Name:

MIDTERM MATH 362 - Spring 2002

Instructor: C. Pereyra

There are 4 problems, each worth 20 points. If you have any question, please ask the instructor in charge. Justify all your answers. GOOD LUCK and have a very good Spring Break!

- 1. Let (X, d) and (Y, ρ) be metric spaces. Assume that (Y, ρ) is a complete metric space. Let $(f_n)_{n>0}$ be a sequence of functions from X into Y which is uniformly Cauchy. Show that the sequence is uniformly convergent.
- **2.** Let (X, d) be a compact metric space, (Y, ρ) a metric space. Let $f: X \to Y$ be continuous and onto (surjective). Prove that a subset A of Y is closed if $f^{-1}(A)$ is closed in X.
- **3.** (a) Show that if the function $f: \mathbb{R} \to \mathbb{R}$ is uniformly continuous then the sequence of functions $f_n(x) = f\left(x + \frac{1}{n}\right)$ is uniformly convergent.
- (b) A function $f: \mathbb{R} \to \mathbb{R}$ satisfies a Lipschitz condition if there exists a constant M > 0 such that for all $x, y \in \mathbb{R}$, $|f(x) f(y)| \leq M|x y|$. Show that if f satisfies a Lipschitz condition, then f is uniformly continuous.
- **4.** Consider the space X of sequences $s=(s_n)_{n\in\mathbb{N}}$ such that $\sum_{n\in\mathbb{N}}|s_n|<\infty$ (summable sequences or the space ℓ^1). Introduce the distance function between two sequences $s=(s_n)_{n\in\mathbb{N}}$ and $t=(t_n)_{n\in\mathbb{N}}$ in X,

$$d(s,t) = \sum_{n \in N} |s_n - t_n|.$$

Show that (X, d) is a metric space.

(Assume basic facts about convergent series learned in elementary calculus courses.)