REVIEW FOR FINAL EXAM - MATH 401/501 - FINAL 2014

Review Week Dec 1-5, 2014
Final Exam on December 9th, 2014 12:30-2:30pm
Instructor: C. Pereyra

1. (a) Show that every bounded sequence in \mathbb{R} has at least a convergent subsequence.
(b) Show that given non-empty subset A of real numbers the following are equivalent:
(i) A is bounded and closed,
(ii) every sequence in A has a convergent subsequence converging to a point in A.
2. Show that any function f with domain the integers \mathbb{Z} will necessarily be continuous at every point on its domain. More generally, show that if $f: X \rightarrow \mathbb{R}$, and x_{0} is an isolated point of $X \subset \mathbb{R}$, then f is continuous at x_{0}. Note: a point $x_{0} \in X$ is isolated if there is a $\delta>0$ such that $X \cap\left[x_{0}-\delta, x_{0}+\delta\right]=\left\{x_{0}\right\}$, so the only point of X that is δ-close to x_{0} is x_{0} itself.
3. For each choice of subsets A_{i} of the real numbers: Is the set bounded or not? Does it have a least upper bound or a greatest lower bound? Find them. Is the set closed or not? Find its closure.
(a) $A_{1}=[0,1]$,
(b) $A_{2}=(0,1]$,
(c) $A_{3}=\{1 / n: n \in \mathbb{N} \backslash\{0\}\}$,
(d) $A_{4}=\mathbb{Z}$.
4. For each choice of subsets A_{i} of the real numbers in Exercise 2, construct a function $f_{i}: \mathbb{R} \rightarrow \mathbb{R}$ that has discontinuities at every point $x \in A_{i}$ and is continuous on its complement $\mathbb{R} \backslash A_{i}$. Explain.
5. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. Show that there exists a real number x in $[0,1]$ such that $f(x)=x$, a "fixed point" (Exercise 9.7.2 p.241-242 2nd edition).
6. Let $a<b$ be real numbers, and let $f:[a, b] \rightarrow \mathbb{R}$ be a function which is both continuous and one-to-one. Show that f is strictly monotone. (See hint in Exercise 9.8.3 p. 241 2nd ed.)
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies the multiplicative property $f(x+y)=f(x) f(y)$ for all $x, y \in \mathbb{R}$. Assume f is not identically equal to zero.
(a) Show that $f(0)=1, f(x) \neq 0$ for all $x \in \mathbb{R}$, and $f(-x)=\frac{1}{f(x)}$ for all $x \in \mathbb{R}$. Show that $f(x)>0$ for all $x \in \mathbb{R}$.
(b) Let $a=f(1)$ (by (i) $a>0$). Show that $f(n)=a^{n}$ for all $n \in \mathbb{N}$. Use (a) to show that $f(z)=a^{z}$ for all $z \in \mathbb{Z}$.
(c) Show that $f(r)=a^{r}$ for all $r \in \mathbb{Q}$.
(d) Show that if f is continuous at $x=0$, then f is continuous at every point in \mathbb{R}. Moreover $f(x)=a^{x}$ for all $x \in \mathbb{R}$.
8. Decide whether the functions $f_{i}: X_{i} \rightarrow \mathbb{R}$ are uniformly continuous or not on their domain.
(a) $f_{1}(x)=x^{13}-8 x^{5}+7+2^{x}$ with $X_{1}=[-3,14]$,
(b) $f_{2}(x)=x^{2}$ with $X_{2}=[1, \infty)$,
(c) $f_{3}(x)=1 / x$ with $X_{3}=(0,2]$,
(d) $f_{4}(x)=\sqrt{x}$ with $X_{4}=[0, \infty)$.
9. Show that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous then it is uniformly continuous.
10. (a) Assume g is defined on an open interval (a, c) and it is known to be uniformly continuous on $(a, b]$ and on $[b, c$) where $a<b<c$. Prove that g is uniformly continuous on (a, c).
(b) Show that if f is uniformly continuous on (a, b) and (b, c), for some $b \in(a, c)$, then f is uniformly continuous on (a, c) if and only if f is continuous at b.
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that f^{\prime} is bounded. Show that f is uniformly continuous.
12. Verify the chain rule (see Exercise 10.1.7. p. 256 2nd ed).
13. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies a Lipschitz condition with constant $M>0$ if for all $x, y \in \mathbb{R}$,

$$
|f(x)-f(y)| \leq M|x-y|
$$

Assume $h, g: \mathbb{R} \rightarrow \mathbb{R}$ each satisfy a Lipschitz condition with constant M_{1} and M_{2} respectively.
(a) Show that $(h+g)$ satisfies a Lipschitz condition with constant $\left(M_{1}+M_{2}\right)$.
(b) Show that the composition $(h \circ g)$ satisfy a Lipschitz condition. With what constant?
(c) Show that the product $(h g)$ does not necessarily satisfy a Lipschitz condition. However if both functions are bounded then the product satisfies a Lipschitz condition.
14. Assume known that the derivative of $f(x)=\sin x$ equals $\cos x$, that is, f is differentiable on \mathbb{R} and $f^{\prime}(x)=\cos x$. You also can use your knowledge on the trigonometric functions (you know when they are positive and negative, where are the zeros, etc). Show that $f:[0, \pi / 2) \rightarrow[0,1)$ is invertible, and that its inverse $f^{-1}:[0,1) \rightarrow[0, \pi / 2)$ is differentiable. Find the derivative of the inverse function.
15. As in the previous exercise we know that the function $\sin x$ is differentiable, and you can use known properties such as $\lim _{x \rightarrow 0, x \neq 0} \frac{\sin x}{x}=1$ if need be. Let $G: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
G(x)=\left\{\begin{array}{cl}
x^{2} \sin (1 / x) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}\right.
$$

Show that G is differentiable on \mathbb{R} but G^{\prime} is not continuous at zero.
16. Give an example of a function on \mathbb{R} that has the intermediate value property for every interval (that is it takes on all values between $f(a)$ and $f(b)$ on $a \leq x \leq b$ for all $a<b$), but fails to be continuous at a point. Can such function have a jump discontinuity?
17. (L'Hopital's Rule).Let $f, g: X \rightarrow \mathbb{R}, x_{0} \in X$ is a limit point of X such that $f\left(x_{0}\right)=g\left(x_{0}\right)=0, f, g$ are differentiable at x_{0}, and $g^{\prime}\left(x_{0}\right) \neq 0$.
(i) Show that there is some $\delta>0$ such that $g(x) \neq 0$ for all $x \in X \cap\left(x_{0}-\delta, x_{0}+\delta\right) \backslash\left\{x_{0}\right\}$.

Hint: Use Newton's approximation theorem.
(ii) Show that $\lim _{x \rightarrow x_{0}, x \neq x_{0}} \frac{f(x)}{g(x)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}$.
(iii) Show that the following version of L'Hopital's Rule is not correct. Under the above hypothesis then,

$$
\lim _{x \rightarrow x_{0}, x \neq x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}, x \neq x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

Hint: Consider $f(x)=G(x)$ (as in Exercise 15), and $g(x)=x$ at $x_{0}=0$. The problem arises because f^{\prime} is NOT continuous at $x_{0}=0$. If both f^{\prime} and g^{\prime} were continuous at x_{0} then (ii) and (iii) are equivalent.
18. (Integral test for series) Let $f:[1, \infty] \rightarrow \mathbb{R}$ be a monotone decreasing non-negative function. Then the $\operatorname{sum} \sum_{n=1}^{\infty} f(n)$ is convergent if and only if $\sup _{N>0} \int_{1}^{N} f(x) d x$ is finite.
Show by constructing counterexamples that if the hypothesis of monotone decreasing is replaced by Riemann integrable on intervals $[1, N]$ for all $N>0$ then both directions of the if and only if above are false.

