Department of Mathematics and Statistics University of New Mexico

Review 1

Math 321: Linear Algebra

Spring 2010

This is a review for Midterm 1 that will be on Thursday March 11th, 2010. The main topics are included in Chapters 1-2 of our book, specifically Sections 1.1-1.6 and 2.1-2.5. Here is a list of the most important points, followed by some sample problems. When I say you should know how to calculate or decide something, I mean examples comparable to the ones you have been doing in your homework.

• Vector Spaces

- Should know the following concepts, and be able to decide whether a given object is one of them:
 - * What is a vector space, and a subspace?
 - * What is a *linearly independent* set of vectors?
 - * What is a *spanning* set of vectors?
 - * What is a *basis* for a vector space? A linearly independent and spanning set of vectors.
- Must know that:
 - * A set of linearly independent vectors can always be completed to a basis.
 - * A set of spanning vectors can always be purged or trimmed down to a basis.
- Should be able to describe/identify subspaces by:
 - * putting constraints on elements of a vector space,
 - * identifying a set of spanning vectors.
- Should know vector spaces can be *finite dimensional*, and in that case calculate the *dimension* (number of elements in a basis).
- Must know basic vector spaces such as \mathbb{R}^n , $M_{m \times n}$ ($m \times n$ matrices), \mathcal{P}_n (polynomials of degree less than or equal to n). Must know standard bases in those spaces.
- Given a basis $\beta = \{x_1, x_2, \dots, x_n\}$ of the *n*-dimensional vector space X, and a vector $x \in X$, must be able to find the *unique coefficients* (a_1, a_2, \dots, a_n) such that x is a linear combination of the elements of the basis, $x = a_1x_1 + a_2x_2 + \dots + a_nx_n$. We arrange the coefficients of x in the basis β in a column vector that we denote $[x]_{\beta}$. Given the coefficients and the basis we can recover the vector x by writing the appropriate linear combination.

• Matrices

- Must know how to add $n \times m$ matrices, and how to multiply by a scalar an $n \times m$ matrix (entry by entry).
- Must know that given an $n \times m$ matrix A, its transpose is the $m \times n$ matrix A^t found by interchanging rows and columns. A matrix A is symmetric if $A = A^t$.
- Must know how to multiply A, an $n \times m$ matrix, times B, an $m \times k$ matrix, to obtain AB an $n \times k$ matrix. Must know that matrix multiplication is *associative* but not *commutative* (order matters). The following formula may be useful: $(AB)^t = B^t A^t$ (check that dimensions are correct).
- Must know that A is an *invertible* $n \times n$ matrix iff there is another $n \times n$ matrix A^{-1} (which is unique) such that $A A^{-1} = A^{-1} A = I_n$, where I_n is the identity matrix (i.e. the matrix that has 1 in the diagonal entries, 0 everywhere else). Not all matrices are invertible, when n = 2 then there is a convenient formula, provided det $A = ad bc \neq 0$ (if det A = 0 then A is not invertible),

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \qquad A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

• Linear Transformations

- Must know what is a *linear transformation* from a vector space X into a vector space Y, and how to decide if a map between vector spaces is linear or not.
- Must know what are and how to calculate the associated subspaces to a linear transformation T: Nullspace N(T) and Range R(T).
- Must know what are one-to-one (or injective), onto (or surjective), invertible or bijective (1-1 and onto) linear transformations, and how to decide whether a given linear transformation is any of the above.
 - * T is one-to-one iff the nullspace is trivial $N(T) = \{0\}$ iff $\dim(N(T)) = 0$.
 - * T is onto iff its range is the whole target space Y.
- Must know that two vector spaces X and Y are *isomorphic*, $X \sim Y$, iff there is an invertible linear transformation that maps one space into the other (a so-called *isomorphism*). Must be able to decide when two vector spaces are isomorphic.
- We will concentrate on linear transformations T defined on finite dimensional vector space X. Must know the *dimension theorem* and its consequences: $\dim(X) = \dim(N(T)) + \dim(R(T))$.
 - * T is onto iff $\dim(Y) = n = \dim(X)$
 - * T is one-to-one iff T is onto iff T is bijective or invertible.
 - * In particular if $\dim(X) = \dim(Y) = \dim(Z) = n$, and $T: X \to Y, U: Y \to Z$, then $U \circ T$ is invertible if and only if U and T are invertible. Necessarily in that case $(U \circ T)^{-1} = T^{-1} \circ U^{-1}$.
- Must know that all the information about a linear transformation is contained in the images under the transformation of the elements of a basis of the domain.
- Must know that if T is an invertible linear transformation from X to Y, and $\{x_1, x_2, \ldots, x_n\}$ is a basis of X, then $\{Tx_1, Tx_2, \ldots, Tx_n\}$ is a basis of Y. In all cases (even if T is not invertible), the vectors $\{Tx_1, Tx_2, \ldots, Tx_n\}$ span R(T), the range of T, so that $\dim(R(T)) \leq n$.
- Given a basis $\beta = \{x_1, x_2, \ldots, x_n\}$ of the *n*-dimensional vector space X, and a basis $\gamma = \{y_1, y_2, \ldots, y_m\}$ of the *m*-dimensional vector space X, and $T : X \to Y$ a linear transformation, must know how to construct the $m \times n$ matrix $[T]^{\gamma}_{\beta}$ of the linear transformation associated to the given ordered bases. Here is the recipe:
 - 1. Find the images under T of the elements of the basis β , namely Tx_j for $j = 1, \ldots, n$.
 - 2. Find the coefficients of each $Tx_j \in Y$ in the basis γ , namely the column vectors $[Tx_j]_{\gamma}$ for $j = 1, \ldots, n$.
 - 3. The column vector $[Tx_j]_{\gamma}$ is the *j*th-column of the matrix $[T]_{\beta}^{\gamma}$.
- Canonical example: an $m \times n$ matrix A defines a linear transformation $L_A : \mathbb{R}^n$ into \mathbb{R}^m by multiplying the vector $x \in \mathbb{R}^n$ on the left: $L_A x = A x$.

Let α be the standard basis in \mathbb{R}^n and σ the standard basis in \mathbb{R}^m , then:

- * A is the matrix representation of $L_A : \mathbb{R}^n \to \mathbb{R}^m$ in the standard bases, $A = [L_A]_{\alpha}^{\sigma}$.
- * If B is a $k \times m$ matrix then $L_B : \mathbb{R}^m \to \mathbb{R}^k$, and the composition of $L_B L_A$ corresponds to matrix multiplication BA, that is $L_B L_A = L_{BA}$, or in other words the matrix representation of $L_B L_A : \mathbb{R}^n \to \mathbb{R}^k$ in the standard bases of \mathbb{R}^n and \mathbb{R}^k is BA.
- * The $n \times n$ matrix A is invertible iff the corresponding linear transformation L_A is invertible, moreover $(L_A)^{-1} = L_{A^{-1}}$.
- * We learn that A, B are invertible $n \times n$ matrices iff AB is an invertible $n \times n$ matrix, moreover. $(AB)^{-1} = B^{-1}A^{-1}$.
- Must understand how all information about $T: X \to Y$ is encoded in the matrix $[T]^{\gamma}_{\beta}$. The matrix links in a very precise way the coefficients of $x \in X$ in the basis β to the coefficients of its image $Tx \in Y$ in the basis γ , more precisely,

$$[Tx]_{\gamma} = [T]_{\beta}^{\gamma} [x]_{\beta}.$$

In particular must know the following algebraic rules, paralleling the ones for the canonical example, connecting compositions and inverses:

* If $U: Y \to Z$ is another linear transformation, and $\alpha = \{z_1, \ldots, z_k\}$ is a basis of Z then their composition $U \circ T : X \to Z$, and its matrix representation from basis β to basis α is the product of the corresponding matrix representation of U and T, more precisely

$$[U \circ T]^{\alpha}_{\beta} = [U]^{\alpha}_{\gamma} [T]^{\gamma}_{\beta}.$$

* Assume m = n then T is invertible iff the matrix representation is an invertible matrix, moreover,

$$[T^{-1}]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^{-1}$$

• Change of bases

- Given an *n*-dimensional vector space X and two bases $\beta = \{x_1, x_2, \ldots, x_n\}$ and $\gamma = \{y_1, y_2, \ldots, y_n\}$ in X, the goal is to find a matrix that links the coefficients of a vector x in the basis β to the coefficients of the same x in the basis γ , the so-called *change of bases matrix* A_{β}^{γ} ,

$$[x]_{\gamma} = A_{\beta}^{\gamma}[x]_{\beta}.$$

* The matrix is nothing more than the matrix representation of the identity map $I: X \to X$ (Ix = x) from the basis β to the basis γ ,

$$A^{\gamma}_{\beta} = [I]^{\gamma}_{\beta}$$

* Since the identity map is an invertible linear transformation, and $I^{-1} = I$, then the matrix A^{γ}_{β} is invertible, and its inverse is the change of bases matrix A^{β}_{γ} from the basis γ to the basis β ,

$$[A^{\gamma}_{\beta}]^{-1} = [I]^{\beta}_{\gamma} = A^{\beta}_{\gamma}.$$

- Must know how to compute change of basis matrices, here is the recipe:
 - 1. Find the coefficients of each element x_j of the basis β in the basis γ , namely the column vectors $[x_j]_{\gamma}$ for j = 1, ..., n.
 - 2. The column vector $[x_j]_{\gamma}$ is the *j*th-column of the change of basis matrix A_{β}^{γ} .
- Change of basis matrices allow you to connect different matrix representations of the same linear transformation $T: X \to Y$. More precisely, if β and α are bases of X, and γ and σ are bases of Y, then

$$[T]^{\gamma}_{\alpha} = A^{\gamma}_{\sigma} [T]^{\sigma}_{\beta} A^{\beta}_{\alpha}.$$

- Note that is $T: X \to X$ and α and β are two bases in *n*-dimensional vector space X, $[T]_{\beta} = [T]_{\beta}^{\beta}$, that is the matrix representation from basis β to basis β then, there exists an invertible $n \times n$ matrix Q such that,

$$[T]_{\alpha} = Q^{-1} [T]_{\beta} Q.$$

Who is Q? Nothing other than the change of bases matrix from α to β .

- In particular if A is an $n \times n$ matrix, and β the standard basis in \mathbb{R}^n , and α another basis on \mathbb{R}^n , then

$$[L_A]_{\alpha} = Q^{-1} A Q, \quad \text{where} \quad Q = A_{\alpha}^{\beta}$$

(in such case we say the matrices A and B (= $[L_A]_{\alpha}$) are similar).

Sample problems

Vector Spaces

1. Define what is a vector space over \mathbb{R} .

(a) Show that the following subset of \mathbb{R}^3 is a subspace (we are considering \mathbb{R}^3 with the usual addition and scalar multiplication),

$$V = \{(x, y, z) \in \mathbb{R}^3 : x = 3y, y = x + z\}.$$

(b) Explain why the following subset of \mathbb{R}^3 is not a subspace (we are considering \mathbb{R}^3 with the usual addition and scalar multiplication),

$$V = \{ (x, y, z) \in \mathbb{R}^3 : x = y + z - 1 \}.$$

2. Consider the following subspace of $\mathcal{P}_3(\mathbb{R})$ (polynomials of degree less than or equal to 3),

$$X = \{a + bx + cx^{2} + dx^{3} : a + b = c\}.$$

Find the dimension of X and exhibit a basis of X.

3. Decide whether the following statements are true or false, give a brief explanation supporting your answer. In the following, X is a vector space and $\dim(X) = n \ge 1$.

- (a) You can find a collection of n + 2 linearly independent vectors in X.
- (b) You can find a collection of n + 1 vectors that span X.
- (c) If V is a subspace of X, then $\dim(V) \leq n$.
- (d) If V is a non-trivial subspace of X, and $\beta = \{x_1, x_2, \dots, x_n\}$ is a basis of X, then you can select vectors in β to obtain a basis for V.

4. Show that two vectors $u, v \in X$ are linearly independent if and only if the vectors u + v and v - u are linearly independent.

Linear Transformations

5. Show that the mapping $T : \mathcal{P}_2(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R})$ is a linear transformation, where T is defined for each polynomial $p(x) = a + bx + cx^2$, to be

$$T(p(x)) = \begin{pmatrix} 2p''(0) & p'(0) + p(0) \\ 0 & p(1) \end{pmatrix}.$$

Is T one-to-one? Is T onto? Find the nullspace and the range of T.

6. Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be a linear transformation defined by

$$T(x_1, x_2, x_3, x_4) = (x_4, x_1, x_2, x_3).$$

- (a) Show that T is one-to-one and onto, hence invertible. Find the inverse transformation.
- (b) Let α be the standard basis in \mathbb{R}^4 , and let β be the following basis in \mathbb{R}^4 ,

$$\beta = \left\{ \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Find the matrix representations $[T]^{\alpha}_{\alpha}, [T^{-1}]^{\alpha}_{\alpha}$, and $[T]^{\alpha}_{\beta}$.

7. Find all linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ such that T(1,2,0) = (3,-1) and T(4,-1,1) = (2,2). Is such T one-to one? Is it onto?

8. Let $T: X \to X$ be a linear transformation, dim(X) = 3, assume $\alpha = \{x_1, x_2, x_3\}$ and $\beta = \{y_1, y_2, y_3\}$ are two bases on X. Let the matrix representation

$$[T]^{\beta}_{\beta} = \left(\begin{array}{rrr} 1 & -3 & 2\\ 0 & 1 & -1\\ 2 & -1 & 0 \end{array}\right)$$

- (a) If $x = 2x_1 x_2 + x_3$ what is Tx?
- (b) Suppose that the change of basis matrix from α to β is the following matrix,

$$A_{\alpha}^{\beta} = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{array} \right).$$

verify that the change of basis matrix from β to α is

$$A^{\alpha}_{\beta} = \left(\begin{array}{rrr} 1 & -1 & -1 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{array}\right).$$

(c) Find the matrix representation T in the basis α , that is $[T]^{\alpha}_{\alpha}$.

9. (Exercise 7 in Section 2.5) In \mathbb{R}^2 let ℓ be the line through the origin y = mx, with $m \neq 0$. Find an expression for T(x, y) where,

- (a) T is the reflection of \mathbb{R}^2 about the line ℓ .
- (b) T is the projection on ℓ along the line perpendicular to ℓ (orthogonal projection).

0.1 Applications: reading assignments for Spring Break

- Lagrange Interpolation Formula, and interpolating polynomials (p. 51-53).
- Incidence Matrices (p.94-96).
- Homogeneous linear differential equations (Section 2.7, p. 127-140).