MIDTERM 1 - MATH 313: COMPLEX ANALYSIS - FALL 2013 Instructor: Cristina Pereyra

There are a total of 100 points, plus ten possible bonus points. No books, notes or calculators are allowed. Good luck!

EXER. 1	EXER. 2	EXER. 3	EXER. 4	EXER. 5	EXER. 6	TOTAL

BLACKBOARD FORMULAS AND RESULTS PROMISED

- 1. Definitions of trigonometric, hyperbolic, logarithmic and power functions:
 - $\cos z = \frac{e^{iz} + e^{-iz}}{2}$, $\sin z = \frac{e^{iz} e^{-iz}}{2i}$. • $\cosh z = \frac{e^z + e^{-z}}{2}$, $\sinh z = \frac{e^z - e^{-z}}{2}$.
 - For $z \neq 0$, $\operatorname{Log} z = \ln |z| + i\operatorname{Arg} z$ (single-valued).
 - For $z \neq 0$, $\log z = \ln |z| + i \arg z$ (multiple-valued).
 - For $z \neq 0$, $a \in \mathbb{C}$, $z^a = e^{a \log z}$ (multiple-valued when a is not an integer).
- 2. Lemma: If $\phi : S \subset \mathbb{R}^2 \to \mathbb{R}$, S is a domain (an open and connected set), $\frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial y} = 0$ on S then ϕ is a constant function.
- 3. Cauchy-Riemann Equations in polar coordinates: Given $f(z) = u(r, \theta) + iv(r, \theta)$ for $z \neq 0$, then u and v satisfy the CR equations if and only if

$$\frac{\partial v}{\partial \theta} = r \frac{\partial u}{\partial r}, \qquad \frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}.$$

- 4. Limits at infinity and equal to infinity
 - We say $\lim_{z \to z_0} f(z) = \infty$ if and only if $\lim_{z \to z_0} \frac{1}{f(z)} = 0$.
 - We say $\lim_{z \to \infty} f(z) = L$ if and only if $\lim_{z \to 0} f(1/z) = L$.
 - We say $\lim_{z \to \infty} f(z) = \infty$ if and only if $\lim_{z \to 0} \frac{1}{f(1/z)} = 0$.

1. (50 points + 10 bonus points) Please decide whether the following statements are true or false. If TRUE give a very short explanation as to why. If FALSE present a a counterexample or a corrected formula/statement. (There are 12 questions: 10 correct give you full credit, everything additional is bonus).

(a)	If $z^5 = 2e^{i\pi}$ then $z = 2^{1/5}e^{i\pi/5}$.	□ TRUE	☐ FALSE
(b)	$ -i^3 =i$	□ TRUE	□ FALSE
(c)	$f(z) = e^z$ is a one-to-one function on \mathbb{C} .	TRUE	□ FALSE
(d)	$\lim_{z \to (-3i)} z^2 e^z = -9\cos 3 + i9\sin 3.$	TRUE	□ FALSE
(e)	$\operatorname{Arg}(z)$ is a continuous function on $\mathbb{C} \setminus \{0\}$.	TRUE	□ FALSE
(f)	$\text{Log}(z^4) = 4\text{Log}(z)$ for all $z \neq 0$.	□ TRUE	□ FALSE

(g) $|\cos z| \le 1$ for all $z \in \mathbb{C}$. \Box TRUE \Box FALSE

(h) If f is an entire functions then $h(z) = e^z f(1/z^2)$ is analytic on $\mathbb{C} \setminus \{0\}$, and its derivative $h'(z) = h(z) + e^z f'(1/z^2)(-2/z^3)$.

(i) The function u(x, y) = 2y - 3 is harmonic in \mathbb{C} . \Box TRUE \Box FALSE

(j) If u and v are harmonic functions on \mathbb{C} then f(z) = u(x, y) + iv(x, y) is analytic on \mathbb{C} . \Box TRUE \Box FALSE

(k) If f(z) is an entire function with u(x, y) its real part and v(x, y) its imaginary part. Then u is the harmonic conjugate of v. \Box TRUE \Box FALSE

(m) If f is real-valued on \mathbb{C} and analytic then f must be a constant function.

 \Box TRUE \Box FALSE

2. (10 points) Let z = 1 - i. Write z in polar coordinates.

Write (a) $z^{1/3}$, (b) log z and (c) $\frac{i}{z}$ in the form a + ib with $a, b \in \mathbb{R}$ (note: some of these are multiple-valued).

3. (10 pts) Find the limit if it exists otherwise justify why it does not exist. Here $y \in \mathbb{R}$ and $z \in \mathbb{C}$.

(a)
$$\lim_{z \to 0} \frac{\overline{z}}{z}$$

(b)
$$\lim_{z \to i\pi} \frac{e^z + 1}{z - i\pi}$$

- 4. (10 pts) Given the function $f(z) = \left(x + \frac{y^3}{3}\right) + i\left(y x + \frac{x^3}{3}\right)$ defined on the complex plane \mathbb{C} .
 - (a) Determine all points of continuity of f.

(b) Determine all points at which the function f is differentiable.

(c) Determine all points at which the function is analytic.

5. (10 pts) Can you find an entire function f(z) whose real part is $u(x, y) = e^x \sin y$? If yes, find such function f(z) and write it as a function of z only.

6. (10 pts) Find a function $\phi(r, \theta)$ that is harmonic in the domain $\{z \in \mathbb{C} : 1 < |z-3i| < 5\}$ and that has boundary values $\phi = 2$ when |z - 3i| = 1 and $\phi = 12$ when |z - 3i| = 5.