above, below or both), find supremum and infimum: (a) $A = \{1, -1/2, 3\}$, (b) $A = \{n/(n+1) : n \in \mathbb{N}, n \ge 1\}$, (c) $A = \{r \in \mathbb{Q} : r < 5\}$.
- 3. If A and B are nonempty and bounded subsets of \mathbb{R} such that $A \subset B$ show that $\inf(B) \leq \inf(A)$.
- 4. Let *E* be a nonempty and bounded subset of \mathbb{R} , let $\lambda \in \mathbb{R}$ and $\lambda > 0$. Define $\lambda E = \{\lambda x : x \in E\}$ a subset of \mathbb{R} . Prove that If $\lambda \ge 0$ then $\sup(\lambda E) = \lambda \sup(E)$. What is $\inf(\lambda E)$? What if $\lambda < 0$?
- 5. Given $\lambda > 0$ and $\{s_n\}_{n \ge 0}$ is a bounded sequence. Show that $\limsup\{\lambda s_n\} = \lambda \limsup\{s_n\}$. What can you say when $\lambda < 0$? (Hint use previous exercise).

¹A point $x_0 \in E \subset \mathbb{R}$ is adherent iff for all $\delta > 0$ there is $x \in E$ such that $|x - x_0| \leq \delta$ (in words, we can get arbitrarily close to x_0 with points x in E).

- 6. For each of the following, prove or give a counterexample.
 - (a) If $\{x_n\}_{n>0}$ converges to x then $\{|x_n|\}_{n>0}$ converges to |x|.
 - (b) If $\{|x_n|\}_{n\geq 0}$ is convergent then $\{x_n\}_{n\geq 0}$ is convergent.
- 7. We say the sequence $\{x_n\}_{n\geq 0}$ diverges to $+\infty$ and we write $\lim_{n\to\infty} x_n = +\infty$ iff for all M > 0 there is N > 0 such that for all $n \geq N$ we have $x_n \geq M$.
 - (a) Write down a definition for a sequence $\{y_n\}_{n\geq 0}$ to diverge to $-\infty$.
 - (b) Show that if $x_n \leq z_n$ for all $n \geq 0$ and $\{x_n\}$ diverges to $+\infty$ then $\{z_n\}$ diverges to $+\infty$.
 - (c) Let $\{x_n\}$ sequence in \mathbb{R} , $x_n > 0$. Show that $\lim_{n \to \infty} x_n = +\infty$ if and only if $\lim_{n \to \infty} (1/x_n) = 0$.
- 8. The sequence of positive real numbers $\{t_n\}_{n\geq 0}$ converges to t. Decide whether the following sequences are convergent or not. If convergent explain why and identify the limit, if not convergent explain why.

(a)
$$a_n = \sqrt{t_n}$$
, (b) $b_n = 5t_n^3 - t_n^2 + 7$, (c) $c_n = \frac{n}{2^n} (-1)^n$, (c) $d_n = n + t_n$.

9. Use squeeze theorem and properties of sine function to show $\lim_{n \to \infty} \frac{\sin n}{n} = 0$.

- 10. Show that the sequence defined by $x_1 = 1$ and $x_{n+1} = \sqrt{1 + x_n}$ for $n \ge 1$ is convergent (hint: show that it is increasing and bounded by 2). Find the limit.
- 11. Let $x_n = n \sin^2(n\pi/2)$. Find the set S of limit points (subsequencial limits), find lim sup x_n and lim inf x_n . (Assume known properties about sine function.)
- 12. Show that the sequence of partial sums: $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ defined for $n \ge 1$ is not Cauchy (hint: show that $S_{2n} S_n \ge 1/2$). Conclude that the harmonic series is divergent.
- 13. A sequence $\{s_n\}_{n\geq 0}$ is contractive if there is a constant r with 0 < r < 1 such that $|s_{n+2} s_{n+1}| \leq r|s_{n+1} s_n|$ for all $n \geq 0$. Show that a contractive sequence is a Cauchy sequence and hence a convergent sequence (hint: recall convergent geometric series).
- 14. Show that if a series converges absolutely then it converges.
- 15. Assume that $|a_n| \le 2b_n + 3^{-n}$ for all $n \ge 0$ and $\sum_{n=0}^{\infty} b_n$ converges. Show that $\sum_{n=0}^{\infty} a_n$ converges.
- 16. Determine for each $x \in \mathbb{R}$ whether the series $\sum_{n=1}^{\infty} \frac{2^n x^n}{n}$ is convergent or divergent.
- 17. Let $a_n > 0$ for all $n \ge 1$. Show that $\limsup a_n^{1/n} \le \limsup \frac{a_{n+1}}{a_n}$ and $\liminf a_n^{1/n} \ge \liminf \frac{a_{n+1}}{a_n}$. Deduce that $\lim_{n \to \infty} n^{1/n} = 1$ (hint: choose $a_n = n$).
- 18. Let $E \subset \mathbb{R}$, $f, g: E \to \mathbb{R}$ be functions, x_0 an adherent point of E. Assume f has limit L at x_0 in E and g has limit M at x_0 in E. Show that $\lim_{x \to x_0, x \in E} f(x)g(x) = LM$. Deduce that the product of two continuous functions at x_0 is continuous at x_0 .
- 19. Show that the function $f : \mathbb{R} \to \mathbb{R}$ defined to be f(x) = 0 if $x \in \mathbb{Q}$ and f(x) = -1 if $x \notin \mathbb{Q}$ is nowhere continuous.
- 20. Let $p \in \mathbb{R}$. Show that the function $f: (0, \infty) \to \mathbb{R}$ given by $f(x) = x^p$ is continuous on $(0, \infty)$. Hint: use that whenever $a_n > 0$ and $\lim_{n \to \infty} a_n = 1$ then $\lim_{n \to \infty} (a_n)^q = 1$.
- 21. Show that the function f(x) = |x| is continuous on \mathbb{R} .
- 22. Study the continuity properties of the function $f: [-1,1] \to \mathbb{R}$ given by $f(x) = \begin{cases} x^2 & \text{if } -1 \le x < 0 \\ x+1 & \text{if } 0 \le x \le 1. \end{cases}$
- 23. Exercise 9.5.1 in the book (third edition). Compare to or use Exercise 7.