MIDTERM 2 - MATH 313: COMPLEX ANALYSIS - FALL 2013 Instructor: Cristina Pereyra

There are a total of 110 points, 10 of them are bonus points. No books, notes or calculators are allowed. Good luck!

EXER. 1	EXER. 2	EXER. 3	EXER. 4	EXER. 5	EXER. 6	TOTAL

FORMULAS PROMISED

• Cauchy Integral Formulas: if f is analytic on a simply connected domain containing a simple closed positively oriented contour Γ , and z_0 is a point interior to the contour, then

$$f(z_0) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)}{z - z_0} dz.$$

Furthermore, similar formulas hold for the *n*th-derivative of f at z_0 ,

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_{\Gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz.$$

• Cauchy Product Formula: If $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ and $\sum_{n=0}^{\infty} b_n (z-z_0)^n$ converge for $|z-z_0| < r$, then their product is another power series

$$\sum_{n=0}^{\infty} c_n (z-z_0)^n \quad \text{where} \quad c_n = \sum_{k=0}^n a_k b_{n-k}.$$

Q1-Q4/120 %	нw1-8/760 %	мт1/100	MT2/100	мт3/100	FINAL/100

Third midterm is optional (Thursday Dec 5th, 2013). I will drop the worst among the six possible grades: quizes, homework, three midterms and a final (Tuesday Dec 10, 2013 from 10am-12noon). I will weight differently the five grades, giving more weight to the highest grade, and less to the lowest of the five grades. Weights to be decided.

- 1. (50 points) Please decide whether the following statements are true or false. If TRUE give a very short explanation as to why. If FALSE present an explanation, a counterexample, or a corrected formula/statement. All closed contours are positively oriented.
 - (a) The function f(z) = 1/z has an antiderivative in the disc |z 3i| < 2 \Box TRUE \Box FALSE

(b)
$$\oint_{|z|=1} \frac{1}{z} dz = \oint_{|z+2i|=1} \frac{1}{z} dz.$$
 \Box TRUE \Box FALSE

(c) If f is analytic within and on the simple closed contour |z| = 2 then $\oint_{|z|=2} \frac{f'(z)}{z+i} dz = \oint_{|z|=2} \frac{f(z)}{(z+i)^2} dz. \qquad \Box \text{ TRUE} \qquad \Box \text{ FALSE}$

(d) For every simple closed contour Γ that encloses the points z_0 and z_1 we have $\oint_{\Gamma} \frac{1}{(z-z_0)(z-z_1)} dz = 0 \qquad \Box \text{ TRUE} \qquad \Box \text{ FALSE}$ (e) If the power series $\sum_{n=0}^{\infty} a_n z^n$ has radius of convergence 5 then the power series $\sum_{n=0}^{\infty} a_n z^{2n}$ has radius of convergence $\sqrt{5}$. \Box TRUE \Box FALSE

(f) A power series centered at z_0 and with radius of convergence R, converges for all $|z - z_0| \le R$. \Box TRUE \Box FALSE

(g) A function f is analytic at a point z_0 if and only if f can be expanded in a convergent power series centered at z_0 . \Box TRUE \Box FALSE

(h) Suppose a function f has a Taylor series representation centered at $z_0 = i$ with radius of convergence R. Then f is analytic everywhere inside the circle of convergence (|z-i| < R), and is not analytic everywhere outside the circle of convergence (|z-i| > R). \Box TRUE \Box FALSE

(i) $f(z) = \cos z$ is an entire function and is not constant hence it must be unbounded. \Box TRUE \Box FALSE

(i) If
$$|f(z)| \le 7$$
 for all z on the contour $|z - 3i| = 4$ then $\left| \oint_{\Gamma} \frac{f(z)}{z - 3i} dz \right| \le 14\pi$.
 \Box TRUE \Box FALSE

2. (12 points) Calculate the integral $\int_{\Gamma} \frac{1}{z+1} dz$ over the polygonal line that connects first z = 0 to z = 1 + 2i and then it connects z = 1 + 2i to z = i.

3. (12 points) The simple closed contour Γ is a figure eight crossing at z = 0 and containing $z = \pm i\pi$ (the top loop is traversed counterclockwise, the bottom loop clockwise). Calculate the integral

$$\oint_{\Gamma} \frac{\cos z}{z^2 + \pi^2} \, dz.$$

4. (12 points) Find the MacLaurin expansion for $f(z) = \frac{1}{(1-2z)^2}$ and determine its radius of convergence.

5. (12 points) Show that f(z) defined below is an entire function and find $f^{(5)}(0)$, where

$$f(z) = \begin{cases} (e^z - 1)/z & z \neq 0, \\ 1 & z = 0. \end{cases}$$

Hint: find a MacLaurin expansion that coincides with the function.

6. (12 points) Suppose f is an entire function. Use the Cauchy Integral Formula to show that for all complex numbers z_0 and positive radius r,

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt.$$

In words: the value of f at a point z_0 is the average of the values of f along the circle centered at z_0 and of radius r.