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REVIEW FOR TEST # 3 - MATH 401/501 - FALL 2010
December 6-10, 2010

Instructor: C. Pereyra

1. Show that any function f with domain the integers Z will necessarily be continuous at every point on
its domain. More generally, show that if f : X → R, and x0 is an isolated point of X ⊂ R, then f is
continuous at x0.

2. For each choice of subsets A of the real numbers, construct a function f : R→ R that has discontinuities
at every point x ∈ A and is continuous on its complement R \A. Explain.
(a) A = {x : 0 ≤ x ≤ 1} = [0, 1].
(b) A = {1/n : 0 < n ∈ N}.

3. Give an example of a function on R that has the intermediate value property for every interval (that
is it takes on all values between f(a) and f(b) on a ≤ x ≤ b for all a < b), but fails to be continuous
at a point. Can such function have a jump discontinuity?

4. Let X ⊂ R, α and C positive real numbers. Suppose a function f : X → R satisfies the following
Hölder continuity property:

|f(x)− f(y)| ≤ C|x− y|α, for all x, y ∈ X.

Show that f is uniformly continuous on X.

5. Assume g is defined on an open interval (a, c) and it is known to be uniformly continuous on (a, b] and
on [b, c) where a < b < c. Prove that g is uniformly continuous on (a, c).
Show that if f is uniformly continuous on (a, b) and (b, c), for some b ∈ (a, c), then f is uniformly
continuous on (a, c) if and only if f is continuous at b.

6. Let a < b be real numbers, and let f : [a, b]→ R be a function which is both continuous and one-to-one.
Show that f is strictly monotone. (See hint in Exercise 9.8.3 p. 241 2nd ed).

7. Verify the chain rule (see class notes from Tuesday Nov 30 and/or Exercise 10.1.7. p. 256 2nd ed).

8. A function f : R→ R satisfies a Lipschitz condition with constant M > 0 if for all x, y ∈ R,

|f(x)− f(y)| ≤M |x− y|.

Assume h, g : R→ R each satisfy a Lipschitz condition with constant M1 and M2 respectively.

(a) Show that (h+ g) satisfies a Lipschitz condition with constant (M1 +M2).
(b) Show that the composition (h ◦ g) satisfy a Lipschitz condition. With what constant?
(c) Show that the product (hg) does not necessarily satisfy a Lipschitz condition. However if both
functions are bounded then the product satisfies a Lipschitz condition.

9. Assume known that the derivative of f(x) = sinx equals cosx, that is, f is differentiable on R and
f ′(x) = cosx. Show that f : [0, π/2]→ [0, 1] is invertible, and that its inverse f−1 : [0, 1]→ [0, π/2] is
differentiable. Find the derivative of the inverse function.

10. Assume known that the functions sinx and cosx are differentiable, and that their derivatives are cosx
and − sinx respectively. Let ga : R→ R be defined by

ga(x) =
{
xa sin(1/x) if x 6= 0

0 if x = 0.

Find particular (potentially noninteger) values of a so that
(a) ga is differentiable on R but g′a is unbounded on [0, 1].
(b) ga is differentiable on R with g′a continuous but not differentiable at zero.
(c) ga is differentiable on R and g′a differentiable on R, but such that g′′a is not continuous at zero.
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The following are 4 multi-step problems. Turn one of them in on Final Exam day 12/16/10, for
up to 5 bonus points in the final exam.

1. (L’Hopital’s Rule). Show that if f, g : X → R, x0 ∈ X is a limit point of X such that f(x0) = g(x0) = 0,
f, g are differentiable at x0, and g′(x0) 6= 0, then there is some δ > 0 such that g(x) 6= 0 for all
x ∈ X ∩ (x0 − δ, x0 + δ) and

lim
x→x0

f(x)
g(x)

=
f ′(x0)
g′(x0)

.

Hint: Use Newton’s approximation theorem.

Show that the following version of L’Hopital’s Rule is not correct. Under the above hypothesis then,

lim
x→x0

f(x)
g(x)

= lim
x→x0

f ′(x)
g′(x)

.

Hint: Consider f(x) = g2(x) (as in exercise 10), and g(x) = x at x0 = 0.

2. Let f : [a, b]→ [a, b], assume there is 0 < c < 1 such that

|f(x)− f(y)| ≤ c|x− y| for all x, y ∈ [a, b].

(a) Show that f is uniformly continuous on [a, b].

(b) Pick some point y0 ∈ [a, b], and given yn define inductively yn+1 = f(yn). Show that the sequence
{yn}n≥0 is a Cauchy sequence. Show that there is some y ∈ [a, b], such that limn→∞ yn = y.

(c) Prove that y is a fixed point, that is, f(y) = y.

(d) Finally prove that given any x ∈ [a, b], then the sequence defined inductively by: x0 = x, xn+1 =
f(xn) converges to y as defined in part (b). (That is the function f has a unique fixed point.)

3. (Jean’s favorite problem in multiplicative version) Let f : R → R that satisfies the multiplicative
property f(x+ y) = f(x)f(y) for all x, y ∈ R. Assume f is not identically equal to zero.

(i) Show that f(0) = 1 and that f(−x) = 1
f(x) for all x ∈ R. Show that f(x) > 0 for all x ∈ R.

(ii) Let a = f(1) (by (i) a > 0). Show that f(n) = an for all n ∈ N. Use (i) to show that f(z) = az

for all z ∈ Z.

(iii) Show that f(r) = ar for all r ∈ Q.

(iv) Show that if f is continuous at x = 0, then f is continuous at every point in R.

(v) Assume f is continuous at zero, use (iii) and (iv) to conclude that f(x) = ax for all x ∈ R.

4. (Intermediate Value Theorem for Derivatives or Darboux’s Theorem). If f is differentiable on [a, b],
and if α is a real number in between f ′(a) and f ′(b) say f ′(a) < α < f ′(b) (or f ′(b) < α < f ′(a)), then
there exists a point c ∈ (a, b) such that f ′(c) = α. (Warning: you can not assume that f ′ is continuous
even if it is defined on all of [a, b], so you cannot use the IVT for continuous functions. Consider the
example discussed in class f(x) = x2 sin(1/x) it is differentiable on [−1, 1] but the derivative is not
continuous at x = 0.) Hint: to simplify define a new function g(x) = f(x) − αx on [a, b]. This
function g is differentiable on [a, b] and show that our hypothesis on f imply that g′(a) < 0 < g′(b) (or
g′(b) < 0 < g′(a)). Now show that there is a c ∈ (a, b) such that g′(c) = 0. To do the later, show that
there exists a point x ∈ (a, b) such that g(a) > g(x), and a point y ∈ (a, b) such that g(b) > g(y). Now
finish the proof of Darboux’s theorem.


