Department of Mathematics and Statistics
University of New Mexico

Review 2 Math 321: Linear Algebra Spring 2010

This is the review for the final exam that will take place on Tuesday May 11th, 2010. The main topics
are included in Chapters 3-6 of our book, specifically Sections 3.1-3.4, 4.4, 5.1-5.2, 6.1-6.2, and lightly on
6.5. Here is a list of the most important points, followed by some sample problems. When I say you should
know how to calculate or decide something, I mean examples comparable to the ones you have been doing
in your homework.

ELEMENTARY MATRIX OPERATIONS

¢ Elementary Matrices

Must know the basic elementary row operations: interchange rows, multiply a row by an scalar,
and add to a row the scalar multiple of another row.

Must know the corresponding elementary matrices constructed applying an elementary row op-
eration to the identity matrix. These elementary matrices are invertible, and the inverse is an
elementary matrix of the same type.

Must know that the basic row operations can be achieved by multiplying on the left a given matrix
times the corresponding elementary matrix.

Must know that corresponding elementary column operations and their elementary matrices can
be obtained taking transposes of the corresponding row matrices.

Must be able to use a sequence of elementary row operations to go from a given matrix A to its
row reduced echelon form A. Must understand that in the language of matrices this is equivalent
to successively multiplying on the left by the corresponding sequence of elementary matrices, and
this process can be reversed.

e Rank of a Matrix

Must know what the column space and row space of a matrix are. If A is an m X n matrix, its
column space is the span of its column vectors, and hence it is a subspace of R™ of dimension
less than or equal to n. Similarly, its row space is the span of its row vectors, and hence it is a
subspace of R™ of dimension less than or equal to m.

Must know that the rank of a matriz is the dimension of its column space. It coincides with the
rank of the linear transformation associated to the matrix.

Must know that the rank of a matrix does not change when the matrix is multiplied on the right
or on the left by an appropriate invertible matrix. In particular when multiplied by an elementary
row or column matrix.

Must know that the rank(A) = rank(A!), therefore the dimension of the column space of A
coincides with the dimension of its row space.

Must be able to calculate the rank of a matrix either by inspection of its column or row spaces,
or by reducing to row reduced echelon form and counting the number of non-zero pivots.

Must be able to read from the row reduced echelon form A of a matrix A its column space:
columns of A containing the pivots are linearly independent (they are standard basis vectors),
other columns are linear combinations of those and the coefficients are the entries of the given
column, corresponding columns of A are l.i. and the other columns are linear combinations of
those with the same coefficients.

Must know that the null-space of a matrix does not change under row operations (it will change
under column operations though). Must be able to read the null-space of A from its row reduced
echelon form (this is instrumental for solving linear systems of equations).



Inverse of a Matrix

— Must know that an invertible matrix is a product of elementary operations that can be all chosen
to be row operations, and the row operations can be discovered while reducing the square matrix
to its row reduced echelon form (which will be the identity, if not, the matrix is not invertible).

— Must be able to compute the inverse of a matrix A by reducing its augmented matrix (A|I) to
the row reduced echelon form (I|A~1).

SOLVING SYSTEMS OF LINEAR EQUATIONS

Must know that a system of m linear equations on n unknowns can be encoded very nicely using matrix
notation: Ax = b, where the A is the m x n matrix whose entries are the coefficients in the equations,
the unknown is a vector x in R™, and b € R™ is the vector whose entries are the right-hand-sides of
the equations.

When b = 0 vector the system is called homogeneous, otherwise is called non-homogeneous.

Homogeneous systems always have the zero solution: z = 0 vector. They may have multiple solutions.
The set of solutions of a homogeneous system is the nullspace of the linear transformation induced by
the matriz A. The dimension of the solution subspace is n —rank(A). In particular if the homogeneous
system has more variables than equations (m < n) it will have non-trivial solutions (rankA < m).

Must know how to find the solution subspace of a homogeneous system of linear equations, that is must
know how to find the nullspace of the matrix A whose entries are the coefficients of the equations.

A non-homogeneous system (when b # 0 vector), may or may not have solutions. If it does, then the
set of solutions can be found by identifying a particular solution zp to the system and identifying all
the solutions x g of the corresponding homogeneous system, all solutions to the system have the form
o =2xp+IgH.

Must know that by reducing the augmented matrix (A|b) to its row reduced echelon form one can
decide whether the system has solutions or not. If it does, one can read the particular solution and
the solutions to the homogeneous system from it.

DETERMINANTS

Must know how to compute determinants of 1 x 1 and 2 x 2. Must know how to calculate determinants
of 3 x 3 or n x n matrices using appropriate minors (matrices found by deleting one row and one
column). It is useful to know that the determinant of an upper triangular matrix is the product of its
diagonal entries.

Important properties of determinants that must be known:

det(AB) = det(A) det(B).
An n x n matrix A is invertible if and only if det(A) # 0. In that case det(A~!) = (det(A))~.
— Similar matrices have the same determinant.

For any n x n matrix A, det(A) = det(A?).

FEIGENVALUES AND EIGENVECTORS

Eigenvectors, eigenvalues, eigenspaces

— Must know the basic equation: Tv = Av, linking/defining an eigenvector v of a linear operator
T :V — V, and its corresponding eigenvalue A. Recall that the equation must hold for a non-zero
vector v. Eigenvectors are preferred directions for the transformation.



— Must know the basic equation: Az = Az, linking/defining an eigenvector & # 0 of an n X n matrix
A, and its corresponding eigenvalue .

— If T is a linear operator from n-dimensional vector space V into itself, and 3 is a basis of V', and
A is the matrix representation of T' in the basis 3, A = [T, then:
* A is an eigenvalue of T' if and only if it is an eigenvalue of A.
% A non-zero vector v is an eigenvector of T if and only if z = [v]s is an eigenvector of A (with
the same eigenvalue).

To calculate eigenvectors and eigenvalues of a linear transformation suffices to calculate eigenvec-
tors and eigenvalues of its matriz representation in a basis, and use the eigenvectors of the matriz
as coefficients to reconstruct with the given basis the eigenvectors in the original vector space.

— The eigenspace associated to the eigenvalue A of the linear transformation 7" is the collection of
all eigenvectors of T' with eigenvalue A, including the zero vector. Similarly for matrices.

— Must know how to calculate eigenvalues, eigenvectors and eigenspaces of an n X n matrix A.

x A is an eigenvalue of A if and only if it is a root of the nth-degree characteristic polynomial
of A, pa(N\) := det(A — AI) = 0. If the characteristic polynomial splits in R (it always does
in C by the fundamental theorem of algebra) that is:

pA(/\) = C()\ — )\1)”1 ()\ — )\2)”2 N ()\ — )\k)nk,

then the eigenvalues of A are precisely the different numbers Ay, Ao, ..., Ai;, and the power n;
is called the algebraic multiplicity of the eigenvalue A;. Note that ny +ng +...n, = n, the
degree of p4.

The eigenspace E) associated to the eigenvalue A of A is the nullspace of (A — AI).
The dimension of the eigenspace F is at least one, at most the algebraic multiplicity of .
Eigenspaces don’t talk to each other, that is their intersection only contains the zero vector.
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If the characteristic polynomial of an n x n matrix A splits and all the roots are simple (that
is their algebraic multiplicity is one), then there are n different eigenvalues, each one of them
contributes an eigenvector, and they are necessarily linearly independent.

e Diagonalizable linear operators A linear operator T" from n-dimensional vector space V into itself
is diagonalizable if one can find a basis 3 of eigenvectors, and necessarily the matrix representation of
T in that basis is a diagonal matrix with corresponding eigenvalues on the diagonal entries.

e Diagonalizable matrices An n x n matrix A is diagonalizable if it is similar to a diagonal matrix
D, that is there is an invertible matrix Q such that A = QDQ~'. This happens if and only if one can
find a basis 3 of eigenvectors of A, in that case Q is the matrix whose columns are the vectors in the
basis (8 (this is the change of basis matrix from (3 to standard basis), and the matrix D is the diagonal
matrix with corresponding eigenvalues on the diagonal entries.

— Diagonal matrices allow for trivial computation of powers, polynomials or exponential of matrices,
just do the operation to each diagonal entry. Using this principle one can check that a diagonal
matrix satisfies the equation p(D) = 0 where p(A) is its characteristic polynomial. This is true
for all n x n matrices A, and is the famous Cayley-Hamilton theorem.

— Diagonalizable matrices are the next best thing: A* = QD*Q~', e = QePQ .

— Diagonal matrices always commute. Two matrices that share a basis of eigenvectors will also
commute because in that case they share the similarity matrix Q.

0 0
In this case the only eigenvalue is 0, it has algebraic multiplicity 2, but the dimension of the
eigenspace corresponding to eigenvalue zero is just 1.

. . . . . 1
— Not all matrices are diagonalizable, it is good to remember a simple 2 x 2 example: ( 0 )



e Applications

Solving systems of linear differential equations, in the case the matrix of coefficients is diagonal-
izable, then one can decouple the system.

How do internet search engines work? Most algorithms use an eigenvector with the largest eigen-
value of a matrix based on the incidence matrix determined by the oriented graph whose nodes
are the sites interesting for a given search and the arrows are the hyperlinks.

ORTHOGONALIZATION

e Inner product vector spaces

Must know definition of an inner product vector space, and must be able to decide when a candidate
for an inner product is in fact one.

Must know the standard inner product in R™ and in C™.
Must know the induced norm by a given inner product: ||z| := /{(z, ).

Must know that in any inner product vector space the Cauchy-Schwarz inequality holds: |(z,y)| <
llz|| ly]l- In the case of R? with the standard inner product this is the geometric fact that given two

non-zero vectors ,y € R?, the cosine of the angle  between them is determined by cos § = %,

and that |cosf| < 1.

e Orthogonality

Must know that two vectors z,y in an inner product vector space V are orthogonal if and only if
their inner product vanishes: (z,y) =0

Must know that a set of vectors is orthogonal if every pair is orthogonal, and that orthogonal sets
are linearly independent.

Must know that every linearly independent finite set can be orthogonalized via the Gram-Schmidt
orthogonalization process, in a way that the span of the first k vectors of the linearly independent
set coincides with the span of the first k orthogonal vectors produced by the process.

Must be able to carry on the G-S process. Given a linearly independent vectors {wy, wa, ..., wy},
then can construct recursively the orthogonal vectors {vy,va,...,v,} as follows:
(wj,v1) (wj, vj1)
V1 = W Vj '=Wj — — 75 V11—~ 7 5 Vj—-1
’ [CH l[vj-1]?

e Orthonormal bases

An orthonormal basis is a basis of vectors that are orthogonal and have norm one, that can be
1 i=yj
0 i#j
Every basis can be orthogonalized via the Gram-Schmidt Process. And it can then be normalized
simply by dividing a non-zero vector by its norm: z/|z||.

summarized by the equation: (z;,x;) = 0;; = {

Given an orthonormal basis 8 = {z1,...,2,} of an n-dimensional inner product vector space V,
and a vector x € V, then one can find the coefficients of = in the basis 8 simply calculating the
inner products of x and corresponding vectors in the basis, that is:

= (x,x1)x1 + (X, T2)T2 + -+ + (T, Ty ) Tpy.



e Orthogonal/Unitary and Adjoint Matrices
— An n x n matrix A is orthogonal (R)/unitary (C) if and only if its columns form an orthonormal
basis.

— Given an n X m matrix with real or complex entries A, then its adjoint A* is its complex conjugate
transpose A? (if the entries are real then it is simply the transpose).

— The adjoint travels through the inner product, more precisely:

(Az,y)rr = (z, A"y)rrm.
In general one uses this property to define the adjoint of a linear transformation on an inner
product vector space.

— A is orthogonal /unitary if and only if its inverse equals its adjoint: A~! = A*, that is AA* =
A*A = I. Notice that ijth-entry of A*A is the inner product of the jth and ith columns.

— Orthogonal matrices preserve inner products and the induced norm, in other words the linear
transformation associated to them are isometries, that is

(Az, Ay) = (2,y),  |Az| =[]
e Orthogonal projections

— Given an inner product vector space V, a finite dimensional subspace W, and a vector = € V
there is a unique vector on W, the orthogonal projection of x onto W, denoted by Projy 2, such
that « — Projy -« is orthogonal to Projy, .

The orthogonal projection Projy,x minimizes the distance from x to W, in the sense that

|z — Projy x| < ||l —wl, for all we W.

Let 8 = {x1,...,2,} be an orthonormal basis of the n-dimensional subspace W, then
Projyya = (x,x1)x1 + (x,22)x2 + - - + (T, Tp) Ty

— In this language, the Gram-Schmidt process can be reprased as: v; = w; — Projvj_le where V;_;

ﬁ, Hzil\ e HZ]%H }, which coincides with the span
i

is the span of the orthonormalized vectors {

of {wl,wg, N ,’U‘}jfl}.
e Application Least squares approximations.

Least Squares Approximation and the following we discussed briefly the last week of classes, and I have
included them for completeness. They will not be evaluated in the final exam. Nor will I include applications
to solving systems of linear differential equations or to do searches in internet.

MATRIX ZOO

The matrix zoo includes matrices that we have already encountered, such as: orthogonal /unitary matrices,
similar matrices, symmetric matrices, as well as other species like self-adjoint and normal matrices that we
describe here.

e Self-adjoint Matrices

— An n X n matrix A is self-adjoint if it equals to its adjoint: A = A*.
— At the level of the inner product what it means is that (Az,y) = (z, Ay).

— If an n x n matrix A is self-adjoint then all its eigenvalues are real.



— An n x n matriz A over R is self-adjoint if and only if there exists an orthonormal basis of
etgenvectors.

e Normal Matrices

— An n x n matrix A is normal if AA* = A*A.

— At the level of the inner product this means that (Ax, Ay) = (A*z, A*y).

Orthogonal /unitary matrices are normal (AA* = A*A =1).
Self-adjoint matrices are normal (AA* = A*A = A?).

An n x n matriz A over C is normal if and only if there exists a basis of eigenvectors, that is if
A is diagonalizable.

What’s next? Further reading

You now have the background to continue reading on your own. important topics that you can find in our
book:

Dual Spaces (Section 2.6)

Spectral theorem (Section 6.6)

Singular Value Decomposition (Section 6.7)

Quadratic and bilinear forms (Section 6.8)

e Jordan canonical forms (Chapter 7- Sections 7.1-7.2)

After this class, depending on your interest you can go to Math 514/464 (Applied Matrix Theory) where
you will revisit many of the concepts but with a much more numerical/applied point of view. You may be
interested in applications to analysis/geometry, first make sure you do Math 401 (advanced calculus), then
you will be ready for Math 402 (multivariable calculus). If you are interested in differential equations and
you have already done basic ODE (Math 316) and PDEs (Math 312), you should now be in good shape to
take the next level of ODEs (Math 462/512), and PDEs (Math 463/513).

Sample problems

1. Let A and B be invertible n x n matrices. Show that there is a sequence of elementary row operations
which transform A to B. (Hint: use that there is a sequence of row operations which transforms A to the
identity matrix).

2. For the following matrix use elementary row operations to find its inverse,

1 -1 2
A=1 3 2 1
0 1 -2



Determine A if the first, second, and fourth columns of A are

1 0 1
-1 1, -1 |, and| -2
3 1 0

4. Find all solutions the following system of linear equations

201 — 209 — 13 + 624 — 225 =
T1—To+x3+2x4 —x5 =
4z — dwo + b3y + Ty — x5 =

Identify a particular solution, and all the solutions of the corresponding homogeneous system.

5. Find the characteristic polynomials of the following n x n matrices:

a; a as Ap—1 Qn
1 0 O 0 0
0o 1 0 0 0
0 0 O 0 0
0 0 O 1 0

6. Here we are working with scalars the complex numbers C. Let 6 be a real number, and let A be the 2 x 2

rotation matrix
cosf) —sinf
A= . .
sin 0 cos 6

e Show that A has eigenvalues e?’ and e~* (you may use Euler’s formula e = cos @ +isin#). What are
the corresponding eigenvectors?

o Write A = QDQ ™! for some invertible matrix @ and diagonal matrix D (note that @ and D have
complex entries, also there are several possible answers to this question, you only need to give one of
them).

e Let n > 1 be an integer. Prove that

An — ( cosnf —sinnf )

sin n@ cosnd

(You may find the formulae € = cosnf + isinnf and (e=%)" = e~ = cosnf — isinnd useful).
e Can you give a geometric itnerpretation of item (c)?

7. Show that if n x n matrices A and B are similar, that is there exists an invertible n x n matrix @ such
that A = Q~'BQ, then they have the same characteristic polynomial.

8. Let A be the following 3 x 3 matrix,

3 0 0
1 -1 0
2 11

o Is A invertible? If so, find A1,

e Verify that A3 —3A42% — A+ 31 = 0. Is there anything special about this polynomial p(\) = \? — 3\% —
A+3=(N-1)(\-3)?



9. Consider the vector space P3 of polynomials of degree at most 3. Let f, g € Ps, define

<f79>=/1 F(®)g(t) dt.

(a) Check that this defined an inner product.
(b) Use the Gram-Schmidt process to orthonormalize the standard basis polynomials: 1, z, 2%, 3.
(c) Given a polynomial p(z) = 2 — 322 + 23, find its coefficients in the orthonormal basis constructed in
item (b), verify that you can reconstruct p(z) with those coefficients and the corresponding basis.
10. Find the orthogonal projection of the vector (1,2, 3,4,5) onto the subspace of R spanned by the vectors
{(1,0,1,0,1),(1,1,0,0,0),(0,1,0,1,0)}.

11. Show that an n x n matrix that is both upper triangular and unitary must be a diagonal matrix.

12. Characterize all orthogonal 2 x 2 matrices (scalars in R).



