1. Find each of the following limits if they exist otherwise justify why they don't exist.¹

(a)
$$\lim_{z \to 2+i} |z^2 - 4|$$
.
(b) $\lim_{z \to \infty} \frac{3z^2 + iz}{z^2 + 2z + 3i}$.
(c) $\lim_{z \to \infty} \sin z$.
(d) $\lim_{z \to 3i} \frac{e^z}{z^2 + 9}$.

2. Given the following functions:

(i)
$$\frac{(z+2)^3}{(z^2+2iz-1)^4}$$
, (ii) $z|z|$, (iii) $\text{Im}z - i\text{Re}z$, (iv) $3\overline{z}$.

- (a) Is any of these functions continuous everywhere? Specify.
- (b) Is any of these functions nowhere differentiable? Specify.
- (c) Is any of these functions analytic somewhere? Specify the domain of analyticity for each one that qualifies.
- (d) Is any of these functions an entire function? Specify.
- 3. Given the following functions:

(i)
$$f(z) = \frac{z^2 - |z|^2}{2}$$
, (ii) $g(z) = (\bar{z})^2 + 4z \operatorname{Re} z - 4(\operatorname{Re} z)^2$.

- (a) Is any of these functions entire? Specify.
- (b) Is the imaginary part of any of these functions a harmonic function on \mathbb{C} ?
- 4. Verify whether the following equalities hold:

(a)
$$\operatorname{Log}((1+i)^3) = 3\operatorname{Log}(1+i)$$
, (b) $\operatorname{Log}((-1+i)^2) = 2\operatorname{Log}(-1+i)$.

5. Write each of the following numbers in the form a + ib, where $a, b \in \mathbb{R}$.

(a)
$$\left(\frac{i}{2+2i}\right)^{1/5}$$
, (b) $|\cos(z)|$ for $z = 3-i$, (c) z^i for $z = 2-2i$.

- 6. Find a function analytic on the open disc |z| < 1 whose real part is $3xy^2 x^3$. Can you find one that is not analytic?
- 7. Find a function $\phi(x,y)$ that is harmonic in the wedge r > 0, $\frac{\pi}{2} < \theta < \frac{5\pi}{4}$, and takes the values $\phi = 3$ on the vertical side and $\phi = -1$ on the lower side of the wedge.
- 8. Does $\operatorname{Im}(e^{iz}) = \sin z$ hold for every $z \in \mathbb{C}$?
- 9. Find the derivative of $f(z) = \sinh(z^2) 2z\cos(3z)$. Is this an analytic function?

¹Note the following definitions: 1) $\lim_{z\to\infty} f(z) = L$ if and only if $\lim_{z\to0} f(1/z) = L$, 2) $\lim_{z\to z_0} f(z) = \infty$ if and only if $\lim_{z\to z_0} \frac{1}{f(z)} = 0$, 3) $\lim_{z\to\infty} f(z) = \infty$ if and only if $\lim_{z\to0} \frac{1}{f(1/z)} = 0$.