78

Chapter 1 Intrdd_uction to Discrete-Time Dynamical Systems

41-42 = Reconsider the data describing the levels of a medication
in the blood of two patients over the course of several days (mea-
sured in milligrams per liter), used in Section 1.5, Exercises 53
and 54.

41,

42.

Medication Level

in Patient 1 (mg/L)

4546 » Consider the following general models for bacterial pop-
ulations with harvest.

45. Consider a bacterial population that doubles every hour, but
h individuals are removed after reproduction. Find the equi-
librium. Does it make sense?
Medication Level . . . .
in Patient 2 (mg/L) 46. Consider a bacterial population that increases by a factor of

r every hour, but 1.0 x 106 individuals are removed after re-

0 200 0.0 production. Find the equilibrium. What values of r produce
1 16.0 <20 a positive equilibrium?

2 13.0 32 .

3 1075 397 Computer Exercises

For the first patient, graph the updating function, and cob-
web starting from the initial condition on day 0. Find the
equilibrium,

For the second patient, graph the updating function, and cob-
web starting from the initial condition on day O. Find the
equilibrium.

43-44 = Cobweb and find the equilibrium of the following discrete-
time dynamical systems.

43.

IR ©xoressing Solutions with Exponential Functions-

Consider a bacterial population that doubles every hour,
but 1.0 x 10° individuals are removed after reproduction
(Section 1.5, Exercise 57). Cobweb starting from by =
3.0 x 10° bacteria. Is the result consistent with the result of
Exercise 57?

Consider a bacterial population that doubles every hour,
but 1.0 x 10° individuals are removed before reproduc-
tion (Section 1.5, Exercise 58). Cobweb starting from by =
3.0 x 10° bacteria. Is the result consistent with the result of
Exercise 587

47.

48.

Use your computer (it may have a special feature for this)
to find and graph the first 10 points on the solutions of the
following discrete-time dynamical systems. The first two de-
scribe populations with reproduction and immigration of 100
individuals per generation, and the last two describe popu-
lations that have 100 individuals harvested or removed each
generation.

& by =0.5b, + 100 starting from b = 100
b. b1 =1.5b, +100 starting from by = 100
c. by1=1.56—-100 starting from by =201
d. b1 =1.5b — 100 starting from by =199

e. Whathappens if you run the last one (part d) for 15 steps?
What is wrong with the model?

Compose the medication discrete-time dynamical sys-
tem M, =0.5M, + 1.0 with itself 10 times. Plot the result-
ing function. Use this composition to find the concentration
after 10 days, starting from concentrations of 1.0, 5.0, and
18.0 milligrams per liter. If the goal is to reach a stable con-
centration of 2.0 mg/1, do you think this is a good therapy?

The solution associated with the bacterial discrete-time dynamical system given by

bt+1 = 2‘Obt iS

b, =2.0

when by = 1.0. As a function of 7, the solution is an example of an exponential function.
To find how long it will take the population to reach 100 requires solving an equation
where the variable ¢ appears in the exponent. Solving for ¢ requires converting this
function into a standard form with the base e and working with the inverse of the
exponential function, the natural logarithm. We will study the laws of exponents and
the laws of logarithms. More generally, what happens to the discrete-time dynamical
system and solution if some of the bacteria die during the course of each hour? We will
see that the solution is again an exponential function, with base equal to the per capita
production of the bacteria.

Bacterial Population Growth in General

The bacteria studied hitherto have doubled in number each hour. Each bacterium divided

‘once and both “daughter” bacteria survived. Suppose instead that only a fraction o

(sigma) of the daughters survive. Instead of 2.0 offspring per bacteria, we find an
average of 20 offspring (Figure 1.7.100). For example, if only 75% of offspring survived



FIGURE 1.7.100

Bacterial population growth with
reproduction and mortality

Example 1.7.1

Example 1.7.2

FiGurg 1.7.101
Bacterial population growth
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fraction
o survive

Daughter —_—

/ Total of

r = 20 surviving

\ offspring

%
fraction
o survive

Daughter

(o =0.75), there are an average of only 1.5 surviving offspring per parent. Let
r=20

The new parameter r represents the number of new bacteria produced per bacterium
and is called the per capita production.
In terms of the parameter r, the discrete-time dynamical system is

biyi=rb,

This fundamental equation of population biology says that the population at time ¢ + 1
is equal to the per capita production (the number of new bacteria per old bacterium)
times the population at time ¢ (the number of old bacteria), or

new population = per caﬁita production x old population
Discrete-time Dynamical System if Most Offspring Survive
If 0 =0.75, then r =2-0.75 = 1.5. The discrete-time dynamical system is
b1 =1.5b,

If bo=100, then b, =1.5-100=150. The population increases by 50% each
hour. ry

Discrete-time Dynamical System if Few Offspring Survive

If o = 0.25, then = 2 - 0.25 = 0.5. The discrete-time dynamical system is
b1 =0.5b,

If by =100, then b; =0.5-100= 50: Because the value of the survival o is so small,

this population decreases by 50% each hour.

Starting from a population with by bacteria, we can apply the discrete-time dynam-
ical system repeatedly to derive a solution, much as we did in Example 1.5.11 with the
particular value r =2 (Figure 1.7.101). We find

: ~b1=7‘b0
bz:rb1=r2bo
b3 =rb2=r3b0
f f
RN TN TN

by by =rb,

b, = r'by
population at
time ¢

by = rby = rb,
population at
time 2

population at population at
time 0 time 1
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FIGURE 1.7.102

Growing and declining bacterial

populations

Population

Each hour, the initial population by is multiplied by the per capita production r. After
¢ hours, the initial population b, has been multiplied by ¢ factors of 7. Therefore,

b, =r’b0
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How do these solutions behave for different values of the per capita production r?
Results with four values of r starting from by = 1.0 are given in the following table.

t
0 1.0
1 2.0
2 40
3 8.0
4 160
5 320
6 640
7 1280
8 2560

r=2.0

r=15 r=10 r=05
1.0 1.0 1.0 .
15 1.0 0.5
2.25 1.0 0.25
3.37 1.0 0.125 ‘
5.06 1.0 0.0625

7.59 1.0 0.0312

114 1.0 0.0156

17.1 1.0 0.00781

25.6 1.0 0.00391

In the first two columns, r > 1 and the population increases each hour (Figure 1.7.102a
and b). In the third column, r = 1 and the population remains the same hour after hour !

(Figure 1.7.102c). In the final column, r < 1 and the population decreases each hour
(Figure 1.7.102d). We summarize these observations in the following table.

Value of r  Behavior of Populétion w

r>1
r=1

r<l1

population increases
population remains constant

population decreases



Example 1.7.3

Example 1.7.4
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A population with r = 1 exactly replaces itself each generation and retains a constant
size, even though the individuals in the population change. This is consistent with our
finding that any value of  is an equilibrium when r =1 (Example 1.6.7).

Laws of Exponents and Logs

In the solution b, = r'by, the variable ¢ appears in the exponent, in contrast to a function
such as f(t) =t where the variable ¢ is raised to a power. For any positive number a,
the exponential function to the base a is written

fxy=a"

and is read “a to the xth power.” This function takes x as input and returns x factors of
a multiplied together. The notation generalizes that used in equations such as

a =a-a

The key to using exponential functions is knowing the laws of exponents, summarized
in the following table. This table also includes examples using a =2 that can help in
remembering when to add and when to multiply.

Laws of exponents

General Formula: Example with a=2, x=2,and y=3

Law 1 a*-a® =a*t 22.23=25=32

Law 2 @)y =av (23 =2°=64
. i o1 1

Law 3 a = 2 =5%=3
a¥ 23

Law 4 bl 2 2y

aw == 5

Law 5 al=a 20=2

Law 6 a’=1 20=1

The exponential function is defined for all values of x, including negative numbers
and fractions. What does it mean to multiply half an a or —3 a’s together? These
expressions must be computed with the laws of exponents. .

Negative Powers

To compute a3, apply law 3 to find

1
-3
© s
For example,
11
27 =—=-=0.125
22 8
Negative powers in the numerator are positive in the denominator. A

Fractional Powers

To compute a®>, we raise this unknown quantity to the 2nd power (square it) and use
law 2 to find

(a0.5)2 —g%52 gl =g
Therefore, a to the 0.5 power is the number that, when squared, gives back a. In other
words, a to the 0.5 power is the square root of a. For example

25 =2~ 1.41421 A




Example 1.7.5

-3 =2 -1

FIGURE 1.7.103
Graph of the exponential function

Definition 1.12

Example 1.7.6

FIGURE 1.7.104

The expdnential function and natural
logarithm are inverses
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For reasons that will make sense only with a bit of calculus (Section 2.8), the base
most commonly used throughout the sciences is the irrational number

e=72.718281828459....
The function
flx)=e"

which is read “e to the x,” is called the exponential function to the base e, or simply
the exponential function (Figure 1.7.103). Calculators and computers often abbreviate
this as exp. The domain of this function consists of all numbers, and the range is all
positive numbers.

The Laws of Exponents for the Base e
Bt =3 = (law 1).
= 2> + ¢* cannot be simplified with a law of exponents.

n () =e34=¢'? (law 2).

_ 1
LI 2:e—z(law3).

. 2_3 =e* 3 =¢l =¢ (laws 4 and 5).
s 0=1 (law 6). A

The graph of the exponential function crosses every positive horizontal line only
once and thus passes the horizontal line test for having an inverse (see “Finding Inverse-
Functions,” Section 1.2, p. 17). The inverse is the natural log.

The inverse function of the exponential function e* is called the natural logarithm (or
natural log). The natural log of x is written In(x). The natural logarithm has a domain
consisting of all positive numbers. [

From the definition of the inverse (Definition 1.6),
ln(e") =X 3

eln(x) = x

The graph of the natural logarithm increases from “negative infinity” near x = 0 through
0 at x = 1 and rises more and more slowly as x becomes larger (Figure 1.7.105). It is
impossible to compute the natural log of a negative number (although more advanced
fields of mathematics define these quantities using complex numbers).
Exponential and Logarithmic Functions

= If In(100) ~ 4.605, then ¢*5% ~ 100.

n If &5 A2 148.41, then In(148.41) ~ 5.

= If In(0.1) & —2.303, then ¢~23% ~0.1.

» If e73 %2 0.04979, then 1n(0.04979) ~ —3.

exponential function natural logarithm
@f\‘ B
N N~

natural logarithm exponential function




Example 1.7.7 The Laws of Logs in Action

0 Ly,
/2 4 6 8 10 12 14 16 18 20

FIGURE 1.7.105
Graph of the natural logarithm

Example 1.7.8

Its inverse is the logarithm to the base 10, which is written
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The key to understanding natural logarithms is knowing the laws of logs, presented
in the accompanying table, which are the laws of exponents in reverse.

The laws of logs {for x, y >0, and any number p)

Law 1 l_n(xy) =In(x) + In(y)
Law 2 In(x?) = pIn(x) ‘;
Law 3 In(1/x) = — In(x) ;
Law 4 ‘ In(x/y) =In(x) — In(y) :
Law 5  In(e) =1 1
Law 6 In(1) =0 i

®* In(3) +In(4) =In(3-4) = In(12), using law 1.

= In(3) - In(4) cannot be simplified with a law of logs.

* In(3*) =41n(3), using law 2.

* In(1/3) = —In(3), using law 3.

* In(4/3) =1n(4) — In(3), using law 4. A

In some disciplines, people use the exponential function with base 10, or

flx) =10

log,, x

and is read “log base 10 of x.” Just as In(x) =y implies that x = ¢,

loggx =y

r'd

implies that
x=10"

For example, if log,qx =2.3, then x = 1023~ 199.5. In most ways, the exponential
function with base 10 and the log base 10 work much like the exponential function with
base e and the natural logarithm. All laws of exponents and logs are the same except
law 5, which becomes

10t =10
log;,(10) =1

The base e is more convenient for studying dynamics with calculus.

Law 5 of exponents:
Law 5 of logs:

Converting Logarithms in Base 10 to Natural Logs

Suppose log;,(x) = y. How can we find In(x)? By the definition of log,,,
x=10
Then
In(x) =1n (10”)
=yIn(10)
~2.303y

take the natural log of both sides
law 2 of logs
because In(10) ~2.303
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Example 1.7.9

Example 1.7.10
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FIGURE 1.7.106
Using solutions to find times

Example 1.7.11

Rewriting in terms of log,,, we find that
In(x) &~ 2.303 log;,(x)
For instance, log;,(100) =2, so In(100) = 2.303 - 2 = 4.606. n

Expressing Results with Exponentials

We can use the laws of exponentials and logs to express
- b, =r tbo

in terms of the exponential function with base e. Because the exponential function and
the natural logarithm are inverses, we can rewrite r as

F o= eln(r)
Then, using law 2 of exponents,

- (eln(r))t

— eln(r)t
Therefore, the general solution for the discrete-time dynamical system
b =rb,

with initial condition b, can be written in exponential notation as

bx — boeln(r)t
Expressing a Solution with the Exponential Function
Consider the case r =2.0 and by = 1.0. Because In(2.0) ~ 0.6931, the solution is

b, = 106" a1 006931 ry

What is the value of rewriting the solution in this way? Exponential notation makes
it easier to answer questions about when a population will reach a particular value.

Using a Solution Expressed with the Exponential Function: Increasing Case

When will the population described in the introduction, with solution
bt = 20t

reach100.0? In Example 1.7.9 we wrote this solution in exponential notation. Now we
can set b, = 100.0 and solve for ¢ with the steps

"0 —100.0 equation for ¢
In(2.0)t = In(100.0) take the natural log of both sides
In(100.0
t= —((—)D ~6.64  solvefor¢

In(2.0)

The population will pass 100 million between hours 6 and 7 (Figure 1.7.106). The key
step uses the natural log, the inverse of the exponential function, to remove the variable
t from the exponent.’

Using a Solution Expressed with the Exponential Function: Decreasing Case

How long it will take a population with < 1 to decrease to some specified value?
Suppose r =0.7 and by = 100. The population decreases because r < 1. When will it

“reach b; = 2? In exponential notation,

b =100.0¢" 7"
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FIGURE 1.7.107

Using solutions to find times

Time

12

Example 1.7.12

FIGURE 17,108

The EXponential function with different

Parameter values in the exponent
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Then b, = 2.0 can be solved
100.0e™0Mr =2 0
07 = 0,02
In(0.7)t =1n(0.02)

equation for ¢
divide both sides by 100
take the natural log

In(0.02
t= -;ln((O_7)) ~10.97  solve for ¢
This population will pass 2.0 just before hour 11 (Figure 1.7.107).

Throughout the sciences, many measurements other than population sizes are de-
scribed by exponential functions. In such cases, we write the measurement S as a
function of ¢ as

§(t) = S(0)e™

The parameter S(0) represents the value of the measurement at time ¢ =0. The pa-
rameter « describes how the measurement changes; o has dimensions of 1/time.
When « > 0, the function is increasing (Figure 1.7.108a and b). When o < 0, the func-
tion is decreasing (Figure 1.7.108c and d). The function increases most quickly with
large positive values of «, and it decreases most quickly with large negative values
of .

One important number describing such measurements is the doubling time. When
« > 0, the measurement is increasing. A convenient measure of the speed of increase
is the time it takes the initial value to double.

Computing a Doubling Time from Scratch

Suppose
S(t) = 150.0e

with ¢ measured in hours. This measurement starts at S(0) = 150.0 and doubles when

a=0.5
20[’
15
10 1
5 /
- L 1 lx + 1 1 lx
-3 -2 -1 1 2 3 -3 -2 -1 0 1 2 3
b
a= -2 a=—05
20!' 20’—
15+ 15 F
10 - 10
S 5t
1 ' 1 [~— L Loy 1 1 —— x
-3 -2 ~i 0 1 2 3 -3 -2 -1 0 1 2 3
c : d
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FIGURE 1.7.109
Doubling times and half-lives

Example 1.7.13

S(0)
% 5
2 g
g s = e
(5} —
2 WO tmewhen 3 goaqy [T
< value is I time when
S(0) double value is half
it's initial it's initial value
0 !'value 0 .
0 1 0 t,
Time Time
a b
S$(¢) =300.0, or
150.0¢"* =300.0
el.2t — 20
1.2t =1n(2.0)
In(2.0
= CO 4 5776
2
As a check, we compute
$(0.5776) = 150.0e'2° %5776 22 300.0 A

We can solve for the doubling time for a measurement following S(¢) = S(0)e** by
finding the time z; when S(¢;) = 25(0),

S(t1) = S(0)e* =25(0)

equation for #y

e =7 divide by S(0)
aty =In(2) take the natural log
In(2) 0.6931
ty= ~ solve for t4
o o

The general formula for the doubling time is

__0.6931
~ o

4

The doubling time becomes smaller as « becomes larger, consistent with the fact that
measurements with larger values of « increase more quickly.

Computing a Doubling Time with the Formula

Suppose S(z) = 150.0e!* as in Example 1.7.13. Then & = 1.2/hour, and the doubling
time is
0.6931
=~ '—li— ~(.5776 hour m

When « < 0, the measurement is decreasing, and we can ask how long it will take
to become half as large. This time, denoted ¢, is called the half-life and can be found
with the following steps.

S(tx) = S(0)e** =0.55(0)
e** =0.5
at, =1n(0.5)
_In(0.5)  0.6931
T« o

equation for #,
divide by S(0)
take the natural log

solve for 1,

I




Example 1.7.14

Example 1.7.15

Example 1.7.16

Example 1.7.17
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Therefore, the general formula for the half-life is

_0.6931
o

~

h,~

The half-life becomes smaller when « grows larger in absolute value. Remember to
apply this equation only whena < 0.

Computing the Half-Life

If a measurement follows the equation
M(t) =240.0e %
with 7 measured in seconds, then o = _-2.3/second and the half-life is

—0.6931
0N ~20.3013 second

Thinking in Half-Lives

Consider the measurement M(t) given in Example 1.7.14, with a half-life of 0.3014
second. To figure out how much the value will have decreased in 2.0 seconds, we could
plug into the original formula, finding

M(2.0) =240.0¢723 >0 ~2.41
The value decreased by a factor of nearly 100. Alternatively, 2.0 seconds is

2.0
——— =~ 6.63
0.3013 6.636

half-lives. After this many half-lives, the value will have decreased by a factor of 26:636
99.46, so that M(2.0) = g%‘% ~ 9 41. We can think of using half-lives as converting the
exponential to base 2. n

Conversely, if we are told the initial value and the doubling time or half-life of
some measurement, we can find the formula. Instead of solving for the doubling time,
we solve for the parameter a.

Finding the Formula from the Doubling Time

Suppose 1z = 26,200 years for some measurement m. Because

0.6931
o

1y~

we can solve for o as
N 0.6931 0.6931

o = —2.645 x 107
5 26,200
If m(0) = 0.031, then the formula for m(#) is
m(t) =0.031£2845 <107 Al

Finding the Formula from the Half-Life

Suppose t, = 6.8 years for some measurement V. Because
0.6931

o

I~ —

we can solve for a as

0. .
R — 6931 =————0 6931 ~ —0.1019
th . 6.8
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FiGURE 1.7.110
Original graph and semilog graph

Definition 1.13

Example 1.7.18

Example 1.7.19

Ordinary graph Semilog graph
60000
50000
40000
30000
20000
10000

S()
In(S()

If V(0) =23.1, then the formula for V(¢) is
V(t) =23.1¢70-101 A

When a measurement follows an exponential function, the results are often plotted
on a semilog graph.

A semilog graph plots the logarithm of the output against the input. 4]

A Semilog Graph of a Growing Value

Suppose
S(r) = 150.0e**

with ¢ measured in hours (Example 1.7.13 and Figure 1.7.110a). To plot a semilog
graph of S(r) against ¢, we find the natural logarithm of S(z).

In(S(2)) = ln(lS0.0eu’) the natural logarithm of S(z)
=1n(150.0) + ln(eu’) break up with law 2 of logs
~5.01 4+ 1.2t evaluate In(150.0) and cancel In and exponent

Therefore, the semilog graph is a line with intercept 5.01 and slope 1.2 (Figure 1.7.110b)
and transforms a curve into a line. .

A Semilog Graph of Some Data

Suppose we are to graph the following data.

Time Value

0 12012
1 24.34
2 2.19
3 0.89
4 0.056
5 0.078
6 0.125
7 0.346
8 1.128

The graph of the original data is difficult to read because the large vertical scale makes
the small values almost indistinguishable (Figure 1.7.111a). If we take the logarithm
of the data, however, the values are much easier to compare (Figure 1.7.111b).



FIGURE 1.7.111
Original graph and semilog graph

Summary
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Ordinary graph Semilog graph
150 o 3
=
= 4
£ 3
9 100 E %
<
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o -2
0 . . ) - 3 . L ;
0 2 4 6 8 0 2 4 6 8
Time Time
a b

Time Value Logarithm of Value

0 12012 _ 479
1 24.34 3.19
2 2.19 0.78
3 0.89 —0.12
4 0.056 ~2.88
5 0.078 ~2.55
6 0.125 ~2.08
7 0.346 ~1.06
8 1.128 0.12

We can see that the value reached a minimum at time 4 and increased steadily after

that. Al

We generalized the discrete-time dynamical system for bacterial population growth to
compute when populations would reach particular values. If some offspring die, the
discrete-time dynamical system can be written in terms of the per capita production
r. A population grows if » > 1 and declines if r < 1. The solution can be expressed
as an exponential function to the base r. For convenience, exponential functions are
often expressgd to the base e, often called the exponential function. Using the laws
of exponents, any exponential function can be expressed to the base e. The inverse of
the exponential function is the natural logarithm or natural log. This function can be
used to solve equations involving the exponential function, including finding doubling
times and half-lives. Measurements that cover a large range of positive values can
be conveniently displayed on a semilog graph, which reduces the range and which
produces a linear graph if the measurements follow an exponential function.

BEN cocises

Mathematical Techniques
1-10»
sible,

1. 4320

432!

43271

43,2705 4 43 705
43.272 /43 762
43.2083 43 p0m7
(3405

2
3
4.
5,
6
7

8. (432717316

Use the laws of exponents to rewrite the following, if pos- 9. 22 .97
If no law of exponents applies, say so.

10. 4%.2¢

11-20 = Use the laws of logs to rewrite the following, if possible.
If no law of Jogs applies or the quantity is not defined, say so.

11. In(1)

12. In(-6.5)

13. logy,43.2

14. log,;(3.546.5)
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15 log;(5) + log,,(20)

16. log;,(0.5) + log,,(0.2)

17. log,((500) — log,,(50)

18. logy;,(5-43.22) —log,,,(5)
19. log,;,(43.27)

20. Jlog,,,(43.2T)4

21-22 = Apply the laws of logs with base equal to 7 to compute the
following.

21 Using the fact that log, 43.2~1.935, find log, ( ‘é)

22, Using the fact that log; 43.2~1.935, find log, [(43.2)%).

23-26 = Solve the following equations for x. Plug in your answer
to check.

23. 7¢% =7)

24. 47+l =20

25, 4l =703
26. 4e>+3 — 7,352

27-30 = Sketch graphs of the following exponential functions. For

each, find the value of x where the function is equal to 7.0. For the -

increasing functions, find the doubling time, and for the decreasing
functions, find the half-life, For what value of x is the value of the
function 3.5? For what value of x is the value of the function 14.0?

27. o

28, 73
29, 5¢0
30. 0.1¢70%

31-32 = Sketch graphs of the following updating functions over the
given range, and mark the equilibria.

3. h(z)=e2 forO0<z=<2

32. F(x)= In(x) + 1for0<x <2, (Although the equilibria can-
not be found algebraically, you can guess the answer.)

Applications

33-36 = Find the solution of each discrete-time dynamical system,
express it in exponential notation, and solve for the time when the
value reaches the given target. Sketch a graph of the solution.

33. A population follows the discrete-time dynamical system
bry1=rb, with r =1.5 and bo=1.0 x 10°. When will the
population reach 1.0 x 1079

34. A population follows the discrete-time dynamical system
b1 =rb, with r =0.7 and bo=5.0x 10°. When will the
population reach 1.0 x 1059

35. Cell volume follows the discrete-time dynamical system
U1 = 1.5v, with initial volume of 1350 um?3 (as in Section
L5, Exercise 37). When will the volume reach 3250 pm3?

36. Gnat number follows the discrete-ﬁme dynamical system
ney1 =0.5x7, with an initial population of 5.5 x 10*. When
will the population reach 1.5 x 1039

37-40 = Suppose the size of an organism at time ¢ is given by
S(t) = Spe™

where S is the initial size. Find the time it takes for the organist

to double and to quadruple in size in the following circumstances

37. So=1.0cmanda= 1.0/day

38. Sy=20cmanda= 1.0/day

39. Sy=2.0cmanda=0. 1/hour

40. Sy=20cmand o = 0.0/hour

41-42 = Suppose the size of an organism at time ¢ is given by
S(t) = Sp10™

where S is the initial size and 7 s measured in days. Find the time
it takes for the organism to double in size by converting to base e.
How long will it take to increase by a factor of 10?

MN. Sy=234anda=05
42. Sy=2.34 and & = 0.693

43-46 = The amount of carbon-14 (C*¥) left ¢ years after the death
of an organism is given by

Q(t) — Qoe—0.0001221

where (g is the amount left at the time of death. Suppose Qg =
6.0 x 10'° C™* ztoms.

43. How much is left after 50,000 years? What fraction is this of
the original amount?

44. How much is left after 100,000 years? What fraction is this
of the original amount?

45. Find the half-life of C'4,

46. About how many half-lives will occur in 50,000 years?
Roughly what fraction will be left? How does this compare
with the answer to Exercise 437

47-50 = Suppose a population has a doubling time of 24 years and
an initial size of 500.

47. What is the population in 48 years?

48. What is the population in 12 years?

49. Find the equation for population size P(t) as a function of
time.

50.  Find the 1-year discrete-time dynamical system for this pop-

ulation (figure out the factor multiplying the population in
1 year)..

- 51-64 = Suppose a population is dying with a half-life of 43 years.

The initial size is 1600.
51. How long will it take to reach 200?
52.  Find the population in 86 years.

53. Find the equation for population size P(z) as a function of
time.

54. Find the 1-year discrete-time dynamical system for this pop-

ulation (figure out the factor multiplying the population in :

1 year).

. SRR slibon s it 1




1.8 Oscillations and Trigonometry 91

55-56 = Plot semilog graphs of the values from the earlier prob- a. 81(2) = 8(¢) with Sy and S; from the previous problem.
lems. b. Hi(t)=2H,(¢) with H, and H, from the previous
55. The growing organism in Exercise 37 for 0 <t < 10. Mark problem.

where the organism has doubled in size and where it has

LS, ¢. Hi(t)=0.5H,(z) with H, and H, from the previous
quadrupled in size. problem.
56. The carbon-14 in Exercise 43 for 0 < ¢ < 20000. Mark where

the amount of carbon has gone down by half. 61.  Use your computer to plot the following functions.

57. The population in Exercise 47 for 0 < ¢ < 100. Mark where 3 Inx) for 10 <.x < 100,000
the population has doubled. b. In(In{x)) for 10 < x < 100,000
The population in Exercise 51 for 0 < 7 < 100. Mark where ¢. In(in(In(x))) for 10 < x < 100,000
58. populal
the population has gone down by half. d e for0<x<2
Computer Exercises e e for0=<x=<2
o . . .
59. Use your computer to find the following. Plot the graphs to f. e for 0<x <2. Will your Jmachine let you do it? Can
check. you compute the value of ¢ ?
a. The doubling time of S (¢) =3.4¢%%. 62. Use your computer to compute the following. Does this give
b. The doubling time of S, () = 0.2¢>%. you a::():dea why ¢ is special?
. 2°
c. The half-life of H, () =3.4¢=02 :
b, 10%%0!
d. The half-life of H,(r) = 0.2¢34, o001
. 0.5%
60. Have your computer solve for the times when the following ¢
hold. Plot the graphs to check your answers. d. g0

mwllations and Trigonometry ]

We have used linear and exponential functions to describe several types of relations
between measurements. Important as they are, these functions cannot describe os-
cillations, processes that repeat in cycles. Heartbeats and breathing are examples of*
biological oscillations. In addition, the daily and seasonal cycles imposed by: the move-
ments of the earth drive sleep-wake cycles, seasonal population cycles, and the tides.
In this section, we will use trigonometric functions to describe simple oscillations.
Four numbers are needed to describe such oscillations with the cosine function: the
average, the amplitude, the period, and the phase.

Sine and Cosine: A Review

Like many functions, the trigonometric functions have two interpretations: geomet-
ric and dynamical. Geometrically, the trigonometric functions are used to compute
angles and distances. After briefly reviewing the geometry behind the sine and cosine
functions, we will use them to study the dynamics of biological oscillations.

In applied mathematics, angles are measured in radians. For an angle with vertex
at the center of a circle of radius 1, its measure in radians is equal to the length of the
arc of the circle subtended (lying inside) the angle (Figure 1.8.1 12). Because the full
circumference of a circle with radius 1 is 27, 27 radians corresponds to 360°, or one
complete revolution. There is thus a basic identity between radians and degrees given
by

27 radians = 360°
From this, we derive the conversion factors
= 27 radians T radians
360° 180°
360° 180°
- 27 radians - 7 radians
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FIGURE 1.8.112
Degrees and radians

Example 1.8.1

Example 1.8.2

Definition 1.14

(cos(8), sin(6)

FIGURE 1.8.113
The definition of sin(@) and cos(#)
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277 radi
T radians w:;‘ 201“5
‘\90"
Converting Degrees to Radians
To find 60° in radians, we convert
wradians 7w
60° = 60° x ———— = —radians
180° 3 4

Converting Radians to Degrées

Similarly, to find 1.0 radians in degrees, we convert

1.0radians = 1.0radians x ~57.3° Al

7 radians

The sine function and the cosine function take angles as inputs and return numbers
between —1 and 1 as outputs. We write sin(6) and cos(@) to denote these functions,
where the Greek letter 6 (theta) is often used for angles. The sine and cosine give the
Cartesian coordinates of points on the circle (Figure 1.8.113).

The Cartesian coordinates of the point on the unit circle an angle 6 measured counter-
clockwise from (1, 0) are (cos(9), sin(8)). 2

Values of these functions for representative inputs are given in the following table.

Radians sin{8) Radians cos(d) sin{6)

Degrees cos(6) Degrees

0 0° 1 0
% 90° 0 1 37” 270° 0 -1
n 180° -1 0 o 360° 1 0



FIGURE 1.8.114
Graphs of the cosine and sine functions

Example 1.8.3

Example 1.8.4
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cos(x) - sin(x)

1.0 1.0}
/\ / 05t /
. : . ¢ t
27 - 0 T 27 T~ 0 T 27
0.5+t
10t ~or
a b

Both the sine and cosine functions repeat every 27 radians (Figure 1.8.114). The
value 27 is called the period of the oscillation. This means that adding (or subtracting)
multiples of 27 to (or from) the argument does not change the value, so

cos(f) =cos(9 + 2m) =cos(f + 4w) =cos(@ -+ 2nw)
cos(8) =cos(f — 2m) =cos(® — 4m) =cos(d — 2nm)

for any value of € and any integer n and similarly for the sine function.

Periodicity of the Cosine Function

co il =co JT+2 = n+4 —ﬁ
s4_s471_cos47r—-2

D)ol )l )4
COs 2 =Cos Z JT ] = COS 2 T )= >

The graphs of sine and cosine have the same shape but are shifted from each other
by /2 rad (Figure 1.8.114). In equations,

. b4
sin(#) = cos <6 — 5)

Relation Between Sine and Cosine

(2 2w\ /4 _\/§ ‘
sm<?> _cos<T - 5) —C08<g) =7 A

Because we can compute the sine function in terms of the cosine function, we will
use cosine to describe oscillations.

Describing Oscillations with the Cosine

A measurement is said to oscillate as a function of time if the values vary regularly
between high and low values. Oscillations that are shaped like the graph of the sine or
cosine function are called sinusoidal. There are four numbers needed to describe an
oscillation with the cosine function: the average, the amplitude, the period, and the
phase (Figure 1.8.115).

» The amplitude is the difference between the maximum and the average (or the
average and the minimum).

» The average lies halfway between the minimum and maximum values,
= The period is the time between successive peaks.

= The phase is the time of the first peak.
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Value
phase

<—g>l<— period T—>I

—~—- maximumA + B

amplitude

FIGURE 1.8.115

The four numbers that describe a
sinusoidal oscillation

adding 3.0
3.0 + 2.0 cos(r) 3.0 + cos(®) moves graph
up by 3.0
5 L
41

multiplying cos(#)
by 2.0 doubles
the amplitude

-~ 3l
) | . amplitude
28 R 77N\ | =20
— .
27 /]
m N

average = 3.0

1’
4 t
0 N 2 '
-1 -
2+
a b
3.0 + 2.0 cos(271/4.0) 3.0 + 2.0 cos(2w(r — 1.0)/4.0)
hase = 1.0
- P
5 ~ / N\

27
. . t : . t
27 0| multiplying ¢ by 27/4.0 2 0| subtracting 1.0 from ¢
-t changes period to 4.0 d changes phase to 1.0 i

FIGURE 1.8.116

Building a function with different average, amplitude, period, and phase

We can build the oscillation shown in Figure 1.8.115 from the cosine function by
shifting and scaling both vertically and horizontally (Section 1.3).

Example 1.8.5 Building an Oscillation by Shifting and Scaling the Cosine Function

Suppose we wish to build a function with an amplitude of 2.0, an average of 3.0, a
period of 4.0, and a phase of 1.0. We can construct the formula in steps.

1. To increase the amplitude by a factor of 2.0, we scale vertically by multiplying
the cosine by 2.0 (Figure 1.8.116a). The function is now

J(£) =2.0cos(z)

2. To raise the average from O to 3.0, we vertically shift the function by adding
- 3.0 to the function (Figure 1.8.116b), making

f(t)=3.042.0cos(t)



FIGURE 1.8.117
The guideposts for plotting

fey=A+B cos(z%(t - ¢))

Example 1.8.6

FIGURE 1.8.118

Graphing a sinusoidal oscillation from
Its equation

1.8 Oscillations and Trigonometry 95

maximum A + B

average A

&+ T2
¢ ¢+ T

|
¢ +/T/4\_/¢ +\ 3T/4

minimum A — B

3. Next, we wish to decrease the period from 27 to 4.0. We do this by scaling
horizontally by a factor of ZTN, or by multiplying the ¢ inside the cosine by

% (Figure 1.8.116c). Our function is now

f(£)=3.04+20 cos(%t)

4. Finally, we shift the curve horizontally so that the first peak is at 1.0 instead of
0.0. We do this by subtracting 1.0 from ¢ (Figure 1.8.1 16d), arriving at the
final answer of

2n
f(t)=3.0+2.Ocos<ZB(f - 1-0)> Iy

In general, a sinusoidal oscillation with amplitude B, average A, period T', and
phase ¢ (phi) can be described as a function of time ¢ with the formula

f(t)=A+B cos(g;[—(t - ¢)> (1.8.1)

. . . .. T
This function has a maximum at ¢ = ¢, has a minimum at z = ¢+ > and takes on

its average wvalue at t =¢ + —ﬁ— and 1 =¢ + 242 Thereafter, it repeats every T (Fig-
ure 1.8.117). :

Plotting a Sinusoidal Function from its Equation

Suppose we wish to plot
2
=2.0+04 —@—-70
) + COS(IO.O( ))

The amplitude is 0.4, and the average is 2.0, the period is 10.0, and the phase is 7.0
(Figure 1.8.118). The maximum is the sum of the average and amplitude, or 2.0 + 0.4 =
2.4 and the minimum is the average minus the amplitude, or 2.0 — 0.4 = 1.6. The first

f@ first

257 maximum

repeats

23 ¢

211

first minimum

-5 0 5 10 15 20 25
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Example 1.8.7

FIGURE 1.8.119

The daily and monthly temperature
cycles

maximum occurs at the phase, or at ¢ =7.0. The average occurs 1/4 and 3/4 of the
way through each cycle, or at t =7.0 4 %(10.0) =95and t=7.0+ %(10.0) =14.5.

The minimum occurs halfway through the first period at z = 7.0 + %(10.0) =12.0. The
cycle repeats at t = 17.0, 27.0, and so forth.

The Daily and Monthly Temperature Cycles

Women have two cycles affecting body temperature: a daily and a monthly rhythm.
The key facts about these two cycles are given in the following table.

'Minimum Maximum Average Time of Maximum Period

Daily cycle 36.5 37.1 36.8 2:00 P.M. 24 hours
Monthly cycle 36.6 37.0 36.8 Day 16 28 days

Assuming that these cycles are sinusoidal, we can use this information to describe these
cycles with the cosine function.
The amplitude of a cycle is

amplitude = maximum — average
For the daily cycle, the amplitude is
daily cycle amplitude = 37.1 — 36.8 =0.3
For the monthly cycle, the amplitude is
monthly cycle amplitude = 37.0 — 36.8 =0.2

The phase depends on the time chosen as the starting time. We define the daily cycle
to begin at midnight and the monthly cycle to begin at menstruation. The maximum of
the daily cycle occurs 14 hours after the start, and that of the monthly cycle 16 days after
the start. The oscillations can be described by the fundamental formula (Equation 1.8.1).
For the daily cycle, with ¢ measured in hours, the formula P, () is
2 (r — 14) )

Py(t)=36.8+03
2 (1) + cos( 71

(Figure 1.8.119a.) For the monthly cycle, with # measured in days, the formula P,,(z)
is

27(t — 16
P,(t)=36.84+0.2cos ——)
28
(Figure 1.8.119b.) LA
Daily temperature cycle Monthly temperature cycle
37.2 312 ¢
v 370 u 370
g 368 £ 368
8 g
8 8 366
g 36.6 g.
Q o
& 364 & 364
ol 17 S I
0 6 1218 0 6 1218 0 0 7 1421 0 7 1421 0O
Time (hours) Time (days)

a b
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More Complicated Shapes

-Real oscillations are not perfectly sinusoidal. N onetheless, the cosine function is useful
for describing more complicated oscillations. A powerful theory beyond the scope of
this book, called Fourier series, shows how almost any oscillation can be written as
the sum of many cosine functions with different amplitudes, periods, and phases (see
Exercise 55).

As an illustration, we will combine the daily and monthly temperature cycles. To
do so, we must write both cycles in the same time units, days. In days, the period of the
daily cycle is 1.0 day and the phase (the time of the maximum) is

1.0 days
hase in days = 14 h, .
phase in days ours 24 hours

~0.583 day

The equation for the daily cycle, with ¢ measured in days, is
Fy(t) =36.8 + 0.3 cos(2 (t — 0.583)) .

To figure out how the daily and monthly cycles combine, we cannot simply add
them together, because

2m(t - 16
Py(t) + Pn(t) =36.8 + 0.3 cos(2 (¢ — 0.583)) +36.8 + 0.2 cos <Lt28*)>

27t — 16
=73.6+ 0.3 cos(27 (¢ — 0.583)) + 0.2 cos (%)

which has an average of 73.6.

/ To keep the average at the appropriate value of 36.8, we add only the two cosine
terms to the average, getting a formula for the combined cycle of

2m(t — 16
Pi(t)=36.8+0.2 cos(%) +0.3cos(2m(t — 0.583))
(Figure 1.8.120). In the course of one month, there is a single slow cycle, with 28 daily

cycles superimposed. The maximum possible temperature can be found by adding the
sum of the amplitudes of the daily and monthly cycles to the overall average. That is,

“maximum possible temperature = 36.8 + (0.2 + 0.3) =37.3

This maximum occurs only if each cycle takes on its maximum at the same time, which
does not happen exactly in this case. It is closest at 2:00 P.M. on the 16th day of the
cycle.

The minimum possible temperature can be found by subtracting the sum of the
amplitudes of the daily and monthly cycles from the overall average, or

minimum possible temperature = 36.8 — (0.2 - 0.3)=36.3

This minimum occurs only if each cycle takes on its minimum at the same time, which
also does not happen exactly. It is closest at 2:00 A.M. on the 2nd day of the cycle.

1 “ ,”lu..

36.6 ”',

374
372+

w
W
o 3

T

Temperature, °C

FIGURE 1.8.120 36.2 L ‘ ' '

The combined effect of the daily and 0 7 . 14 21 0
Monthly temperature cycles Time (days)
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Summary  Sinusoidal oscillations can be described mathematically with the cosine function. Four
factors change the shape of the graph: the amplitude (the distance from the middle to the
minimum or maximum), the average (the middle value), the period (the time between
successive maxima), and the phase (the time of the first maximum). Functions with
these parameters can be created by shifting and scaling the cosine function vertically
and horizontally. Oscillations with more complicated shapes can be described by adding
together appropriate cosine functions.

l

HExercises

Mathematical Techniques

1-6= Use a table or a calculator to find the values of sine and co-
sine for the following inputs (all in radians), and plot them a. on a
graph of sin(6), b. on a graph of cos(9), c. as the coordinates of a
point on the circle.

1. 6=n/2
2. 0=31/4"
3. 0=n/9
4. 6=50

5. §=-2.0
6. 0=32

7-14x« Convert the following angles from degrees to radians, or
vice versa.

7. 30°

8. 330

9. 1°
10. -30°

11. 2.0 radians
12. /5 radians
13. —m/5 radians
14. 30 radians

15-20= There are 360° in a full circle because the ancient Baby-
lonians were fond of the number 60 and its multiples (as an ap-
proximation to the 365 days in a year). In the 1790s, the French
introduced another system for measuring angles called “grads,”
where 400 grads make up a full circle (or 100 grads make up 90°).
Although they are found on many calculators, these units are al-
most never used. Write the basic identities between degrees and
grads, and between radians and grads, and use them to make the
following conversions.

15. 180° into grads

16. 60° into grads

17. m/4 radians into grads
18. 3.0 radians into grads
19. 150 grads into degrees
20. 250 grads into radians

21-26= The other trigonometric functions (tangent, cotangent,
secant, and cosecant) are defined in terms of sin and cos by

__ sin(x) _ cos(x)

tan(x) = m, ot(x) = Sin(x)
1

sec(x) = m, csc(x) = ()

Calcu‘l‘ate the value of each of these functions at the following
angles (all in radians). Plot the points on a graph of each function.

21. /2

2. 3n/4

23. /9

24. 5.0

25. -20 .
26. 3.2

27-32= The following are some of the most important trigonomet-
ric identities. Check each of them at the pointsa.f =0,h.8 =7 /4,
¢.0=n/2,d.0=m.

27. cos(%): 1+cos(6)

square root). Check only at points a, ¢, and d.
28. sin®(9) + cos?(@) =1
29. cos(6 -m)=— cos(6)

for 0<6 <7 (using the positive

30. cos(& - -725) =sin(8)

31, cos(20) =cos*(9) — sin®()
32. sin(20) =2sin(8) cos(h)
33-36~ The following are alternative ways to write formulas

for sinusoidal oscillations. Convert them to the standard form
(Equation 1.8.1) and sketch a graph.

33. r()=5.02.0 + 1.0cos(2x1))

34. g(1)=2.0+1.0 sin(#). Use Exercise 30 to change the sine
into cosine.

35.  f(£)=2.0— 1.0cos(¢). Use Exercise 29 to getrid of the neg-
ative amplitude.

36. h(1)=2.0+1.0cos(2ns — 3.0) (the factor 27r does not mul-
tiply the 3.0).
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Applications 42. g(t)=4.0+3.0c05(27(t —5.0))
37-40 = Find the average, minimum, maximum, amplitude, period, _ ( z— 3.0)
; and phase from the graphs of the following oscillations. 4. h(@)=10+350co0s(27 4.0 !
j .
E 3. 10y 44. W(y)=-204+3.0 cos(27r 4 :31>
% .
' 45-50 = Oscillations are often combined with growth or decay. Plot
2 graphs of the following functions, and describe in words what you
= see. Make up a biological process that might have produced the
> result.
2F 45, f(1)=141+cos(2rt) for 0 <t <4, where ¢ is measured
o L in days.
-8 -4 0 4 8 46. h(r)=t+0.2sin(2wt) for 0 <t < 4, where ¢ is measured in
Time (h) ’ days. '
47. g(t) =é cos(2mt) for 0 <t <3, where ¢ is measured in
38. 10 years.
: ‘ 48. W(t)=e " cos(2mt) for 0 <t < 3, where ¢ is measured in
: sl years. ;
% 49. H(t) =cos(e') for 0 <t < 3, where ¢ is measured in years. :
‘ s A . . 50. b(t)=cos(e™) for 0 <t <3, where ¢ is measured in years.
-8\ [-4 4\ 8 '
\/ / \/ 51-54» Sleepiness has two cycles, a circadian rhythm with a period
‘ —sl of approximately 24 hours and an ultradian rhythm with a period
Time (h) of approximately 4 hours. Both have phase 0 and average 0, but
the amplitude of the circadian rhythm is 1.0 sleepiness unit, and
: ' that of the ultradian is 0.4 sleepiness unit.
39. -
: 10 51. Find the formula and sketch the graph of sleepiness over the
course of a day due to the circadian rhythm.
° 52. Find the formula and sketch the graph of sleepiness over the ‘
g course of a day due to the ultradian rhythm. ‘
o 1
> , » i i
v wan v A (RAVARE SV A 53. Sketch the graph of the two cycles combined. |
54. At what time of day are you sleepiest? At what time of day !
sl - are you least sleepy? §
Time (h) %
2 Computer Exercises ' '
' 23r 55. Consider the following functions. “
Hx)= cos( — z)
Q 2
5 )
° cos (3x - =
” flx) = 2
3
T
1.7 3 COS(SX - 5)
. . 7 . . fs(x)= 5
; -04 -0.2 0 0.2 0.4 .
. Time (h) C05(7x _ z)
‘f fie) = ———2 i
: 41-44» Graph the following functions. Give the average, maxi- |
: mum, minimum, amplitude, period, and phase of each and mark 2. Plot them all on one graph.
E them on your graph. b. Plot the sum fi(x) + f3(x).
E . 00 =3.0+40c0s(2r 250) c. Plot the sum f,(x) + f3(x) + f5(x).
3 ' d. Plot the sum f(x) + F(x) + f5(x) + fr(x).
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1

27

M

©

23.
25.

31.
33.

35.

37.

. v =1.5-1220 um®.

vy =1.5-1220=1830

v, =1.5-1830=2745
v3=1.5-2745=4117.5
v4=1.5-4117.5=6176.25

vs = 1.5+ 6176.25 =9264.375.

Solution
10000

8000
~ 6000 *
4000 +
2000, +
0 1 1 1 3 1
0

Updating function
10000

8000
= 6000
= 4000
2000

1

O 1 1 I
0 2000 4000 6000 8000 10000

Vi

Plugging ¢ = 20 into the solution v, = 1.5* - 1220 um?, we get vy =
4.05 x 105 pm?. This might be reasonable. )
x1=1/2, x, =1/3, x3=1/4, x4 =1/5. It looks like x; = =
x1=3,xy=1, x3=3, x4 = 1. It seems to be jumping back and forth
between 1 and 3. If I start at xg =0, the results jump back and forth
between 0 and 4.

. These do not commute. If you started with 100, doubled (giving 200),
and then removed 10, you would end up with 190. If you started with
100, removed 10 (leaving 90), and then doubled, you’d have only 180.
In general, if we call the starting population P;, if we double first and
then remove 10, we end up with P,y =2 P, — 10. If we first remove
10 and then double, we end up with P,y =2(P, — 10)=2P, — 20,
which never matches the result in the other order.

hoo = 10.0 4+ 20 =30.0 m, a reasonable height for a tree.

1.05 x 10® million bacteria. These will weigh about 1078 g, which
sounds-reasonable.

The solution is x; =50, x; = 130, x3 =290. Adding 30,"we see
that xp+30=40, x; +30=80=40-2, x,+30= 160 =40-22,
and x3 + 30 =320 =40 23. It looks like x, + 30=40-2, so x, =
40-2' —30.

000 1 1 I 1 )
1000 1200 1400 1600 1800 2000

Ve

The discrete-time dynamical system is v,41 = 1.5v, and the missing
value is 2130.
. The length increases by 1.5 cm each half-day, so [;+; = L +1.5cm.

10
+

45.
47.

49,

51.

53.

55.

57.

61.

Answers to Selected Odd Exercises 807

The argument is the initial score. The value is the final score.

Final score

0 1 1 1 i 1 1 1 1 -
0 10 20 30 40 50 60 70 80 90100
Initial score

Let v,4, and v, be the total volume before and after the experi-
ment. Then v, = 10*h, and v, = 10*b,4;. The original discrete-
time dynamical system is b;,1 = 2.0b,. Therefore, vr41 = 10%b,4, =
104(2.0b;) =2.0+ 10*b, = 2.0v,.

V, =mh,0.5%, and V4 = Jrh,+10.52. Therefore,

Vesr = 7(he + 1)0.52 =7, - 0.5 + 705 =V, + 7 - 0.5
The points for the first patient are (20.0, 16.0), (16.0, 13.0), and
(13.0, 10.75).
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Let the level be M, at the beginning of the day. The two points are
(20.0, 16.0) and (16.0, 13.0). The slope is
change in output  13.0 — 16.0

= =0.75.
change ininput  16.0 — 20.0

slope =

In point-slope form, the discrete-time dynamical system is
My =0.75 (M, —20.0) + 16.0=0.75M; + 1.0.

The solution for the first is b, =2.0" + 1.0 x 108, and the solution for

the second is b, =2.0" - 3.0 x 10°. The difference is 2.0' - 0.7 x 108,

but the ratio is always approximately 3.33. Both populations are grow-

ing at the same rate, but the first has a head start. It is always 3