Review and Practice Problems for Exam \# 2 - MATH 401/501 - Fall 2017

Instructor: C. Pereyra

Real numbers

- Real numbers are closed under addition, multiplication, negation, subtraction and division by non-zero real numbers. You are free to use usual arithmetic properties (commutative and associative properties of addition and multiplication, distributive property, etc).
- Real numbers have an order, and obey a trichotomy if x, y are real numbers then exactly one of the following holds: $x=y, x<y$ or $x>y$.
- Should know and be able to use
(i) the definition of absolute value of a real number,
(ii) the triangle inequality (and "reverse" triangle inequality).
- Understand Archimedean properties and their implications: interspersing of integers by \mathbb{R}, density of rationals and irrationals.
- Understand the meaning of upper and lower bounds for a set in \mathbb{R}, and the meaning of the supremum (least upper bound or l.u.b.) and infimum (greatest lower bound or g.l.b.) of a set of real numbers.
- Be able to show that a given number is the supremum (infimum) of a set by showing that
(i) it is an upper (lower) bound for the set,
(ii) it is the smallest upper (largest lower) bound.
- Appreciate the Least Upper Bound and Greatest Lower Bound properties of real numbers: every non-empty and bounded set of real numbers has a unique supremum and a unique infimum.

Sequences of real numbers

- Know the definition of bounded sequences, bounded above sequences and bounded below sequences. More precisely a sequence $\left\{x_{n}\right\}_{n \geq 0}$ is bounded (respectively bounded above or bounded below) iff there is $M>0$ such that for all $n \geq 0$ we have $\left|x_{n}\right| \leq M$ (respectively $x_{n} \leq M$ or $M \leq x_{n}$).
- Know the ϵ, N definition of Cauchy sequences and of convergent sequences in \mathbb{R} to a limit $L \in \mathbb{R}$. More precisely, a sequence $\left\{x_{n}\right\}_{n \geq 0}$ of real numbers
- is Cauchy iff given $\epsilon>0$ there is $N>0$ such that for all $n, m \geq N$ then $\left|x_{n}-x_{m}\right| \leq \epsilon$,
- converges to L iff given $\epsilon>0$ there is $N>0$ such that for all $n \geq N$ then $\left|x_{n}-L\right| \leq \epsilon$.
- Be able to show that limits are unique (that is if a sequence converges it converges to a unique limit).
- Be able to prove or disprove that a given sequence converges or is Cauchy by using the " ϵ, N definition". E.g. $a_{n}=1 / n, b_{n}=2^{-n}$.
- Be able to show that a convergent sequence is a Cauchy sequence.
- Be able to show and use that Cauchy sequences (and hence convergent sequences) are bounded sequences. However not all bounded sequences are convergent, e.g. $b_{n}=(-1)^{n}$ for all $n \geq 0$.
- Be able to show that the sum/product of two Cauchy sequences (or two convergent sequences) is a Cauchy sequence (or a convergent sequence and convergent to the sum/product of the limits of the given convergent sequences "limit laws").
- Understand that if a Cauchy (convergent) sequence is bounded away from zero then the sequence of reciprocals is Cauchy (hence convergent and to the reciprocal of the limit which is necessarily non-zero, another "limit law").
- Be able to prove or disprove that a given sequence converges by appealing to additive/multiplicative/reciprocal properties of limits (limit laws), and using known basic limits.
- Know and be able to use the Monotone Bounded Sequence Convergence Theorem:
(i) an increasing and bounded above sequence is convergent and to the sequence's supremum,
(ii) a decreasing and bounded below sequence is convergent and to the sequence's infimum.
- You should know and use some basic limits :
$-\lim _{n \rightarrow \infty} x^{n}=0$ if $|x|<1$, is 1 if $x=1$, and does not exist if $x=-1$ or $|x|>1$;
$-\lim _{n \rightarrow \infty} x^{1 / n}=1$ if $x>0 ; \quad \quad-\lim _{n \rightarrow \infty} 1 / n^{1 / k}=0$ for all integers $k \geq 1$.
$-\lim _{n \rightarrow \infty} n^{1 / n}=1 ; \quad-\quad$ Let $a_{n}>0, q \in \mathbb{R}$, if $\lim _{n \rightarrow \infty} a_{n}=1>0$ then $\lim _{n \rightarrow \infty} a_{n}^{q}=1$.
- Appreciate the deep fact that Cauchy sequences are convergent sequences in \mathbb{R} (completeness of the real numbers) .

Limit points, limsup, liminf

- Appreciate the definition of "limit points" of a sequence as the collection of "subsequencial limits" (the limits of convergent subsequences of the sequence.
- Know that c is a limit point for a sequence $\left\{x_{n}\right\}$ if for all $\epsilon>0$ there are "infinitely many" terms of the sequence in the interval $[c-\epsilon, c+\epsilon]$. More precisely, for all $\epsilon, N>0$ there is an $n_{N} \geq N$ such that $\left|x_{n_{N}}-c\right| \leq \epsilon$ (necessarily the set of labels $\left\{n_{N}\right\}_{N \geq 0}$ is an infinite set!).
- Be able to identify the "limit points" (or "subsequencial limits") of a concrete sequence e.g: $a_{n}=3$ for all $n \geq 0, b_{n}=(-1)^{n}$ for all $n \geq 0, c_{n}=(-1)^{n} n$ for all $n \geq 0$.
- Know that bounded sequences in \mathbb{R} have limit superior/inferior in \mathbb{R}, defined as
$\lim \sup \left\{x_{n}\right\}:=\lim _{N \rightarrow \infty} \sup _{n \geq N} x_{n}$ and $\liminf \left\{x_{n}\right\}:=\lim _{N \rightarrow \infty} \inf _{n \geq N} x_{n}$.
- Be aware of the ϵ characterization of limsup (similarly liminf): for all $\epsilon>0$
(i) Finitely many terms of the sequence $\left\{x_{n}\right\}$ are larger than $\lim \sup \left\{x_{n}\right\}+\epsilon$. More precisely for all $\epsilon>0$ there is $N>0$ such that for all $n \geq N$ we have $x_{n} \leq \lim \sup \left\{x_{n}\right\}+\epsilon$.
(ii) Infinitely many terms of the sequence $\left\{x_{n}\right\}$ are in between $\lim \sup \left\{x_{n}\right\}-\epsilon$ and $\lim \sup \left\{x_{n}\right\}+\epsilon$. More precisely, for all $\epsilon>0$ and $N>0$ there is $n_{N} \geq N$ such that $\left|x_{n_{N}}-\lim \sup \left\{x_{n}\right\}\right| \leq \epsilon$.
And its consequences:
$-\lim \sup \left\{x_{n}\right\}$ and $\lim \inf \left\{x_{n}\right\}$ are limit points (subsequencial limits) of the sequence.
- A sequence of real numbers converges if and only if the limsup and the liminf coincide.
- The limsup is the "largest limit point" (or "largest subsequential limit") of the sequence, and liminf is the "smallest limit point" (or "smallest subsequential limit") of the sequence.
- A sequence converges to L iff all its subsequences converge to L iff the unique limit point of the sequence is L.
- Every bounded sequence has a at least one convergent subsequence or equivalently at least one "limit point" (Bolzano-Weierstrass theorem).
- Be able to identify the limsup and liminf of a given sequence. Use this knowledge to conclude that if $\lim \sup a_{n}=\lim \inf a_{n}=L$ then the sequence $\left\{a_{n}\right\}$ converges AND $\lim _{n \rightarrow \infty} a_{n}=L$.
- Be able to use the squeeze theorem to deduce convergence of the sequence being squeezed.

Series

- Understand that convergence of a series is by definition convergence of the sequence of partial sums.
- Be able to deduce from the theory of sequences basic convergence tests: Cauchy test, divergence test, absolute convergence test, comparison test.
- Be familiar with other useful tests such as: alternating series test, p-test, root test, and ratio test. Be able to use these tests to deduce convergence or divergence of specific series.
- Be able to exploit convergence properties of geometric series: $\sum_{n=0}^{\infty} r^{n}$ converges to $1 /(1-r)$ if $|r|<1$, diverges otherwise.

Limits and continuity of functions $f: E \rightarrow \mathbb{R}, E \subset \mathbb{R}$

- Know definition of a bounded function: $\exists M>0$ such that $|f(x)| \leq M$ for all $x \in E$.
- Know the equivalent "definitions" of $\lim _{x \rightarrow x_{0}} f(x)=L$. Let $E \subset \mathbb{R}$ and $f: E \rightarrow \mathbb{R}, x_{0}$ is an adherent point ${ }^{1}$ of E, then $\lim _{x \rightarrow x_{0}, x \in E} f(x)=L$ if and only if
$-(\epsilon-\delta$ definition $) \forall \epsilon>0 \exists \delta>0$ such that $|f(x)-L| \leq \epsilon \forall x \in E$ such that $\left|x-x_{0}\right| \leq \delta$.
- (Sequential definition) For all sequences $\left\{x_{n}\right\}_{n \geq 0}$ in E if $\lim _{n \rightarrow \infty} x_{n}=x_{0}$ then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.
- Know the equivalent "definitions" of continuity at a point x_{0}. Let $E \subset \mathbb{R}$ and $f: E \rightarrow \mathbb{R}, x_{0} \in E$, then f is continuous at x_{0} if and only if
- (Limit definition) $\lim _{x \rightarrow x_{0}, x \in E} f(x)=f\left(x_{0}\right)$.
- $(\epsilon-\delta$ definition $) \forall \epsilon>0 \exists \delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right| \leq \epsilon \forall x \in E$ such that $\left|x-x_{0}\right| \leq \delta$.
- (Sequential definition) For all sequences $\left\{x_{n}\right\}_{n \geq 0}$ in E if $\lim _{n \rightarrow \infty} x_{n}=x_{0}$ then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$.
- Be able to decide whether a function is bounded or not and whether a function is continuous or not.
- Know that basic functions are continuous such us: constant function $(f(x)=c)$, identity function $(f(x)=x)$, absolute value function $(f(x)=|x|$ for $x \in \mathbb{R})$, and exponential functions $\left(f(x)=x^{p}\right.$ for $x>0$, and $g(x)=a^{x}$ for $a>0$ and $\left.x \in R\right)$.
- Know the limit laws for functions and be able to prove them and use them to compute limits.
- Know and be able to prove that composition and arithmetic operations preserve continuity. Use these properties to conclude that more complex functions are continuous such us: polynomials $(p(x)=$ $a_{0}+a_{1} x+\cdots+a_{n} x^{n}$), rational functions (quotients of polynomials, wherever the denominator is non-zero), exponentials with continuous base or exponent $\left(f(x)=a^{p(x)}\right.$ or $g(x)=f(x)^{q}$ where f is a positive and continuous function and $q \in \mathbb{R}$.
- Use your knowledge of continuous functions to compute limits for example:
$-\lim _{x \rightarrow x_{0}} x^{q}=x_{0}^{q}$ for $x, x_{0}>0$ and $q \in \mathbb{R}$.
$-\lim _{x \rightarrow x_{0}} a^{x}=a^{x_{0}}$ for $x, x_{0} \in \mathbb{R}$ and $a>0$.

Practice Problems for Midterm \#2

1. If the real number x is not rational we say x is "irrational".
(a) Show that if $p \in \mathbb{Q}, p \neq 0$, and x is irrational then $p x$ is irrational.
(b) Show that if $x, y \in \mathbb{R}$ and $x<y$ then there is an irrational number w such that $x<w<y$ (density of the irrational numbers).
2. For each subset A of real numbers decide whether is bounded (above, below or both), find supremum and infimum: (a) $A=\{1,-1 / 2,3\}, ~(b) ~ A=\{n /(n+1): n \in \mathbb{N}, \quad n \geq 1\}, \quad$ (c) $A=\{r \in \mathbb{Q}: r<5\}$.
3. If A and B are nonempty and bounded subsets of \mathbb{R} such that $A \subset B$ show that $\inf (B) \leq \inf (A)$.
4. Let E be a nonempty and bounded subset of \mathbb{R}, let $\lambda \in \mathbb{R}$ and $\lambda>0$. Define $\lambda E=\{\lambda x: x \in E\}$ a subset of \mathbb{R}. Prove that If $\lambda \geq 0$ then $\sup (\lambda E)=\lambda \sup (E)$. What is $\inf (\lambda E)$? What if $\lambda<0$?
5. Given $\lambda>0$ and $\left\{s_{n}\right\}_{n \geq 0}$ is a bounded sequence. Show that $\lim \sup \left\{\lambda s_{n}\right\}=\lambda \lim \sup \left\{s_{n}\right\}$. What can you say when $\lambda<0$? (Hint use previous exercise).

[^0]6. For each of the following, prove or give a counterexample.
(a) If $\left\{x_{n}\right\}_{n \geq 0}$ converges to x then $\left\{\left|x_{n}\right|\right\}_{n \geq 0}$ converges to $|x|$.
(b) If $\left\{\left|x_{n}\right|\right\}_{n \geq 0}$ is convergent then $\left\{x_{n}\right\}_{n \geq 0}$ is convergent.
7. We say the sequence $\left\{x_{n}\right\}_{n \geq 0}$ diverges to $+\infty$ and we write $\lim _{n \rightarrow \infty} x_{n}=+\infty$ iff for all $M>0$ there is $N>0$ such that for all $n \geq N$ we have $x_{n} \geq M$.
(a) Write down a definition for a sequence $\left\{y_{n}\right\}_{n \geq 0}$ to diverge to $-\infty$.
(b) Show that if $x_{n} \leq z_{n}$ for all $n \geq 0$ and $\left\{x_{n}\right\}$ diverges to $+\infty$ then $\left\{z_{n}\right\}$ diverges to $+\infty$.
(c) Let $\left\{x_{n}\right\}$ sequence in $\mathbb{R}, x_{n}>0$. Show that $\lim _{n \rightarrow \infty} x_{n}=+\infty$ if and only if $\lim _{n \rightarrow \infty}\left(1 / x_{n}\right)=0$.
8. The sequence of positive real numbers $\left\{t_{n}\right\}_{n \geq 0}$ converges to t. Decide whether the following sequences are convergent or not. If convergent explain why and identify the limit, if not convergent explain why.
(a) $a_{n}=\sqrt{t_{n}}$,
(b) $b_{n}=5 t_{n}^{3}-t_{n}^{2}+7$,
(c) $c_{n}=\frac{n}{2^{n}}(-1)^{n}$,
(c) $d_{n}=n+t_{n}$.
9. Use squeeze theorem and properties of sine function to show $\lim _{n \rightarrow \infty} \frac{\sin n}{n}=0$.
10. Show that the sequence defined by $x_{1}=1$ and $x_{n+1}=\sqrt{1+x_{n}}$ for $n \geq 1$ is convergent (hint: show that it is increasing and bounded by 2). Find the limit.
11. Let $x_{n}=n \sin ^{2}(n \pi / 2)$. Find the set S of limit points (subsequencial limits), find limsup x_{n} and $\lim \inf x_{n}$. (Assume known properties about sine function.)
12. Show that the sequence of partial sums: $S_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ defined for $n \geq 1$ is not Cauchy (hint: show that $S_{2 n}-S_{n} \geq 1 / 2$). Conclude that the harmonic series is divergent.
13. A sequence $\left\{s_{n}\right\}_{n \geq 0}$ is contractive if there is a constant r with $0<r<1$ such that $\left|s_{n+2}-s_{n+1}\right| \leq$ $r\left|s_{n+1}-s_{n}\right|$ for all $n \geq 0$. Show that a contractive sequence is a Cauchy sequence and hence a convergent sequence (hint: recall convergent geometric series).
14. Show that if a series converges absolutely then it converges.
15. Assume that $\left|a_{n}\right| \leq 2 b_{n}+3^{-n}$ for all $n \geq 0$ and $\sum_{n=0}^{\infty} b_{n}$ converges. Show that $\sum_{n=0}^{\infty} a_{n}$ converges.
16. Determine for each $x \in \mathbb{R}$ whether the series $\sum_{n=1}^{\infty} \frac{2^{n} x^{n}}{n}$ is convergent or divergent.
17. Let $a_{n}>0$ for all $n \geq 1$. Show that $\lim \sup a_{n}^{1 / n} \leq \lim \sup \frac{a_{n+1}}{a_{n}}$ and $\liminf a_{n}^{1 / n} \geq \lim \inf \frac{a_{n+1}}{a_{n}}$. Deduce that $\lim _{n \rightarrow \infty} n^{1 / n}=1$ (hint: choose $a_{n}=n$).
18. Let $E \subset \mathbb{R}, f, g: E \rightarrow \mathbb{R}$ be functions, x_{0} an adherent point of E. Assume f has limit L at x_{0} in E and g has limit M at x_{0} in E. Show that $\lim _{x \rightarrow x_{0}, x \in E} f(x) g(x)=L M$. Deduce that the product of two continuous functions at x_{0} is continuous at x_{0}.
19. Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined to be $f(x)=0$ if $x \in \mathbb{Q}$ and $f(x)=-1$ if $x \notin \mathbb{Q}$ is nowhere continuous.
20. Let $p \in \mathbb{R}$. Show that the function $f:(0, \infty) \rightarrow \mathbb{R}$ given by $f(x)=x^{p}$ is continuous on $(0, \infty)$. Hint: use that whenever $a_{n}>0$ and $\lim _{n \rightarrow \infty} a_{n}=1$ then $\lim _{n \rightarrow \infty}\left(a_{n}\right)^{q}=1$.
21. Show that the function $f(x)=|x|$ is continuous on \mathbb{R}.

22. Study the continuity properties of the function $f:[-1,1] \rightarrow \mathbb{R}$ given by $f(x)=\left\{\begin{array}{cc}x^{2} & \text { if }-1 \leq x<0 \\ x+1 & \text { if } 0 \leq x \leq 1\end{array}\right.$
23. Exercise 9.5.1 in the book (third edition). Compare to or use Exercise 7.

[^0]: ${ }^{1}$ A point $x_{0} \in E \subset \mathbb{R}$ is adherent iff for all $\delta>0$ there is $x \in E$ such that $\left|x-x_{0}\right| \leq \delta$ (in words, we can get arbitrarily close to x_{0} with points x in E).

