Exam Review #2

Math 361/461 Exam date 11/15/2001

Topics Covered: Sections 11-14, 16-19 in the textbook.

• The real numbers

- Ordered fields.
- Open and closed sets.
- Interior, boundary and accumulation points.
- Supremum and infimum. Completeness axiom.
- Compact sets
 - * Heine-Borel Theorem.
 - * Bolzano-Weirstrass Theorem.

Sequences

- Convergence and limits. Properties.
- Monotone sequences. Bounded monotone sequences are convergent.
- Cauchy sequences. Cauchy sequences are convergent.
- Subsequences, \liminf and \limsup .

Practice Problems

1. Given the set $F = \{0, 1, 2\}$. Define the operations \oplus and \odot on F by:

\oplus	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

•	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

It is true that both operations are associative and that the sum is distributive with respect to the product: $a \odot (b \oplus c) = a \odot b \oplus a \odot c$. You do not have to check these properties.

- (a) Show that the set F with the operations \oplus and \odot is a field.
- (b) Show that you can choose a set P of positive elements of F such that given any $x \in F$ then one and only one of the following three holds:
- (i) x = 0, (ii) $x \in P$, (iii) the additive inverse of x, (-x) is in P.
- (c) Prove or give a counterexample to the following statement: for any set P that satisfies (b) if $x, y \in P$ then $x \oplus y \in P$ and $x \odot y \in P$.
- (d) Is F an ordered field?
- **2.** Let $a_1 = 1$ and $a_{n+1} = \frac{a_n}{2} + \frac{2}{a_n}$. Show that the sequence $(a_n)_{n \geq 2}$ is monotone and bounded, hence it is convergent. Find the limit. **Hint:** Show by induction that $1 \leq a_n \leq 4$. You can actually show directly that $a_n \geq 2$ for $n \geq 2$. Now check that $a_n a_{n+1} > 0$ for all $n \geq 2$.
- **3.** (a) Suppose that the sequences (x_n) and (y_n) converge to the same number. Prove by definition that the sequence $(x_n y_n)$ converges to zero. Is the converse true?

- (b) Show that the sequence $z_n = \sqrt{1 + 4n^2} 2n$ converges to zero.
- 4. Let (x_n) be a Cauchy sequence. Prove that (x_n) converges if and only if at least one of its subsequences converges. (Do not use the fact that a sequence is convergent if and only if it is Cauchy; just use the definitions.)
- **5.** (a) Show that if a sequence (x_n) is bounded and decreasing then the limit exists, moreover,

$$\lim_{n \to \infty} x_n = \inf_{n > 0} x_n.$$

(b) Prove that if (x_n) is a bounded sequence then,

$$\lim \sup(x_n) = \inf_{n>0} \left(\sup_{k>n} x_k \right).$$

(this is actually true for any sequence).

6. Suppose the sequence (x_n) satisfies the following property:

$$|x_{n+1} - x_n| \le \frac{1}{2}|x_n - x_{n-1}|, \quad \forall n = 2, 3, \dots$$

Show that (x_n) is convergent. (Hint: Show that (x_n) is a Cauchy sequence.)

- 7. Show that the set of numbers of the form $\frac{k}{2^n}$, where k is an integer and n is a positive integer, is dense in \mathbb{R} . (That is, show that given any to real numbers x < y there exists k and n > 0 integers such that $x < \frac{k}{2^n} < y$.
- 8. (a) Let A be an open set. Show that if a finite number of points are removed from A, the remaining set is still open. Is the same true if a countable number of points are removed?
- (b) Let B be a closed set, x a point in B. Let C be the set B with x removed. Under what conditions is C closed?
- **9.** Show that the set of subsequential limits of a sequence is a closed set.
- 10. Find the interior of the set S, the set S' of accumulation points of S. Decide whether the set S is open, closed, and/or compact.
- (a) $S = \{x = 3n : n \in \mathbb{Z}\}.$
- **(b)** $S = (-\infty, 0] \cup \{1, \sqrt{2}, \pi\}.$
- (c) $S = \bigcap_{n>0} [1+1/n,3]$
- 11. Prove whether the limit exists or not. Find the limits when possible, including infinite limits.
- (a) $\lim_{n\to\infty} \frac{n+1}{2^n}$, (b) $\lim_{n\to\infty} \left(3+\frac{1}{n}\right) \sin\left(\frac{n\pi}{2}\right)$,
- (c) $\lim_{n\to\infty} \frac{n}{1+\sqrt{n}}$.
- 12. Given the sequence (x_n) find $\sup(x_n)$, $\inf(x_n)$, $\limsup(x_n)$ and $\liminf(x_n)$. Justify your answers.
- (a) $x_n = \frac{n+(-1)^n(2n+1)}{n}$,
- **(b)** $x_n = 2n + \cos(n\pi)$.