FIGURE 1.5.66
Notation for a discrete-time dynamical

system
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Discrete-time dynamical system

Example 1.5.1

Suppose we collect data on how much several bacterial cultures grow in one hour or on
how much trees grow in one year. How can we predict what will happen in the long run?
In this section, we begin addressing these dynamical problems, which form the theme
of this chapter and indeed of much of this book. We follow the basic steps of applied
mathematics: quantifying the basic measurement and describing the dynamical rule.
We will learn how to summarize the rule with a/discrete-time dynamical system or
an updating function that describes change. Froin the discrete-time dynamical system
and a starting point, called an initial condition, we will compute a solution that gives
the values of the measurement as a function of time.

Discrete-Time Dynamical Systems and Updating Functions

A discrete-time dynamical system describes the relation between a quantity measured
at the beginning and the end of an experiment or a time interval. If the measurement is
represented by the variable m, we will use the notation m;, to denote the measurement
at the beginning of the experiment and m,; to denote the measurement at the end of
the experiment (Figure 1.5.66). Think of ¢ as the current time and of ¢ + 1 as the time
one step into the futuze. The relation between the initial measurement m, and the final
measurement m, is given by the discrete-time dynamical system

Moy = fomy) (151

The updating function f accepts the initial value m, as input and returns the final
value m, 4} as output. .

We will begin by applying this notation to several examples of discrete-time dy-
namical systems.

A Discrete-Time Dynamical System for a Bacterial Population

Recall the data introduced in Example 1.2.3. Several bacterial cultures with different
initial population sizes are grown in controlled conditions for 1 hour and then carefully
measured.

iCoIony Initial Population, b,  Final Population, b,

1 047 0.94
‘ 2 33 6.6
3 0.73 1.46
4 2.8 5.6
5 L5 3.0
6

0.62 : 1.24
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Graph of the updating function for a
bacterial population
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FIGURE 1.5.68
Data describing the growth of six trees

Example 1.5.3

We have replaced b; (the initial population) with b, (the population at time ¢) and b ;
(the final population) with b,,, (the population at time ¢ + 1).

In each colony, the population doubled in size. We can describe this with the
discrete-time dynamical system

bt+l =2.0b,
The updating function f describes the rule applied to the initial population,
f(b:) =2.0b,

As we have seen, a graph of the updating function plots the initial measurement
b, on the horizontal axis and the final measurement b1 on the vertical axis (Flg-
ure 1.5.67).

A Discrete-Time Dynamical System for Tree Growth

Suppose you measure the heights of several trees in one year and then again the next
year. Denoting the initial height by 4, and the final height by 4, , you might find the
data in the following table (all expressed in meters).

Tree Initial Height, h; Final Height, h,; Change in Height
1 23.1 24.1 1.0
2 18.7 19.8 1.1
3 20.6 21.5 0.9
4 16.0 17.0 1.0
5 32.5 33.6 1.1
6 19.8 20.6 0.8

The trees increase in height by about 1.0 m per year (Figure 1.5.68).
If we approximate this by assuming that trees grow exactly 1.0 m per year, then
the discrete-time dynamical system that expresses this relation is

hip1=h, +1.0
The updating function, which we can denote by g, has formula
gh;)=h;+1.0

For example, for a tree beginning with height 12.2 m, the discrete-time dynamical
system predicts a final height of

B =g(122)=122+1.0=13.2m

In this example, the data points do not exactly match the discrete-time dynamical
system. The updating function captures the major trend in the data while ignoring the
noise. Including only the trend corresponds to the use of a deterministic dynamical
system to describe the behavior. To include the noise, we must use a probabilistic
dynamical system (Chapter 6). We will specifically address the problem of finding an
updating function that captures the major trends in the data when we study the technique
of data-fitting called linear regression (Section 8.9).

Discrete-Time Dynamical System for Mites

Recall the lizards infested by mites (Example 1.4.12). The final number of mites Xi41
is related to the initial number of mites x, by the formula

X1 =2x, + 30
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A graph of the updating function for
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After treatment After drug is 1 .Omg/L
on day ¢ used by body added

This is the discrete-time dynamical system for this population. The updating function
is

h(x;) =2x + 30 A

The discrete-time dynamical systems for bacterial populations, tree height, and

mite number were all derived from data. Often, dynamical rules can instead be derived
directly from the principles g6verning a system.

A Discrete-Time Dynamical System for Medication Concentration

Suppose we know the following facts about the dynamics of medication. Each day, a
patient uses up half of the medication in his bloodstream. However, he is given a new
dose sufficient to raise the concentration in the bloodstream by 1.0 milligram per liter
(Figure 1.5.69). Let M, denote the concentration at time ¢. The discrete-time dynamical
system is

M1 =05M,+1.0

The term 0.5M, indicates that only half of the initial medication remains the next
day. The factor 0.5 is the slope of this linear function. The second term, the intercept,
indicates that 1.0 milligram per liter of medication is added each day. We can graph this
linear function by substituting two reasonable values for M,. If M, =0, then M, =1,
the vertical intercept of this line. If M, = 1, then M,,; = 1.5 (Figure 1.5.70). (A

-

Manipulating Updating Functions

All of the operations that can be applied to ordinary functions can be applied to updating
functions, but with special interpretations. We will study compeosition of an updating
function with itself, find the inverse of an updating function, and convert the units or
translate the dimensions of a discrete-time dynamical system.

Composition Consider the discrete-time dynamical system
My = f (mt)

with updating function f. What does the composition f o f mean? The updating
function updates the measurement by one time step. Then

(fof) (m,) = f(f(m,)) definition of composition
= f(m,+1) definition of updating function

=My updating function applied to 2,44
Therefore,
(fo f)(mt) =M42

The composition of an updating function with itself corresponds to a two-step updating
function (Figure 1.5.71).
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FIGURE 1.5.71
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Composition of the Bacterial Population Updating Function with Itself

The bacterial updating function is f(b,) =2b,. The function f o f takes the population
size at time ¢ as input and returns the population size 2 hours later, at time ¢ + 2, as
output. We can compute f o f with the steps

(fof) (bt) = f(f(br))
= f(2‘0b,)
- =2.0 x 2.0b,
=4.0b,
After two hours, the population is four times larger, having doubled twice. In this case,

composition of f with itself looks like multiplication. This simple rules works only for
an updating function expressing a proportional relation. ry

Composition of the Mite Population Updating Function with ltself

The composition of the mite population updating function z(x,) = 2x, + 30 with itself
gives
(ho h)(x;) = h(h(x.))
= h(2x, + 30)
=2(2x; +30) 430
Suppose we started with x, = 10 mites. After 1 week, we would find £(10) =

2+10 + 30 =50 mites. After a second week, we would find 2(50) =2-50 + 30=130
mites. Using the compgsition of the updating function with itself, we can compute the

number of mites after 2 weeks, skipping over the intermediate value of 50 mites after
1 week, finding

(hoh)(10)=4-10+90=130

Inverses Consider again the general discrete-time dynamical system

M1 = f(mt)

with updating function f. What does the inverse f~! mean? The updating function
updates the measurement by one time step, and the inverse function undoes the action
of the updating function. Therefore,

f_l(mH-l) =m,

The inverse of an updating function corresponds to an “updating” function that goes
backwards in time (Figure 1.5.72).
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Example 1.5.7 Inverse of the Bacterial Population Updating Function

Example 1.5.8

The bacterial population updating function is f(b,) = 2b,. We find the inverse by writing
the discrete-time dynamical system

bz+1 = 2'0bt

and solving for the input variable b, (Algorithm 1.1). In this case, dividing both sides
by 2.0 gives

byt
b, =
720

The inverse function is” ™

by

7 br) = 20

If multiplying by 2.0 describes how the population changes forward in time, dividing
by 2.0 describes how it changes backwards in time.

If b, = 3.0, then b, = 2.0b, = 2.0 - 3.0 = 6.0. If we go backwards from b,,; = 6.0
using the inverse of the updating function, we find

6.0

b= f1(6.0)= 30

=3.0
exactly where we started. A

Inverse of the Mite Population Updating Function

To find the inverse of the mite population updating function (x,) = 2.0x; + 30, we use
Algorithm 1.1

2.0x; + 30 =x,44 the original equation
2.0x, = x,01 — 30 subtract 30 from both sides

X1 — 30
=70

-

divide both sides by 2.0

Therefore,
X4y — 30

5 =05xu — 15

xt=h_1(x,+1)=

Suppose we started with x, = 10 mites. After one week, we would find
h(10)=2-10+430=50
Applying the inverse, we find
h1(50)=0.5-50 — 15=10

The inverse function takes us back to where we started.

Discrete-Time Dynamical Systems: Units and Dimensions

The updating function f(b,) =2.0b, accepts as input positive numbers with units of
bacteria. If we measure this quantity in different units, we must convert the updating
function itself into the new units. If we measure a different quantity, such as total mass
or volume, we can translate the updating function into different dimensions.
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Example 1.5.9 Describing the Dynamics of Tree Height in Centimeters

Example 1.5.10

Discrete-time dynamical
system in meters

N
convert convert
between between
units units

H,,, = H,+100.0

~—F
Discrete-time dynamical
system in centimeters

FIGURE 1.5.73

Finding the discrete-time dynamical
system for trees in centimeters

FIGURE 1.5.74

Finding the discrete-time dynamical
system for bacteria in terms of mass

Suppose we wish to study tree height (Example 1.5.2) in units of centimeters rather
than meters. In meters, the discrete-time dynamical system is

g(h)=h,+1.0m

First, we define a new variable to represent the measurement in the new units. Let H,
be tree height measured in centimeters rather than meters. Then H, =100#,, because
there are 100 centimeters in a meter. We wish to find a discrete-time dynamical system
that gives a formula for H,; in'terms of H, (Figure 1.5.73).
H,. 1 =100Ah,, definition of H,,,

= lOO(h, + 1.0) discrete-time dynamical system for 4,

= 100k, 4+ 100 multiply through by 100

= H, 4+ 100 definition of H,
The discrete-time dynamical system in the new units corresponds to adding 100 cen-
timeters to the height, which is equivalent to adding 1 meter. Although the underlying
process is the same, the discrete-time dynamical system and the corresponding updat-

ing function are different, just as the numerical values of measurements are different
in different units. Al

Describing the Dynamics of éaoterial Mass

Suppose we wish to study the bacterial population in terms of mass rather than number.
At the beginning, the mass, denoted by m;, is
m; = ub,
where pt is the mass per bacterium (as in Example 1.3.4). The updated mass m,, is
My = ub definition of m,

=w-2.0b;  substitute the original updating function

=2.0ub, rearrange the terms by the associative and commutative laws

=2.0m, recognize that m, = ub,

This new discrete-time dynamical system doubles its input Jjust as the original discrete-

time dynamical system did, but it takes mass as its input rather than numbers of bacteria .

(Figure 1.5.74). n

Discrete-time dynamical
system for number

fundamental fundamental

$ translate with 1; translate with
relation relation

~—F
Discrete-time dynamical
system for mass




FIGURE 1.5.75

The repeated action of an updating
function
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A solution: Bacterial population size as
a function of time
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Solutions

A discrete-time dynamical system describes some quantity at the end of an experiment
as a function of that same quantity at the beginning. What if we were to continue the
experiment? A bacterial population growing according to b, = 2.0b, would double
again and again. A tree growing according to h, 4y = h, + 1.0 would add more and more
meters to its height. An infested lizard would become even more heavily infested.

To describe a situation where a dynamical process is repeated many times, we let
mg represent the measurement at the beginning, m; the measurement after one time
step, m, the measurement after two time steps, and so forth (Figure 1.5.75). In general,
we define

m, = measurement ¢ hours after the beginning of the experiment.

Our goal is to find the values of m, for all values of . Before we can do so, however,
we must know where we started. Without knowing where you started, it is impossible
to answer a question such as “Where are you after driving 5 miles south?” The starting
value is known as the initial condition.

The sequence of values of m, for t =0, 1,2, ... is the solution of the dlscrete—t1me
dynamical system m,..; = f(m,) starting from the initial condition m,.

The graph of a solution is a discrete set of points with the time  on the horizontal axis
and the measurement m, on the vertical axis. The initial point has coordinates (0, m)
to describe the initial condition. The next point, with coordinates (1, m,), describes
the measurement at ¢ = 1, and so forth (Figure 1.5.76). It is possible to find a formula
for the solution”for simple discrete-time dynamical systems, but not in many more
complicated cases. .

A Solution of the Bacterial Discrete-time Dynamical System

Suppose we begin with one million bacteria, which corresponds to an initial condition
of by = 1.0 (with bacterial population measured in millions). If the bacteria obey the
discrete-time dynamical system b, = 2.0b,, then

by =2.0bp=2.0-1.0=2.0

by =2.0b1=2.0-2.0=4.0

b3 =2.0b,=2.0-4.0=8.0

Examining these results, we notice that

b, =2.0-1.0
b, =2.0%-1.0
by=2.0°-1.0

After 3 hours, the population has doubled three times and is 2.0° = 8.0 times the original
population. We graph the solution by plotting the time ¢ on the horizontal axis and the
number of bacteria after ¢ hours (b,) on the vertical axis (Figure 1.5.77). The graph
consists only of a discrete set of points describing the hourly measurements—hence
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Solutions starting from two different
initial conditions

Example 1.5.13

the name discrete-time dynamical system. Sometimes, we will connect the points in a
solution with line segments to make the pattern easier to see.

After ¢ hours, the population will have doubled ¢ times and will have reached the
size

b;=2.0-1.0 1.5.2)

This formula describes the solution of the discrete-time dynamical system with initial
condition by = 1.0. It predicts the population after ¢ hours of reproduction for any value
of . For example, we can compute

by =2.0%-1.0=256.0

without-ever computing by, by, or other intermediate values. (A

A Solution with a Different Initial Condition
Suppose we started the system with a different initial condition of b =0.3. We can
find subsequent values by repeatedly applying the discrete-time dynamical system,
b;=2.0-03=06
b, =20-06=1.2
b3;=2.0-12=24

If we look for the pattern in this case,

b, =2.0-0.3
by =2.0%-0.3
b;=2.0°.03

After ¢t hours, the population will have doubled ¢ times, as before, and will have reached
the size

b, =2.0" - 0.3 million bacteria

The solution is different from the one found in Example 1.5.11 with a different initial
condition (Figure 1.5.78). Although the two solutions get further and further apart, the
ratio always remains the same (see Exercise 55, page 66).

Two Solutions of the Tree Height Discrete-time Dynamical System .

Tree height obeys the discrete-time dynamical system
_ hiyy=h+1.0
(Example 1.5.2). Suppose the tree begins with a height of o = 10.0 m. Then
hi=hy+1.0=110m
hy=h; +10=12.0m
“h3=hy,+1.0=13.0m

Each year, the height of the tree increases by 1.0 m. After 3 years, the height is 3.0 m
greater than the original height. After ¢ years the tree has added 1.0 m to its height
t times, meaning that the height will have increased by a total of ¢ m. Therefore, the
solution is ‘ '

hy =100+t m
This formula predicts the height after ¢ years of growth for any ¢. We can compute
hg=10.0+8.0=18.0m

“without computing Ay, k,, or other intermediate values (Figure 1.5.79).
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A solution: tree height as a function of
time

FIGURE 1.5.80

Two §olutions for tree height as
functions of time
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If the tree began at the smaller size of 2.0 m, the size for the first few years would
be

hy=h; +1.0=40m

Again, the tree adds ¢ m of height in ¢ years, so the height is
h=204+tm

The solution with this smaller initial condition is always exactly 8.0 m less than the
solution found before (Figure 1.5.80). A

Is it always possible to guess the formula for a solution in this way? We will
next see some cases where computing the solution step by step is straightforward but
finding a formula for the solution is tricky. Remarkably, there are simple discrete-time
dynamical systems for which it is impossible to write a formula for a solution. For
example, chaotic dynamical systems have solutions so unpredictable that no formula
can describe them. (See “Analysis of the Logistic Dynamical System,” p. 257-261, in
Section 3.2.)
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Medication concentration as a function
of time

Example 1.5.14 Finding a Solution of the Medication Discrete-time Dynamical System

62 Chapter 1 Introduction to Discrete-Time Dynamical Systems

5 F + starts at 5.0 milligram/liter i
concentration :
4} of 3.5 milligrams/liter
- _— after 1 day concentration of
o +
E‘O 2.1875 milligrams/liter
= 3t after 4 days
5 + .
A§ . ; /
§ e
=
(o]
O ..
1 -
O 1 i L [l 1
0 i 2 3 4 5
Time (days)

Consider the discrete-time 5ynamical system for medication (Example 1.5.4) given by
M1 =0.5M,+1.0
Suppose we begin from an initial condition of M, = 5.0 milligrams per liter. Then

M =05-50+1.0=3.5
M;=0.5:354+1.0=2.75
M;=05-2.754+1.0=2.375
My=0.5-2375+1.0=2.1875
The values are getting closer and closer to 2.0 (Figure 1.5.81). More careful examination
indicates that the results move exactly halfway toward 2.0 each step. In particular, we
find that the difference between the measured rate and 2.0 is
My—-2.0=50-2.0=3.0
M —20=35-20=15=0.5-3.0
M;—20=275-2.0=0.75=0.5-1.5
M; —2.0=2375-2.0=0.375=0.5-0.75
My —2.0=2.1875-2.0=0.1875=0.5-0.375
Can we convert these observations into the formula for a solution? If we write the
concentration as 2.0 plus the difference,
My=2.0+3.0
M;=2.0+0.5-3.0
M;=2.0+0.5%-3.0
M;=2.0+0.5%-3.0
we might see that
M, =2.040.5.3.0

Finding patterns in this way and translating them into formulas can be tricky. It is much
more important to be able to describe the behavior of solutions with a graph or in words.
In this case, our calculations quickly revealed that the solution moved closer and closer
to 2.0. In Section 1.6, we will develop a powerful graphical method to deduce thi

pattern with a minimum of calculation. r
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A Second Solution of the Medication Discrete-time Dynamical System

If We'begin with an initial concentration of M, = 1.0 milligrams per liter, then

M;=05-104+10=15

M;=05-154+1.0=1.75

M;=05-1754+1.0=1.875

My=05-1.87541.0=1.9375 _
(See Figure 1.5.82.) Unlike graphs of bacterial populations (Example 1.5.12) and tree
size (Example 1.5.13), the graphs of solutions starting from different initial conditions

look completely different.
However, the values still get closer and closer to 2.0, and the difference from 2.0

is reduced by a factor of 2 each day:
My—20=10-20=-1.0
M —20=15-2.0=-05
- M;-20=175-2.0=-0.25
M;—-20=1.875—-2.0=-0.125
M;—2.0=1.9375—-2.0=-0.0625
We can find the formula using the same idea as before. If we write
My=2.0-1.0
M =20-05-10
M;=20-05-1.0
M;=2.0-0.5-1.0
we can see that
M,=20-05-1.0 A
In Section 2.2, we will use the fundamental idea of the limit to study more carefully

what it means for the sequence of values that define a solution to get closer and closer
to 2.0.

A Solution of the Mite Population Discrete-time Dynamical System

Recall the discrete-time dynamical system

X 41 =2x, + 30
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for mites. If we started our lizard off with xo = 10 mites, we compute
x1=2.0xp +30=50

‘ 1 . Xy =2.0x; +30=130
g x3 =2.0x, +30=290

The pattern is not too obvious in this case. There is a pattern, however, which it is a
3 good challenge to find (Exercise 35, p. 65). A

Summary  Starting from data or an understanding of a biological process, we can derive a discrete-
time dynamical system, the dynamical rule that tells how a measurement changes
from one time step to the next. The updating function describes the relation between
measurements at times £ and f + 1. The compesition of the updating function with itself
produces a two-step discrete-time dynamical system, and the inverse of the updating
function produces a backwards discrete-time dynamical system. Like all biological
relations, a discrete-time dynamical system can be described in different units and
dimensions. Repeated application of a discrete-time dynamical system starting from an
initial condition generates a solution, the value of the measurement as a function of

time. With the proper combination of diligence, cleverness, and luck, it is sometimes

possible to find a formula for the solution.

m Exercises

Mathematical Techniques

1-4 = Write the updating function associated with each of the fol-
lowing discrete-time dynamical systems and evaluate it at the given
arguments. Which are linear?

1. pry1=pr — 2, evaluate at p, =35, p, =10, and p, = 15.

L evaluate at v,

2. Y= =4,y,=8,and ¢, =12.°

3. x4 =x%+42, evaluate at x, =0, x, =2, and x, = 4.

4, Qt+l =

Q11+ - evaluate at 0, =0, 0, =1, and 0, =2.
5-8= Compose with itself the updating function associated with
each discrete-time dynamical system. Find the two-step discrete-
time dynamical system. Check that the result of applying the orig-
inal discrete-time dynamical system to the given initial condition
twice matches the result of applying the new discrete-time dynam-
ical system to the given initial condition once.

5. Volume follows v,y; = 1.5v,, starting from vo = 1220 pm?.
6. Length obeys I, =1I;, — 1.7, starting from [y = 13.1 cm.

7. Population size follows #,4, =0.5n,, starting from ng=
1200.

8. Medication concentration obeys M;,; =0.75M, + 2.0 start-
ing from the initial condition My = 16.0.

9-12= Find the backwards discrete-time dynamical system asso-
ciated with each discrete-time dynamical system. Use it to find the
value at the previous time.

9. v, =1.5v,. Find vy if v; = 1220 um?.
10. Ly =1 —1.7.Findyifl; =13.1cm.

11. n,41 =0.58,. Find ng if n; =1200.
12. M, =0.75M; + 2.0. Find M, if M; =16.0.

13-14 = Find the composition of each of the following mathemat-
ically elegant updating functions with itself, and find the inverse
function.

13. Theupdating function f(x) = I% Remember to put things
over a common denominator to simplify the composition.

14. The updating function A(x) = —— Remember to put things
over a common denominator to 51mp11fy the composition. ¢

15-18« Find and graph the first five values of the following
discrete-time dynamical systems, starting from the given initial
condition. Compare the graph of the solution with the graph of the
updating function.

1220 um?.

16. [,y =1, — 1.7, starting from /; = 13.1 cm.

15. w4 = 1.5v,, starting from vy =

17. n,4 =0.5n,, starting from ny = 1200.
18. M, =0.75M, + 2.0 starting from the initial condition
M, =16.0.

19-22 « Using a formula for the solution, you can project far into
the future without computing all the intermediate values. Find the
following, and indicate whether the results are reasonable.

19. From the solution found in Exercise 15, find the volume at
t=20.

20. From the solution found in Exercise 16, find the length at
t=20.




21, From the solution found in Exercise 17, find the number at
t=20.

29, Fromthe solution found in Exercise 18, find the concentration
att=20.

23-26» Experiment with the following mathematically elegant up-

dating functions and try to find the solution.

23. Consider the updating function

X
1+x

from Exercise 13. Starting from an initial condition of xo = 1,
compute Xy, X2, X3, and x4, and try to spot the pattern.

flx)=

24. Use the updating function in Exercise 23, but start from the
initial condition xp = 2.

25. Consider the updating function
gx)=4—x

Start from initial condition of xo = 1, and try to spot the pat-
tern. Experiment with a couple of other initial conditions.
How would you describe your results in words?

26. Consider the updating function

X

h(x) =
x—1
from Exercise 14. Start from initial condition of xo =23, and
try to spot the pattern. Experiment with a couple of other
initial conditions. How would you describe your results in
words?

Applications

21-30 = Consider the following actions. Which of them commute
(produce the same answer when done in either order)?

21, Apopulation doublesin size; 10 individuals are removed from
a population. Try starting with 100 individuals, and then try
to figure out what happens in general.

28. A population doubles in size; population size is divided by 4.
Try starting with 100 individuals, and then try to figure out
what happens in general.

29, Ap organism grows by 2.0 cm; an organism shrinks by 1.0 cm.
30. A person loses half her money. A person gains $10.

?1-?4 * Use the formula for the solution to find the following, and
Indicate whether the results are reasonable.

31. Using the solution for tree height h, =10.0+¢ (Exam-
ple 1.5.13), find the tree height after 20 years.

32. Using the solution for tree height A, =10.0+¢ (Exam-

Ple 1.5.13), find the tree height after 100 years.

1. Using the solution for bacterial population number b, =
20'-1.0 (Equation 1.5.2), find the bacterial population after
20 hours. If an individual bacterium weighs about 10712 g,
how much wili the whole population weigh?

Using the solution for bacterial population number b, =

2.0 1.0 (Equation 1.5.2), find the bacterial population af-
ter 40 hours

:h—;
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35-36 = Try to find a formula for the solution of the given discrete-
time dynamical system.

35. Find the paitern in the number of mites on a lizard, starting
with xo = 10 and following the discrete-time dynamical sys-
tem x; 1 = 2x; 4 30. (Hint: add 30 to the number of mites.)

36. Try to find the pattern in the number of mites on a lizard, start-
ing with xo = 10 and following the discrete-time dynamical
system x;; = 2x, + 20.

37-40 = The following tables display data from four experiments:

1. Cell volume after 10 minutes in a watery bath
2. Fish length after 1 week in a chilly tank

3. Gnat population size after 3 days without food
4

Yield (in bushels) of several varieties of soybeans before
and one month after fertilization.

For each, graph the new value as a function of the initial value,
find a simple discrete-time dynamical system, and fill in the miss-
ing value in the table.

3r. Cell Volume (zum?)
il v Final, v,
1220 1830
1860 2790
1080 1620
1640 2460
1540 2310
1420 2?
38, Fish Mass (g)
13.1 114
18.2 16.5
17.3 - 15.6
16.0 14.3
20.5 18.8
1.5 ??
39.

Gnat Number
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40. Soybean Yield Per Acre {bushels)

100 210

50 110
200 410

75 160

95 200
250 7

#1-44 = Recall the data used for Section 1.2, Exercises 49-52.

Age, a Length, L Tail Length, Mass, VI

{days) {cm) T {cm) {g)
0.5 15 1.0 1.5
1.0 - - 3.0 0.9 3.0
1.5 - 4.5 0.8 6.0
2.0 . 6.0 0.7 12.0
2.5 7.5 0.6 24.0
30 9.0 0.5 48.0

These data define several discrete-time dynamical systems. For ex-
ample, between the first measurement (on day 0.5) and the second
(on day 1.0), the length increases by 1.5 cm. Between the second
measurement (on day 1.0) and the third (on day 1.5), the length
again increases by 1.5 cm.

41. Graph the length at the second measurement as a function of
length at the first, the length at the third measurement as a
function of length at the second, and so on. Find the discrete-
time dynamical system that reproduces the results.

42. Find and graph the discrete-time dynamical system for tail
length.

43. Find and graph the discrete-time dynamical system for mass.

44. Find and graph the discrete-time dynamical system for
age.

45-48 = Suppose students are permitted to take a test again and
again until they get a perfect score of 100. We wish to write a
discrete-time dynamical system describing these dynamics.

45. In words, what is the argument of the updating function?
What is the value?

46. What are the domain and range of the updating function?
What value do you expect if the argument is 100?

47. Sketch a possible graph of the updating function.

48. On the basis of your graph, how would a student do on her
second try if she scored 20 on her first try?

49-50 = Consider the discrete-time dynamical system b, ,; = 2.0b,
for a bacterial population (Example 1.5.1).

49, Write a discrete-time dynamical systein for the total volume
of bacteria (suppose each bacterium takes up 10* um?).

50. Write a discrete-time dynamical system for the total area
taken up by the bacteria (suppose the thickness is 20 pm).

51-52» Recall the equation k.1 ==k, + 1.0 for tree height.

51. Write a discrete-time dynamical system for the total volume
of the cylindrical trees in Section 1.3, Exercise 27.

52. Write a discrete-time dynamical system for the total volume
of a spherical tree (this is kind of tricky).

53-54 = Consider the following data describing the levels of a med-
ication in the blood of two patients over the course of several days
(measured in milligrams per liter).

Medication level
in patient 2 (mg/L)

Medication level
in patient 1 (mg/L)

0 20.0 0.0
1 16.0 2.0
2 13.0 32
3 10.75 3.92

53, Graph three points on the updating function for the first pa-
tient. Find a linear discrete-time dynamical system for the
first patient.

54. Graph three points on the updating function for the second
patient, and find a linear discrete-time dynamical system.

55-56 = For the following discrete-time dynamical systems, com-
pute solutions starting from each of the given initial conditions.
Then find the difference between the solutions as a function of
time, and the ratio of the solutions as a function of time. In which
cases is the difference constant, and in which cases is the ratio
constant? Can you explain why?

55. Two bacterial populations follow the discrete-time dynamical
system b, = 2.0b,, but the first starts with initial condition
bp=1.0x% 10% and the second starts with initial condition
bo = 3.0 x 10° (in millions of bacteria). '

56. Two trees follow the discrete-time dynamical system A, =
h, + 1.0, but the first starts with initial condition hy=
10.0 m and the second starts with initial condition k¢ =
2.0 m. '

57-60 = Derive and analyze discrete-time dynamical systems that
describe the following contrasting situations.

57. A population of bacteria doubles every hour, but 1.0 x 106
individuals are removed after reproduction to be converted
into valuable biological by-products. The population begins
with by = 3.0 x 106 bacteria.

a. Find the population after 1, 2, and 3 hours.
b. How many bacteria were harvested?

¢. Write the discrete-time dynamical system.

I

Suppose you waited to harvest bacteria until the end of 3
hours. How many could you remove and still match the
population b3 found in part a? Where did all the extra
bacteria come from?
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58. Suppose that a population of bacteria doubles every hour but ond). He is then tested with higher tones until he can hear
that 1.0 x 10® individuals are removed before reproduction the difference. The ratio between these values describes how
to be converted into valuable biological by-products. Suppose well this person can hear differences.
. - . _ 6 . .
the population begins with by =3.0 x 10" bacteria. a. Suppose the next tone he can distinguish has a frequency
a. Find the population after 1, 2, and 3 hours. of 404 hertz. What is the ratio?
b. Write the discrete-time dynamical system. b. According to the Weber-Fechner law, the next higher tone
c. How does the population compare with that in the previ- will be greater than 404 by the same ratio. Find this tone.
ous problem? Why is it doing worse? c. Write the discrete-time dynamical system for this person.
59. Suppose the fraction of individuals with some superior gene Find the fifth tone he can distinguish.
increases by 10% each generation. d. Suppose the experiment is repeated on a musician, and
a. Write the discrete-time dynamical system for the frac- she manages {0 distinguish 40(.)'5. hert_z from 400 hertz.
. . . What is the fifth tone she can distinguish?
tion of organisms with the gene (denote the frac-
tion at time 7 by f; and figure out the formula for 61-62= The total mass of a population of bacteria will change if
fen)- the number of bacteria changes, if the mass per bacterium changes,
b. Write the solution, starting from an initial condition of  or if both of these variables change. Try to derive a discrete-time
fo=10.0001. dynamical system for the total mass in the following situations.
c. Will the fraction reach 1.07 Does the discrete-time dy- 61. The number of bacteria doubles each hour, and the mass of
namical system make sense for ail values of f;? each bacterium triples during the same time.
60. The Weber-Fechner law describes how human beings per- 62. The number of bacteria doubles each hour, and the mass of
ceive differences. Suppose, for example, that a person first each bacterium increases by 1.0 x 10~° g. What seems to go
hears a tone with a frequency of 400 hertz (cycles per sec- wrong with this calculation? Can you explain why?

ﬂAnalysis of Discrete-Time Dynamical fSyst’éms-’: L

We have defined discrete-time dynamical systems that describe what happens during
a single time step and have defined the solution as the sequence of values taken on
over many time steps. Often enough, finding a formula for the solution is difficult
or impossible. Nonetheless, we can often deduce the behavior of the solution with
simpler methods. This section introduces two such methods. Cobwebbing is a graph-
ical technique that makes it possible to sketch solutions without computing anything.
Algebraically, we will learn how to solve for equilibria, points where the discrete-time
dynamical system leaves the value unchanged.

Cobwebbing: A Graphical Solution Technique

Suppose we have a general discrete-time dynamical system

M = fm,)

5. with updating function graphed in Figure 1.6.83. By adding the diagonal (the line
m,1 = m,) to the graph, we can find the behavior of solutions graphically. The technique
is called cobwebbing.

Suppose we are given some initial condition mg. To find m, we must remember
the meaning of the updating function,

my = f(mo)

Graphically, m; is the coordinate of the vertical point on the graph of the updating
function directly above my (Figure 1.6.84a). Similarly, m, is the coordinate of the
vertical point on the graph of the updating function directly above m 1, and so on.

The missing step is moving m, from the vertical axis onto the horizontal axis. The
trick is to reflect it off the diagonal line that has equation m,,, = m,. Move the point
(mg, m1) horizontally until it intersects the diagonal':. Moving a point horizontally does

FIGURE 1.6.83
Graph of the updating function
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Cobwebbing: Cobwebbing:
finding m, reflecting m, off the diagonal
3 updating function 31
4t 4l
(mg, my) = 1 ml (mg, my)
E 3t iagona z 3f (my, my)
£ 9l £ 9}
Ir 1
0 1 1 1 1 J 0 ! 1 1 1 1 J
0 1 2 mg 3 4 5 0 1 2 mo3m 4 5
my my
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Cobwebbing: Cobwebbing:
putting m; on the horizontal axis finding m,
5 -
5 (my, my)
4 4™
my [ (mg, my) Lml (mg, my)
- 37 (my, my) < 37 (my, my)
g ol g st
1 1
N 0 1 1 b3 I ] 0 1 1 1 1 1
0 1 2 my 3 4 5 0 1 2 my 3m 4 5
FIGURE 1.6.84 m, m,
Cobwebbing: The first steps ¢ d
5 -
4r . . . . . . .
not change the vertical coordinate. The intersection with the diagonal occtirs at th
3 3r point (m,, m) (Figure 1.6.84b). The point (i, 0) lies directly below (Figure 1.6.84c
£a2r What have we done? Starting from the initial value g, plotted on the horizont:
1k axis, we used the updating function to find m; on the vertical axis and the reflectin
m2™3 . trick to project m; onto the horizontal axis. We then can find m, by moving vertically t

0 1 2 my3m 4 5 the graph of the updating function (Figure 1.6.84d). To find m3, we move horizontall
to the diagonal to reach the point (m,, m,), and then vertically to the point (m,, ms,
FIGURE 1.6.85 Because the lines reaching all the way to the horizontal axis are unnecessary, they ar
generally omitted to make the diagram more readable (Figure 1.6.85).

Cobwebbing Having found m,, m;,, and m3 on our cobwebbing graph, we can sketch a grap
5 Comy Gmd of the solution that shows the measurement as a function of time. In Figure 1.6.84
al m) " 2 * we began at mg=2.5. This is plotted as the point (0, mo) = (0, 2.5) in the solutio:

o ! (Figure 1.6.86). The value m, is approximately 3.2 and is plotted as the point (1, m;

8 3. ©, mg) in the solution. The values of m, and m3 increase more slowly and are plotted thus o

S2r the graph. Without plugging numbers into the formula, we have used the graph of th:
17 updating function to figure out the behavior of a solution starting from a given initia
oL . . . condition.

0 1 2 3 Similarly, we can find how the concentration would behave over time if we starte
Time from the different initial condition mq = 1.2 (Figure 1.6.87). In this case, the diagona
FIGURE 1.6.86 lies below the graph of the updating function, so reflecting off the diagonal move

points to the left. Therefore, the solution decreases.

The solution derived from a cobweb The steps for cobwebbing are summarized in the following algorithm.

diagram

» Algorithm 1.4 Using Cobwebbing to Find a Solution
1. Graph the updating function and the diagonal.

2. Starting from the initial condition on the horizontal axis, go “up to the updating
function and over to the diagonal.”




FIGURE 1.6.87
Cobweb and solution with a different
initial condition

FIGURE 1.6.88

Cobweb and solution of tree growth
model

Example 1.6.1

FIGURE 1.6.89

Cobweb and solution of the medication
model: M, =5.0
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3. Repeat going “up or down to the updating function and over to the diagonal”

for as many steps as needed to find the pattern.

4. Sketch the solution at times 0, 1, 2, and so forth as the consecutive horizontal

coordinates of intersections with the diagonal.

Cobwebbing and Solution of the Tree Growth Model

Consider the discrete-time dynamical system for a growing tree (Example 1.5.2)

Ben=he +1.0

The updating function g(h,) = h, + 1.0is aline with slope 1 and intercept 1.0, and thus it
is parallel to the diagonal 4, = h, (Figure 1.6.88). Starting from an initial condition of
10.0, the cobweb moves up steadily, as does the solution (Figure 1.6.89). The graphical

solution is consistent with the exact solution #, = 10.0 + ¢ (Example 1.5.13), althou

it does not provide exact quantitative predictions.

6r diagonal 61
5 5 o0, Mp)
4r _— B 4r (1, M)
* ol g .0 @2, M)
s 3T updating g 3 Ol . @My
2 | function g9t 3 M i .
8 (3, M3) S, M)
1 i
M3 My M, Mo
[0} FE S T W S | 1 o X A 1 . L
0 1 2 3 4 5 6 0 1 2 3 4 5
my Time

P
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FIGURE 1.6.90

Cobweb and solution of the medication
model: My =1.0

Example 1.6.2
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Cobwebbing and Solution of the Medication Model

Consider the discrete-time dynamical system for medication (Example 1.5.4)
M,,=05M,+10

The updating function is a line with slope 0.5 and intercept 1, and thus it is less steep
than the diagonal M,,; = M,. If we begin at Mo = 5, the cobweb and solution decrease
more and more slowly over time (Figure 1.6.89). If we begin instead at My =1, the
cobweb and solution increase over time (Figure 1.6.90). '

Equilibria: Graphical Approach

The points where the graph of the updating function intersects the diagonal play a special
role in cobweb diagrams. These points also play an essential role in understanding the
behavior of discrete-time dynamical systems. Consider the discrete-time dynamical
systems plotted in Figure 1.6.91. The first describes a population of plants (denoted by
P, at time ¢) and the second a population of birds (denoted by B; at time ¢). Each graph
includes the diagonal line used in cobwebbing.

If we begin cobwebbing from an initial condition where the graph of the updating
function lies above the diagonal, the population increases (Figure 1.6.92a). In contrast,
if we begin cobwebbing from an initial condition where the graph of the updating
function lies below the diagonal, the population decreases (Figure 1.6.92b). The plant
population will thus increase if the initial condition lies below the crossing point, but
it will decrease if it lies above.

Plant population Bird population
1000 - 1200
di | Second crossing
iagona
800 | ‘ 1000 -
crossing updating
ool updating pount 800 - function
- function i -
updatin, R
o lies above the o o 60T st .
400 - djagonal Jies below 400 | crossing diagonal
the diagonal
200 - 200 |
O L L L . . 0 1 L 1 L 1 H
0 200 400 600 800 1000 0 200 400 600 800 1000 1200
P, B,
a b
FIGURE 1.6.91

Dynamics of two populations

rEc ST T
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Cobweb starting below crossing Cobweb starting above crossing
1000 1000 ¢
800 800 |
- 600} < 600} —
: ~
Al
400 + 400
200 200
0 i 1 | 0 1 L S
0 Py P 500 1000 0 500 P, Py 1000
P, P,
a b
FIGURE 1.6.92

Behavior of plant population starting from two initial conditions

Similarly, the updating function for the bird population lies below the diagonal
for initial conditions less than the first crossing, and the population decreases (Fig-
ure 1.6.93a). The updating function is above the diagonal for initial conditions between
the crossings, and the population increases (Figure 1.6.93b). Finally, the updating func-
tion is again below the diagonal for initial conditions greater than the second crossing,
and the population decreases (Figure 1.6.93c).

Cobweb starting below first crossing Cobweb starting between crossings
1200 1200
1000 | 1000
800 - 800 -
* 600 - T e00 b
q <
400 + 400 -
200 | ” 200 |
0 (] 1 0 1 1 S
0 BB 600 1200 0 By B 1200
B, B,
a b

Cobweb starting above second crossing

FIGURE 1.6.93

Behavior of bird population starting from three initial conditions




FIGURE 1.6.94

Behavior of plant population starting
from an equilibrium

Definition 1.11

Example 1.6.3
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Cobweb starting at crossing Solution starting at equilibrium
1000 1000
o 800 800 +
g
S 600 | S 600}
5 s
&, 'E,‘ L - L] L]
= 400 | & 400 b
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i
200 - 200 +
0 L — 0 1 1 1
0 P, 1000 0 1 2 3
Initial population Time
a b

What happens where the updating function crosses the diagonal? At these points,
the population neither increases nor decreases and thus remains the same. Such a point
is called an equilibrium.

A point m* is called an equilibrium of the discrete-time dynamical system

mey1 = flmy)
if f(m*) =m*. i
This definition says that the discrete-time dynamical system leaves m* unchanged.
These points can be found graphically by looking for intersections of the graph of the
updating function with the diagonal line.

When there is more than one equilibrium, they are called equilibria. The plant
population has two equilibria, one at P =0 and one at P = 500. If we start cobwebbing
from an initial condition exactly equal to an equilibrium, not much happens. The cobweb
goes up to the crossing point and gets stuck there (Figure 1.6.94a). The solution isa
horizontal sequence of dots (Figure 1.6.94b).

Why does the graphical method for finding equilibria work? The diagonal has
equation

]
?

My =My

and can be thought of as a discrete-time dynamical system that leaves all inputs un-
changed and always returns an output equal to its input. The intersections of the graph
of the updating function with the diagonal are thus points where the updating function
leaves its input unchanged. These are the equilibria.

Equilibria: Algebraic Approach
When we know the formula for the discrete-time dynamical system, we can sometimes

solve for the equilibria algebraically.

The Equilibrium of the Medication Discrete-time Dynamical System

Recall the discrete-time dynamical system for medication
M, =05M+10

(Example 1.5.4 and Figure 1.6.95). Let M* stand for an equilibrium. The equation for
equilibrium says that M* is unchanged by the discrete-time dynamical system, or

M*=05M*+1.0
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Equilibrium of the medication
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Equilibrium of the bacterial
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We can solve this linear equation.

M*=0.5M*41.0 the original equation

M*—05M*=1.0 subtract 0.5M* to get unknowns on one side
0.5M*=1.0 do the subtraction
1.0
M* = 5= 2.0 divide by 0.5

The equilibrium value is 2.0 mg/1. We can check this by plugging M, =2.0 into the

" discrete-time dynamical system, finding that

M1 =05-2.041.0=2.0

A concentration of 2.0 is indeed unchanged over a course of days. Furthermore,
we have seen that solutions tend to approach the equilibrium (Examples 1.5.14 and
1.5.15).

The Equilibrium of the Bacterial Discrete-time Dynamical System

To find the equilibria for the bacterial population discrete-time dynamical system

bt+1 = th
(Example 1.5.1 and Figure 1.6.96), we write the equation for equilibria,
b*=2p*
‘We then solve this equation
b* =2b* the original equation
b* — b* =2b* — b*  subtract b* from both sides
0=20b* do the subtraction

Consistent with our picture, the only equilibrium is at b, = 0. The only number that
remains the same after doubling is 0.

A Discrete-time_Dynamical System with No Equilibrium

The updating function for a growing tree (Example 1.5.2) following the discrete-time
dynamical system : ‘

hip1=h,+1.0
has a graph that is parallel to the diagonal Figure 1.6.97. To solve for the equilibria, we
try

h*=h*+1  the equation for the equilibrium
h*—h*=1 subtract h* to get unknowns on one side
0=1 do the subtraction
This looks bad. The graph of the updating function and the graph of the diagonal do not

Aintersect because they are parallel lines. Something that grows 1.0 m per year cannot
remain unchanged. A

A Biologically Unrealistic Equilibrium

The graph of the updating function associated with a mite population (Example 1.5.3)
that follows the discrete-time dynamical system

X =2x+30
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» Algorithm 1.5
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FIGURE 1.6.99
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domain
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lies above the diagonal for all values of x, (Figure 1.6.98). To solve for the equilibria,
try

x*=2x*+30 the equation for the equilibrium

x*—2x*=30 subtract 2x* to get unknowns on one side
—x*=30 do the subtraction
x*=-=30 divide both sides by —1

This looks like nonsense. However, if we check by substituting x, = —30 into the
discrete-time dynamical system, we find
. X1 =2-(—30)+30=-30

which is indeed equal to x;.

Although there is a mathematical equilibrium, there is no biological equilibrium.
If we extend the graph to include biologically meaningless negative values, we see that
the graph of the updating function does intersect the diagonal (Figure 1.6.99). A

Algebra Involving Parameters Studying the general form of a discrete-time dynam-
ical system, using parameters instead of numbers, can sometimes simplify the algebra
and make the results easier to understand. When we work with parameters, however,
Wwe must be more careful with the algebra.

Solving for Equilibria
1. Write the equation for the equilibrium.
2. Use subtraction to move all the terms to one side, leaving 0 on the other.
3. Factor (if possible).
4. Set each factor equal to 0 and solve for the equilibria (if possible).
5. Think about the results. A

As always, we begin by setting up the problem. The next three steps give a safe method
to do the algebra (although the algebra may be impossible). The final step is perhaps
the most important. A result is worthwhile only if it makes sense.

Finding Equilibria of the Bacterial Model in General

Consider the bacterial discrete-time dynamical system where the factor of 2.0 has been .
replaced with a general per capita production of r,

biy1=rb;
X1
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We will study this form in more detail in Section 1.7. The factor r describes how much
the population grows (or declines) in 1 hour. Applying Algorithm 1.5 gives

b* = rb* the equation for the equilibrium
b*—rb* =0 move everything to one side
»Ql—-r)y=20 factor out the common factor of b*
b*=0o0r 1 —r=0  setboth factors to 0
b*=0o0rr=1 solve each equation

There are two possibilities. The first matches what we found earlier; a population of
0 is at equilibrium. This makes sense because an extinct population remains extinct.
The second is new. If the per capita production r is exactly 1, every value of b, is an
equilibrium. In this case, each bacterium exactly replaces itself. The population size
will remain the same no matter what its size, even though the individual bacteria are
reproducing and dying.

Equilibria of the Medication Model with a D‘osage Parameter

Consider the medication discrete-time dynamical system with the parameter S,
M., =05M,+S§

where § represents the daily dosage. The algorithm for finding equilibria gives

M*=0.5M*+S  the equation for the equilibrium

M*—05M*—S=0 move everything to one side
05M*—-S=0 simplify
M*=2.0S nothing to factor, solve for M*
The equilibrium value is proportional to S, the daily dosage.

Equilibria of the Medication Model with Absorption

Consider the medication discrete-time dynamical system with parameter o,
My =(0—-a)M,+1.0

where the pararﬁeter « represents the fraction of existing medication absorbed by the
body during a given day. For example, if « = 0.1, 10% of the medication is absorbed
by the body and 90% remains. ) '

M*=(1 —a)M*+1.0 the equation for the equilibrium

M*—(1—-—a)M*—1.0=0 move everything to one side
M*—M"+aM*—1.0=0 distribute negative sign through quantity
aM*—-1.0=0 cancel M* — M*
M* = l—q solve for M*

o

The equilibrium value is proportional to the reciprocal of o and thus is smaller when
the fraction absorbed is larger. If « = 0.1, the equilibrium is

1.0
M'=—=100
0.1

In contrast, if the body absorbs 50% of the medication each day, leading to a larger
value of @ = 0.5, then

1.0
05

The body that absorbs more reaches a lower equilibrium. A

*

2.0
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Example 1.6.10 Equiibria of the Medication Model with Two Parameters

Consider the medication discrete-time dynamical system with both parameters from

Examples 1.6.8 and 1.6.9,

Myy=0—o)M: + S

The algorithm for finding equilibria gives

M*=(1—a)M*+ S  the equation for the equilibrium

M —(1—-a)M*—S=0 move everything to one side
M*—M*+aM*—S§5=0 distribute negative sign through quantity
aM*—S=0 cancel M* — M*
S
M*=— solve for M*
a

The equilibrium value is larger if S is larger orif o is smaller. This makes sense because
the equilibrium concentration can be increased in two ways: by increasing the dosage
or by decreasing the fraction absorbed.

Summary We have developed a graphical technique called cobwebbing to estimate solutions. By
examining the diagrams used for cobwebbing, we found that intersections of the graph
of the updating function with the diagonal line play a special role. These equilibria
are points that are unchanged by the discrete-time dynamical system. Algebraically,
we find equilibria by solving the equation that describes such points. With a little extra
care, we can often solve for equilibria in general, without substituting numerical values
for the parameters. Solving the equations in this way can help clarify the underlying

biological process.

mxercises

Mathematical Techniques

1-2= The following steps are used to build a cobweb diagram.
Follow them for the given discrete-time dynamical systems based
on bacterial populations.

Graph the updating function.

Use your graph of the updating function to find the point
(bO’ b 1)'

Reflect it off the diagonal to find the point (by, b1).
Use the graph of the updating function to find (b1, b2).
e. Reflect off the diagonal to find the point (b2, ba).

e o

f. Use the graph of the updating function to find (b2, b3).
g. Sketch the solution as a function of time.

1. The discrete-time dynamical system b,,1 = 2.0b, with by =
1.0.

2. The discrete-time dynamical system n,4; = 0.5n; with ng =
1.0.

3-6= Cobweb the following discrete-time dynamical systems for
three steps, starting from the given initial condition. Compare with
the solution found earlier.

3. v = 1.5y, starting from vp = 1220. pwm? (as in Section 1.5,
Exercise 5).

4. Il =1l — 1.7, starting from /o = 13.1 cm (as in Section 1.5,
Exercise 6).

5. n.41 =0.5n,, starting from no = 1200 (as in Section 1.5, Ex-
ercise 7).

6. M, =0.75M, + 2.0 starting from My =16.0 mg/1 (as in —
Section 1.5, Exercise 8).

7-12= Graph the updating functions associated with the follow-
ing discrete-time dynamical systems, and cobweb for five steps,
starting from the given initial condition.

7. Xep1 =2x, — 1, starting from xo = 2.
8. z,.1=09z + 1, starting from zo = 3.
9. wpy =—0.5w, + 3, starting from wo = 0.

10. x4, =4—x,, starting from xo=1 (as in Section 1.5,
Exercise 25).

1. x = 7 —T—tx , starting from xo =1 (as in Section 1.5, Exer-
cise 23).

Xt

12. xp= T starting from xq =3 (as in Section 1.5, Exer-

cise 26).’Graph for x, > 1.
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13-16 = Find the equilibria of the following discrete-time dynam-
ical system from the graphs of their updating functions. Label the
coordinates of the equilibria.

; 13. 10
; 8
2]
2 6
>
g af
o
2
0 1 1 1 L |
0 2 4 .6 8 10
Initial value
14.
2
[
>
)
=1
£
10
Initial value
15. 10 -
8 L
L
2
g6
g 41
[£
2 L
’ 0 L 1 L 1
0 2 4 6 8 10
Initial value
16. 0.
8
[
=}
§ 6r
g 4t
[&H
2 b
0 1 1 $ 1 J
0 2 4 6 8 10
Initial value
17-18 =

e o Sketch graphs of the following updating functions over
b © 81ven range, and mark the equilibria. Find the equilibria alge-
raically if possible.

. fay=x forO0<x<2
B g)=y —1foro<y<2

R —— -
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19-22 = Graph the following discrete-time dynamical systems.
Solve for the equilibria algebraically, and identify equilibria and
the regions where the updating function lies above the diagonal on
your graph.

19. ¢41=0.5¢;,+8.0,for0<c, <30

20. by =3b,, for0<b, <10

21. byy1=0.3b,,for0<bh, <10

22. bry1=2.0b,—5.0,for0<5, <10

23-30 = Find the equilibria of the following discrete-time dynam-
ical systems. Compare with the results of your cobweb diagram
from the earlier problem.

23. v,y = 1.5y, (as in Section 1.5, Exercise 5)

24. [, =1, — 1.7 (as in Section 1.5, Exercise 6)

25. x;.1 =2x, — 1 (as in Section 1.6, Exercise 7)

26. z;,1=0.9z, + 1 (as in Section 1.6, Exercise 8)
27. w;+ =—0.5w, + 3 (as in Section 1.6, Exercise 9)

28. x;.; =4 — x, (as in Section 1.6, Exercise 10)

29. x.41 = —"— (as in Section 1.6, Exercise 11)

1+ x,

X

30, x4 =— N for x; > 1 (as in Section 1.6, Exercise 12)

t

31-34 = Find the equilibria of the following discrete-time dynami-
cal systems that include parameters. Identify values of the param-
eter for which there is no equilibrium, for which the equilibrium is
negative, and for which there is more than one equilibrium.

3N, wyy=aw,+3

32, xh1=b—x

_ax
33. X1 = ———1 Fx

— xt
34. X4l = -k
Applications

35-40= Cobweb the following discrete-time dynamical systems
for five steps, starting from the given initial condition.

35. An alternative tree growth discrete-time dynamical sys-
tem with form 4, =k, + 5.0 with initial condition 2 = 10.

36. The mite population discrete-time dynamical system (Exam-
ple 1.6.6) x,4 =2x, + 30 with initial condition xo = 0.

37. The model defined in Section 1.5, Exercise 37, starting from
an initial volume of 1420.

38. The model defined in Section 1.5, Exercise 38, starting from
an initial length of 13.1.

39. The model defined in Section 1.5, Exercise 39, starting from
an initial population of 800.

40. The model defined in Section 1.5, Exercise 40, starting from
an initial yield of 20.




