\qquad

Midterm 1 - math 313: Complex Analysis - Fall 2013
Instructor: Cristina Pereyra

There are a total of 100 points, plus ten possible bonus points. No books, notes or calculators are allowed. Good luck!

EXER. 1	EXER. 2	EXER. 3	EXER. 4	EXER. 5	EXER. 6	TOTAL

Blackboard formulas and results promised

1. Definitions of trigonometric, hyperbolic, logarithmic and power functions:

- $\cos z=\frac{e^{i z}+e^{-i z}}{2}, \quad \sin z=\frac{e^{i z}-e^{-i z}}{2 i}$.
- $\cosh z=\frac{e^{z}+e^{-z}}{2}, \quad \sinh z=\frac{e^{z}-e^{-z}}{2}$.
- For $z \neq 0, \log z=\ln |z|+i \operatorname{Arg} z$ (single-valued).
- For $z \neq 0, \log z=\ln |z|+i \arg z$ (multiple-valued).
- For $z \neq 0, a \in \mathbb{C}, \quad z^{a}=e^{a \log z}$ (multiple-valued when a is not an integer).

2. Lemma: If $\phi: S \subset \mathbb{R}^{2} \rightarrow \mathbb{R}, S$ is a domain (an open and connected set), $\frac{\partial \phi}{\partial x}=\frac{\partial \phi}{\partial y}=0$ on S then ϕ is a constant function.
3. Cauchy-Riemann Equations in polar coordinates: Given $f(z)=u(r, \theta)+i v(r, \theta)$ for $z \neq 0$, then u and v satisfy the CR equations if and only if

$$
\frac{\partial v}{\partial \theta}=r \frac{\partial u}{\partial r}, \quad \frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r}
$$

4. Limits at infinity and equal to infinity

- We say $\lim _{z \rightarrow z_{0}} f(z)=\infty$ if and only if $\lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0$.
- We say $\lim _{z \rightarrow \infty} f(z)=L$ if and only if $\lim _{z \rightarrow 0} f(1 / z)=L$.
- We say $\lim _{z \rightarrow \infty} f(z)=\infty$ if and only if $\lim _{z \rightarrow 0} \frac{1}{f(1 / z)}=0$.

1. (50 points +10 bonus points) Please decide whether the following statements are true or false. If true give a very short explanation as to why. If FALSE present a a counterexample or a corrected formula/statement. (There are 12 questions: 10 correct give you full credit, everything additional is bonus).
(a) If $z^{5}=2 e^{i \pi}$ then $z=2^{1 / 5} e^{i \pi / 5}$.FALSE
(b) $\left|-i^{3}\right|=i$FALSE
(c) $f(z)=e^{z}$ is a one-to-one function on \mathbb{C}.TRUEFALSE
(d) $\lim _{z \rightarrow(-3 i)} z^{2} e^{z}=-9 \cos 3+i 9 \sin 3$.TRUEFALSE
(e) $\operatorname{Arg}(z)$ is a continuous function on $\mathbb{C} \backslash\{0\}$.TRUEFALSE
(f) $\log \left(z^{4}\right)=4 \log (z)$ for all $z \neq 0$.TRUEFALSE
(g) $|\cos z| \leq 1$ for all $z \in \mathbb{C}$.FALSE
(h) If f is an entire functions then $h(z)=e^{z} f\left(1 / z^{2}\right)$ is analytic on $\mathbb{C} \backslash\{0\}$, and its derivative $h^{\prime}(z)=h(z)+e^{z} f^{\prime}\left(1 / z^{2}\right)\left(-2 / z^{3}\right)$.TRUEFALSE
(i) The function $u(x, y)=2 y-3$ is harmonic in \mathbb{C}.TRUEFALSE
(j) If u and v are harmonic functions on \mathbb{C} then $f(z)=u(x, y)+i v(x, y)$ is analytic on \mathbb{C}.true
FALSE
(k) If $f(z)$ is an entire function with $u(x, y)$ its real part and $v(x, y)$ its imaginary part. Then u is the harmonic conjugate of v.TRUE FALSE
(m) If f is real-valued on \mathbb{C} and analytic then f must be a constant function.TRUEFALSE
2. (10 points) Let $z=1-i$. Write z in polar coordinates.

Write (a) $z^{1 / 3}$, (b) $\log z$ and (c) $\frac{i}{z}$ in the form $a+i b$ with $a, b \in \mathbb{R}$ (note: some of these are multiple-valued).
3. (10 pts) Find the limit if it exists otherwise justify why it does not exist. Here $y \in \mathbb{R}$ and $z \in \mathbb{C}$.
(a) $\lim _{z \rightarrow 0} \frac{\bar{z}}{z}$
(b) $\lim _{z \rightarrow i \pi} \frac{e^{z}+1}{z-i \pi}$
4. (10 pts) Given the function $f(z)=\left(x+\frac{y^{3}}{3}\right)+i\left(y-x+\frac{x^{3}}{3}\right)$ defined on the complex plane \mathbb{C}.
(a) Determine all points of continuity of f.
(b) Determine all points at which the function f is differentiable.
(c) Determine all points at which the function is analytic.
5. (10 pts) Can you find an entire function $f(z)$ whose real part is $u(x, y)=e^{x} \sin y$? If yes, find such function $f(z)$ and write it as a function of z only.
6. (10 pts) Find a function $\phi(r, \theta)$ that is harmonic in the domain $\{z \in \mathbb{C}: 1<|z-3 i|<5\}$ and that has boundary values $\phi=2$ when $|z-3 i|=1$ and $\phi=12$ when $|z-3 i|=5$.

