REVIEW FOR TEST \# 3-MATH 401/501 - FALL 2010

December 6-10, 2010

Instructor: C. Pereyra

1. Show that any function f with domain the integers \mathbb{Z} will necessarily be continuous at every point on its domain. More generally, show that if $f: X \rightarrow \mathbb{R}$, and x_{0} is an isolated point of $X \subset \mathbb{R}$, then f is continuous at x_{0}.
2. For each choice of subsets A of the real numbers, construct a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that has discontinuities at every point $x \in A$ and is continuous on its complement $\mathbb{R} \backslash A$. Explain.
(a) $A=\{x: 0 \leq x \leq 1\}=[0,1]$.
(b) $A=\{1 / n: 0<n \in \mathbb{N}\}$.
3. Give an example of a function on \mathbb{R} that has the intermediate value property for every interval (that is it takes on all values between $f(a)$ and $f(b)$ on $a \leq x \leq b$ for all $a<b$), but fails to be continuous at a point. Can such function have a jump discontinuity?
4. Let $X \subset \mathbb{R}, \alpha$ and C positive real numbers. Suppose a function $f: X \rightarrow \mathbb{R}$ satisfies the following Hölder continuity property:

$$
|f(x)-f(y)| \leq C|x-y|^{\alpha}, \quad \text { for all } x, y \in X
$$

Show that f is uniformly continuous on X.
5. Assume g is defined on an open interval (a, c) and it is known to be uniformly continuous on $(a, b]$ and on $[b, c)$ where $a<b<c$. Prove that g is uniformly continuous on (a, c).
Show that if f is uniformly continuous on (a, b) and (b, c), for some $b \in(a, c)$, then f is uniformly continuous on (a, c) if and only if f is continuous at b.
6. Let $a<b$ be real numbers, and let $f:[a, b] \rightarrow \mathbb{R}$ be a function which is both continuous and one-to-one. Show that f is strictly monotone. (See hint in Exercise 9.8.3 p. 241 2nd ed).
7. Verify the chain rule (see class notes from Tuesday Nov 30 and/or Exercise 10.1.7. p. 256 2nd ed).
8. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies a Lipschitz condition with constant $M>0$ if for all $x, y \in \mathbb{R}$,

$$
|f(x)-f(y)| \leq M|x-y|
$$

Assume $h, g: \mathbb{R} \rightarrow \mathbb{R}$ each satisfy a Lipschitz condition with constant M_{1} and M_{2} respectively.
(a) Show that $(h+g)$ satisfies a Lipschitz condition with constant $\left(M_{1}+M_{2}\right)$.
(b) Show that the composition $(h \circ g)$ satisfy a Lipschitz condition. With what constant?
(c) Show that the product ($h g$) does not necessarily satisfy a Lipschitz condition. However if both functions are bounded then the product satisfies a Lipschitz condition.
9. Assume known that the derivative of $f(x)=\sin x$ equals $\cos x$, that is, f is differentiable on \mathbb{R} and $f^{\prime}(x)=\cos x$. Show that $f:[0, \pi / 2] \rightarrow[0,1]$ is invertible, and that its inverse $f^{-1}:[0,1] \rightarrow[0, \pi / 2]$ is differentiable. Find the derivative of the inverse function.
10. Assume known that the functions $\sin x$ and $\cos x$ are differentiable, and that their derivatives are $\cos x$ and $-\sin x$ respectively. Let $g_{a}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
g_{a}(x)=\left\{\begin{array}{cc}
x^{a} \sin (1 / x) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}\right.
$$

Find particular (potentially noninteger) values of a so that
(a) g_{a} is differentiable on \mathbb{R} but g_{a}^{\prime} is unbounded on $[0,1]$.
(b) g_{a} is differentiable on \mathbb{R} with g_{a}^{\prime} continuous but not differentiable at zero.
(c) g_{a} is differentiable on \mathbb{R} and g_{a}^{\prime} differentiable on \mathbb{R}, but such that $g_{a}^{\prime \prime}$ is not continuous at zero.

The following are 4 multi-step problems. Turn one of them in on Final Exam day $12 / 16 / 10$, for UP TO 5 bONUS POINTS IN THE FINAL EXAM.

1. (L'Hopital's Rule). Show that if $f, g: X \rightarrow \mathbb{R}, x_{0} \in X$ is a limit point of X such that $f\left(x_{0}\right)=g\left(x_{0}\right)=0$, f, g are differentiable at x_{0}, and $g^{\prime}\left(x_{0}\right) \neq 0$, then there is some $\delta>0$ such that $g(x) \neq 0$ for all $x \in X \cap\left(x_{0}-\delta, x_{0}+\delta\right)$ and

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)} .
$$

Hint: Use Newton's approximation theorem.
Show that the following version of L'Hopital's Rule is not correct. Under the above hypothesis then,

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

Hint: Consider $f(x)=g_{2}(x)$ (as in exercise 10), and $g(x)=x$ at $x_{0}=0$.
2. Let $f:[a, b] \rightarrow[a, b]$, assume there is $0<c<1$ such that

$$
|f(x)-f(y)| \leq c|x-y| \quad \text { for all } x, y \in[a, b] .
$$

(a) Show that f is uniformly continuous on $[a, b]$.
(b) Pick some point $y_{0} \in[a, b]$, and given y_{n} define inductively $y_{n+1}=f\left(y_{n}\right)$. Show that the sequence $\left\{y_{n}\right\}_{n \geq 0}$ is a Cauchy sequence. Show that there is some $y \in[a, b]$, such that $\lim _{n \rightarrow \infty} y_{n}=y$.
(c) Prove that y is a fixed point, that is, $f(y)=y$.
(d) Finally prove that given any $x \in[a, b]$, then the sequence defined inductively by: $x_{0}=x, x_{n+1}=$ $f\left(x_{n}\right)$ converges to y as defined in part (b). (That is the function f has a unique fixed point.)
3. (Jean's favorite problem in multiplicative version) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies the multiplicative property $f(x+y)=f(x) f(y)$ for all $x, y \in \mathbb{R}$. Assume f is not identically equal to zero.
(i) Show that $f(0)=1$ and that $f(-x)=\frac{1}{f(x)}$ for all $x \in \mathbb{R}$. Show that $f(x)>0$ for all $x \in \mathbb{R}$.
(ii) Let $a=f(1)($ by (i) $a>0)$. Show that $f(n)=a^{n}$ for all $n \in \mathbb{N}$. Use (i) to show that $f(z)=a^{z}$ for all $z \in \mathbb{Z}$.
(iii) Show that $f(r)=a^{r}$ for all $r \in \mathbb{Q}$.
(iv) Show that if f is continuous at $x=0$, then f is continuous at every point in \mathbb{R}.
(v) Assume f is continuous at zero, use (iii) and (iv) to conclude that $f(x)=a^{x}$ for all $x \in \mathbb{R}$.
4. (Intermediate Value Theorem for Derivatives or Darboux's Theorem). If f is differentiable on $[a, b]$, and if α is a real number in between $f^{\prime}(a)$ and $f^{\prime}(b)$ say $f^{\prime}(a)<\alpha<f^{\prime}(b)$ (or $f^{\prime}(b)<\alpha<f^{\prime}(a)$), then there exists a point $c \in(a, b)$ such that $f^{\prime}(c)=\alpha$. (Warning: you can not assume that f^{\prime} is continuous even if it is defined on all of $[a, b]$, so you cannot use the IVT for continuous functions. Consider the example discussed in class $f(x)=x^{2} \sin (1 / x)$ it is differentiable on $[-1,1]$ but the derivative is not continuous at $x=0$.) Hint: to simplify define a new function $g(x)=f(x)-\alpha x$ on $[a, b]$. This function g is differentiable on $[a, b]$ and show that our hypothesis on f imply that $g^{\prime}(a)<0<g^{\prime}(b)$ (or $\left.g^{\prime}(b)<0<g^{\prime}(a)\right)$. Now show that there is a $c \in(a, b)$ such that $g^{\prime}(c)=0$. To do the later, show that there exists a point $x \in(a, b)$ such that $g(a)>g(x)$, and a point $y \in(a, b)$ such that $g(b)>g(y)$. Now finish the proof of Darboux's theorem.

