REVIEW FOR TEST # 3 - MATH 401/501 - FALL 2010 December 6-10, 2010

Instructor: C. Pereyra

- 1. Show that any function f with domain the integers \mathbb{Z} will necessarily be continuous at every point on its domain. More generally, show that if $f: X \to \mathbb{R}$, and x_0 is an isolated point of $X \subset \mathbb{R}$, then f is continuous at x_0 .
- 2. For each choice of subsets A of the real numbers, construct a function $f : \mathbb{R} \to \mathbb{R}$ that has discontinuities at every point $x \in A$ and is continuous on its complement $\mathbb{R} \setminus A$. Explain.
 - (a) $A = \{x : 0 \le x \le 1\} = [0, 1].$
 - (b) $A = \{1/n : 0 < n \in \mathbb{N}\}.$
- 3. Give an example of a function on \mathbb{R} that has the intermediate value property for every interval (that is it takes on all values between f(a) and f(b) on $a \leq x \leq b$ for all a < b), but fails to be continuous at a point. Can such function have a jump discontinuity?
- 4. Let $X \subset \mathbb{R}$, α and C positive real numbers. Suppose a function $f : X \to \mathbb{R}$ satisfies the following Hölder continuity property:

$$|f(x) - f(y)| \le C|x - y|^{\alpha}$$
, for all $x, y \in X$.

Show that f is uniformly continuous on X.

- 5. Assume g is defined on an open interval (a, c) and it is known to be uniformly continuous on (a, b] and on [b, c) where a < b < c. Prove that g is uniformly continuous on (a, c). Show that if f is uniformly continuous on (a, b) and (b, c), for some $b \in (a, c)$, then f is uniformly continuous on (a, c) if and only if f is continuous at b.
- 6. Let a < b be real numbers, and let $f : [a, b] \to \mathbb{R}$ be a function which is both continuous and one-to-one. Show that f is strictly monotone. (See hint in Exercise 9.8.3 p. 241 2nd ed).
- 7. Verify the chain rule (see class notes from Tuesday Nov 30 and/or Exercise 10.1.7. p. 256 2nd ed).
- 8. A function $f : \mathbb{R} \to \mathbb{R}$ satisfies a Lipschitz condition with constant M > 0 if for all $x, y \in \mathbb{R}$,

$$|f(x) - f(y)| \le M|x - y|$$

Assume $h, g: \mathbb{R} \to \mathbb{R}$ each satisfy a Lipschitz condition with constant M_1 and M_2 respectively.

- (a) Show that (h + g) satisfies a Lipschitz condition with constant $(M_1 + M_2)$.
- (b) Show that the composition $(h \circ g)$ satisfy a Lipschitz condition. With what constant?

(c) Show that the product (hg) does not necessarily satisfy a Lipschitz condition. However if both functions are bounded then the product satisfies a Lipschitz condition.

- 9. Assume known that the derivative of $f(x) = \sin x$ equals $\cos x$, that is, f is differentiable on \mathbb{R} and $f'(x) = \cos x$. Show that $f: [0, \pi/2] \to [0, 1]$ is invertible, and that its inverse $f^{-1}: [0, 1] \to [0, \pi/2]$ is differentiable. Find the derivative of the inverse function.
- 10. Assume known that the functions $\sin x$ and $\cos x$ are differentiable, and that their derivatives are $\cos x$ and $-\sin x$ respectively. Let $g_a : \mathbb{R} \to \mathbb{R}$ be defined by

$$g_a(x) = \begin{cases} x^a \sin(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Find particular (potentially noninteger) values of a so that

- (a) g_a is differentiable on \mathbb{R} but g'_a is unbounded on [0, 1].
- (b) g_a is differentiable on \mathbb{R} with g'_a continuous but not differentiable at zero.
- (c) g_a is differentiable on \mathbb{R} and g'_a differentiable on \mathbb{R} , but such that g''_a is not continuous at zero.

Name:

The following are 4 multi-step problems. TURN ONE OF THEM IN ON FINAL EXAM DAY 12/16/10, FOR UP TO 5 BONUS POINTS IN THE FINAL EXAM.

1. (L'Hopital's Rule). Show that if $f, g: X \to \mathbb{R}$, $x_0 \in X$ is a limit point of X such that $f(x_0) = g(x_0) = 0$, f, g are differentiable at x_0 , and $g'(x_0) \neq 0$, then there is some $\delta > 0$ such that $g(x) \neq 0$ for all $x \in X \cap (x_0 - \delta, x_0 + \delta)$ and

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)}{g'(x_0)}.$$

Hint: Use Newton's approximation theorem.

Show that the following version of L'Hopital's Rule is not correct. Under the above hypothesis then,

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Hint: Consider $f(x) = g_2(x)$ (as in exercise 10), and g(x) = x at $x_0 = 0$.

:

2. Let $f : [a, b] \to [a, b]$, assume there is 0 < c < 1 such that

$$|f(x) - f(y)| \le c|x - y| \quad \text{for all } x, y \in [a, b].$$

(a) Show that f is uniformly continuous on [a, b].

(b) Pick some point $y_0 \in [a, b]$, and given y_n define inductively $y_{n+1} = f(y_n)$. Show that the sequence $\{y_n\}_{n\geq 0}$ is a Cauchy sequence. Show that there is some $y \in [a, b]$, such that $\lim_{n\to\infty} y_n = y$.

(c) Prove that y is a fixed point, that is, f(y) = y.

(d) Finally prove that given any $x \in [a, b]$, then the sequence defined inductively by: $x_0 = x$, $x_{n+1} = f(x_n)$ converges to y as defined in part (b). (That is the function f has a *unique fixed point*.)

- 3. (Jean's favorite problem in multiplicative version) Let $f : \mathbb{R} \to \mathbb{R}$ that satisfies the multiplicative property f(x+y) = f(x)f(y) for all $x, y \in \mathbb{R}$. Assume f is not identically equal to zero.
 - (i) Show that f(0) = 1 and that $f(-x) = \frac{1}{f(x)}$ for all $x \in \mathbb{R}$. Show that f(x) > 0 for all $x \in \mathbb{R}$.
 - (ii) Let a = f(1) (by (i) a > 0). Show that $f(n) = a^n$ for all $n \in \mathbb{N}$. Use (i) to show that $f(z) = a^z$ for all $z \in \mathbb{Z}$.
 - (iii) Show that $f(r) = a^r$ for all $r \in \mathbb{Q}$.
 - (iv) Show that if f is continuous at x = 0, then f is continuous at every point in \mathbb{R} .
 - (v) Assume f is continuous at zero, use (iii) and (iv) to conclude that $f(x) = a^x$ for all $x \in \mathbb{R}$.
- 4. (Intermediate Value Theorem for Derivatives or Darboux's Theorem). If f is differentiable on [a, b], and if α is a real number in between f'(a) and f'(b) say $f'(a) < \alpha < f'(b)$ (or $f'(b) < \alpha < f'(a)$), then there exists a point $c \in (a, b)$ such that $f'(c) = \alpha$. (Warning: you can not assume that f' is continuous even if it is defined on all of [a, b], so you cannot use the IVT for continuous functions. Consider the example discussed in class $f(x) = x^2 \sin(1/x)$ it is differentiable on [-1, 1] but the derivative is not continuous at x = 0.) Hint: to simplify define a new function $g(x) = f(x) - \alpha x$ on [a, b]. This function g is differentiable on [a, b] and show that our hypothesis on f imply that g'(a) < 0 < g'(b) (or g'(b) < 0 < g'(a)). Now show that there is a $c \in (a, b)$ such that g'(c) = 0. To do the later, show that there exists a point $x \in (a, b)$ such that g(a) > g(x), and a point $y \in (a, b)$ such that g(b) > g(y). Now finish the proof of Darboux's theorem.