1.3 The Units and Dimensions of Measurements and Functions 25

70. Have your graphics calculator or computer plot the following d. ha(x)=x*+2x
functions for —2 <x < 2. Do they have inverses? o hs(x)=x +2x
a m(x)=x+2x Have your computer try to find the formula for the inverses
b h(x)= x%+2x of these functions and plot the results. Does the machine al-
hy(x) = X3 +2x ways succeed in finding an inverse when there is one? Does

c. h(x)= it sometimes find an inverse when there is none?

Unlike the numbers and functions studied in many mathematics courses, the mea-
surements and relations used by scientists and applied mathematicians have units and
dimensions. Measurements of number, mass, height, and volume are fundamentally
different from each other and are said to have different dimensions. Measurements
of height in inches or in centimeters describe the same quantity but are presented in
different units. In this section, we learn how to work with the units and dimensions of
both measurements and functions. When we wish to express a measurement or relation
in different units, we must use appropriate conversion factors. Changing the units of
a function corresponds to scaling or shifting the graph of the function. When we wish
to express a function in different dimensions, we must translate with a fundamental
relation.

Converting Between Units

The equation
242=2
looks hopelessly wrong. But
2Na' +2 Cl” =2 NaCl

is a standard formula from chemistry. The difference is that the terms in the second
equation have explicit units: ions of sodium, ions of chlorine, and molecules of salt.
Similarly, although it is absurd to write :

1=2.54
it is true that
1in.=2.54 cm

(This is the official definition of 1 in.) Numbers with units behave very differently from
pure numbers.

Often, data are presented with more than one unit. To compare measurements, we
must be able to convert between different units.

Example 1.3.1 Converting Miles to Centimeters

Suppose we want to know how many centimeters make up a mile. We can do this in
steps, first changing miles to feet, then feet to inches, and then inches to centimeters.
To convert between units, we first write down the basic identities

5280 ft =1 mile
12in.=1ft
2.54cm=11n.

These define how many centimeters are in an inch, how many inches are in a foot, and
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»  Algorithm 1.2

Example 1.3.2

so on. We next divide to find three conversion factors

‘ it
mile
=120
T
1=2542
n.

Units are manipulated exactly like the numerators and denominators of fractions. We
next multiply the original measurement by the conversion factors (which are just fancy

ways to write the number 1), finding
Imile=1milex1x1x1
ft in.
— 1 mile x 5280 — x 12 x 254 <2
mile ft in.
22 160,934.4 cm

The units cancel just like the numerators and denominators of fractions. This method
is often called the “factor-label” method in chemistry. Al

The Procedure for Converting Between Units
1. Write down the basic identities that relate the original units to the new units.

2. Divide the basic identities to create conversion factors equal to 1, placing
unwanted units where they will cancel.

3. Multiply the original measurement by the appropriate conversion factors.  F\
Using the Algorithm to Change Units of Area

Suppose a house has an area of 2030 square feet. What is this in square meters? The
basic identity relating the new unit to the original unit is

0.3048 m =11t
We want to place feet in the denominator, so we divide to find the conversion factor

' m
1=0.3048 —
ft

Square feet are feet times feet, so we can find

20301t =1 x 1 x 2030ft2
=0.3048 = x 0.3048 2 x 2030 £
ft ft

A 188.6 m*

Alternatively, we can create a single conversion factor for changing square feet to square
meters

2

2
1~ 0.30482 %’7 ~0.0929

m
ft?
Then

2030 ft> = 1 x 2030 ft*
m2
=0.0929 Pl 2030 ft*

~ 188.6 m?
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Example 1.3.8 Results of Mixing up Numerator and Denominator

In Example 1.3.1, it would be equally true that

1 mile
T 5280 ft
1 ft
" 12
1 in.
T 254 cm

Multiplying by these conversion factors yields

Imile=1mile x 1 x1x1
1 mile 1 ft 1 in.
5280 ft 12 in.  2.54 cm
1 mile?
160934 cm
The units did not cancel. Even though the result is true, miles and centimeters are
left over in a rather inconvenient way. The trick to getting unit conversions to work is

making sure that unwanted units in the numerator are canceled by using conversion
factors with those same units in the denominator, and vice versa. Al

~
~

Translating Between Dimensions

Miles and centimeters measure the same quantity—length—with different rulers. Miles
and grams measure completely different quantities—length and mass. Dimensions
describe the underlying quantities. Units are a particular standard for measurement.
Measurements in miles and centimeters share the same dimension and can be converted
into one another. Measurements with different dimensions cannot. The dimensions and
the units commonly used for some common biological measurements are listed in
Table 1.3.1. :

Suppose we want to measure a bacterial population in grams (mass) rather than
numbers or to measure the size of a water droplet in cubic centimeters (volume)
rather than centimeters (length of radius). We cannot apply a series of identities like
1 in. = 2.54 cm because we are translating between dimensions rather than converting
between units. Instead of identities, we use fundamental relations among measure-
ments with different dimensions (Table 1.3.2).

Table 1.3.1 Some quantities, their dimensions,
and sample units

Quantity Dimensions Sample Units
length length meter, micron, inch
duration time second, minute, day
mass mass gram, kilogram

area length? square meter, acre
volume length? v . liter, cubic meter, gallon
speed length/time meters/second, mph
acceleration  length/time? meters/second?

force mass x length/time?  dynes, pounds

density mass/length® - grams/liter
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total mass = mass per bacterium
X number of bacteria m = ub

FIGURE 1.3.33

Fundamental relation between mass and
number

Example 1.3.5

FIGURE 1.3.34
Volume and radius of a spherical droplet

Table 1.3.2

Important fundamental relations in biology

Relation Variables Formula

eometric Relations -~

V =volume
r =radius

Volume of a sphere

S = surface area
r =radius

Surface area of a sphere

A =area

Area of a circle
: r =radius

P =perimeter
r =radius

Perimeter of a circle

V = volume
A =area
T = thickness

Volume, area, and thickness

m =total mass

Total number and mass m=ub
4 = mass per individual
b = number of individuals

Mass, density, and volume M = mass M=pV
p = density
V =volume

Translating Between Number and Total Mass

The fundamental relation between number and total mass is

total mass = mass per bacterium x number of bacteria

Let m represent the total mass, u the mass per bacterium, and b the number of bacteria
(Figure 1.3.33). The fundamental relation can be rewritten in mathematical symbols
as

m=ub

Like numbers, variables representing measurements have both dimensions and units.
The variable m has units of grams, x has units of grams, and b has units of number of
bacteria. If

b=20x10°and u=3.1x10"g
then
m=(3.1x10"g)-(2.0x 10°) =62 x 10~* ¢ A
Computing the Volume of a Spherical Droplet from Its Radius

Computing the volume of a droplet requires a fundamental relation between radius and
volume, which depends on the shape of the droplet. Suppose that droplets are perfect
spheres. The fundamental relation between radius and volume comes from geometry.
The volume V of a sphere with radius r is

v dr 4
=—7
3
where r has units of centimeters and V has units of cubic centimeters, or cm® (Fig-

ure 1.3.34). If a droplet has radius 0.23 cm, the volume is

4
V= ?”0.233 ~0.051 cm?
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Example 1.3.6 Computing the Mass from the Volume

Example 1.3.7

To compute the mass of the droplet in Example 1.3.5 from its volume, we use the
fundamental relation

mass = density x volume

If we denote the density by p and the mass by M, the fundamental relation can be
rewritten in mathematical symbols as
M=pV

Suppose that the droplet is made of mercury, which has density of 13.58 g/cm’.
The mass M of a droplet with radius 0.23 cm is

M~13.58 -5 .0.051 cm® ~0.693 g
cm

It is crucial to check the dimensions and units in any unfamiliar equation you
encounter. In the equation
M=pV
[0
the dimensions of M are mass, the dimensions of V' are length®, and the dimensions of
0 are mass/ length®. Rewriting this equation in dimensions yields

mass
length?

mass = x length®

The length® terms cancel and the dimensions of the two sides match, as they must.
This procedure is called dimensional analysis. Many errors can be nipped in the bud
by checking the dimensions. An equation with inconsistent dimensions is not merely
incorrect, it is nonsensical.

Functions and Units: Composition, Scaling, and Shifting

Because functions describe relations between measurements, both their inputs and
their outputs have units and dimensions. Care must be taken to ensure that functions
are composed only when their units and dimensions match.

Composing Functions with Dimensions

Suppose that F takes the radius r of a sphere as input and returns the volume of the
sphere as output (as with the spherical droplet in Example 1.3.5). Then F has the
formula

4 4
F(r)= —3—r

Suppose G takes a volume V' as input and returns the mass of an object with that volume
as output according to mass = density x volume, or

G(V)=13.58V

using the density p = 13.58 g/ cm?. The composition G o F takes radius as input and
returns mass as output in a single step (Figure 1.3.35). The composition is

(G o F)(r)=G(F(r))

4
= 13.58771;»3 ~56.88r
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FIGURE 1.3.35
The composition of two functions with

units

Example 1.3.8

Example 1.3.9

F G
/\‘/’\‘
\_/
GoF

We ébuld find the mass of a droplet with radius 0.23 cm in two steps by finding the
volume and then the mass with the steps

4
V= F(0.23 cm) = ?”0.23 cm® ~0.051 cm?

M = G(0.051 cm®) = 13.58 g/cm® - 0.051 cm® ~ 0.693 g

Alternatively, we could find the mass in a single step by composing the functions
Gand F,

4
M= (G o F)(0.23 cm) = 13.58 g/cm3?7r0.23 cm’ ~0.692 g

with the slight discrepancy caused by round-off error.

The function F accepts inputs with dimensions of length and returns outputs with
dimensions of volume. G accepts inputs with dimensions of volume and returns outputs
with dimensions of mass. Because G takes as input precisely what F provides as output,
the composition makes sense.

What if we tried to compute F o G? F cannot accept an input with dimensions of
mass, and such outputs are the only outputs that G can return. It is impossible to compute
the volume of a sphere with a radius of 4.3 grams. This composition is nonsense. [\

Changing the units of a measurement that acts as the input or output of a function
corresponds to scaling or shifting the graph of the function. In most cases, the measure-
ment corresponding to a value of zero is the same in different units, and graphs of the
function are scaled by changes in units, When units differ in the value corresponding
to zero (as with temperature), then the graph of the function is shifted.

Scaling Functions on the Vertical Axis by Changing Units of the Output

Consider the following function describing the growth of a bacterial population:
b(t)=2.0¢

where ¢ is measured in hours and b(t) is in millions of bacteria.
If bacteria are measured instead in thousands of bacteria, we choose a different
variable to represent the new measurement, such as B. The relation becomes
million bacteria 1000 thousand bacteria
x one million bacteria
thousand bacteria

B(t)=2.0¢

=2000.0¢

(Figure 1.3.36). The graph has been changed by scaling the vertical axis. It looks the
same, except that the numbers that appear on the axis are 1000 times larger.

Scaling Functions on the Horizontal Axis by Changing Units of the Input

Suppose again that b(¢) = 2.0¢ where b is measured in millions and ¢ is measured in
hours. If time is measured in minutes instead of hours, we must define a new variable



FIGURE 1.3.36

A growing bacterial population: new
units on vertical axis

FIGURE 1.3.37

A growing bacterial population: new
units on horizontal axis

Example 1.3.10

1.3 The Units and Dimensions of Measurements and Functions
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for time, perhaps m. The relation becomes

million bacteria 1hr
b =2.0
(m) =2.0m hr * 0 min
_ 1.0  million bacteria
300" min

~0.0333m million l.)acteria

min

(Figure 1.3.37).
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The graph has been changed by scaling the horizontal axis. Again, it looks the
same, except that the numbers labeling the horizontal axis are 60 times larger. The data
point (1, 2) that indicated that there were 2.0 million bacteria after 1 hour bécomes the

point (60, 2), indicating 2.0 million bacteria after 60 minutes.

t (h}  m {min) b (millions) B (thousands)

0 0 0 ' 0

1 60 2 2,000
2 120 4 4,000
3 180 6 6,000
4 240 8 8,000
5 300 10 10,000
6 360 12 12,000

Shifting Functions Vertically by Changing Units

Temperatures can be measured on scales with different values of zero (Figure 1.3.38a).
For example, 0°C corresponds to 273.15 K. (The units of temperature on the Kelvin
scale are referred to as kelvins, rather than as degrees, and no degree symbol is used.)
Suppose that the temperature of a snake after digesting a mouse with mass m obeys the

equation
T(m) =10+ 0.06m

i
)

T ':‘i]:»
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In degrees Celsius In kelvins In kelvins with realistic vertical range
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FIGURE 1.3.38

Snake temperature in different units

where temperature is measured in °C and mouse mass is measured in grams. The
temperature in kelvins (K), which we denote by T, can be found by adding 273.15 to
- the temperature in °C, or

T (m) =273.15 + T(m) é
In the new units,
Tx(m)=283.15 + 0.06m |

(Figure 1.3.38b). The graph has been shifted vertically. It looks different because 0 K
is so far from the temperatures measured. A graph with the horizontal axis set at 270 K
is more informative (Figure 1.3.38c). A

Example 1.3.11 Shifting Functions Horizontally by Changing Units

Suppose that the sprint speed of a snake is a function of temperature according to the
equation

s(T)=4+0.1T

where temperature is measured in °C and speed is measured in m/sec (Figure 1.3.39a).
Temperature in K can be found by adding 273.15 to temperature in °C, or Ty =T +
273.15. To write the equation in the new units, we solve for T = Ty —273.15, giving

5(Tx) =4+0.1(Tg —273.15)

(Figure 1.3.39b). The graph has been shifted horizontally. However, by including
extremely cold temperatures, the function predicts impossible negative speeds. A
graph showing only the vertical range from 275 K to 325 K is more informative

(Figure 1.3.39¢). Y
In degrees Celsius In kelvins _ In kelvins with realistic vertical range
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FIGURE 1.3.39
Snake speed in different units




FIGURE 1.3.40
Vertically scaling a function

FIGURE 1.3.41

Horizontally scaling a function

FIGURE 1.3.42
Vertically shifting a function

FIGURE 1.3.43
Horizontally shifting a function
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Scaled vertically by a value > 1 Scaled vertically by a value < 1

Scaled horizontally by a value > 1 Scaled horizontally by a value < 1

£(0.5%)

Scaled vertically by a value >0 Scaled vertically by a value <0
6 6
4 4
2 2
0 fx)+2 0
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x x
a b
Shifted horizontally by a value >0 Shifted horizontally by a value <0
6
fx+0.3) 4 .
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2 .
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Mathematically, scaling corresponds to multiplying the value or the argument of a
function by a constant, whereas shifting corresponds to adding a constant to the value
or argument. In particular, the function .f(x) can be scaled or shifted as follows:

= Vertical Scaling Multiply the value by the constant a to make the new function
af(x) (Figure 1.3.40).

= Horizontal Scaling Multiply the argument by the constant a to make the new
function f(ax) (Figure 1.3.41).

= Vertical Shifting Add the constant a to the value to make the new function
f(x) + a. (Figure 1.3.42). :

= Horizontal Shifting Add the constant g to the argument to make the new
function f(x 4 a) (Figure 1.3.43). '
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Example 1.3.12

FIGURE 1.3.44

The original function

Example 1.3.13

Vertical scaling and shifting work as one might expect: multiplying by a value greater
than 1 stretches the function (Figure 1.3.40a), and adding a value greater than 0 raises
the function (Figure 1.3.42a). Horizontal shifting and scaling, however, might seem to
work backwards. Multiplying the argument by a value greater than 1 compresses the
function (Figure 1.3.41a), and adding a positive constant to the argument moves the
function to the left (Figure 1.3.43a).

Vertically and Horizontally Scaling a Function

Consider the function

=715
shown plotted for —5 < x < 5 (Figure 1.3.44). We will scale the value and the argument
of this function by values both greater than and less than 1.

Consider the input x = —1.0. Then

2£(~1.0)=2- m =10
0.5f(-1.0) =05+ {5 =025
f@ A0 = f-2.0) = {5 o =02
fO5+ 1.0 = f(=059) = =555 =08

The following table gives several values of the scaled functions.

Vertically Vertically Horizontally =~ Horizontally
Original Scaled by Scaled by Scaled by Scaled by

Argument Function aValue>1 aValue<1 a Value >1 a Value <1
-5.0 0.038 0.077 0.019 0.14

0.010

—4.0 0.059 0.120 0.029 0.015 0.20
-3.0 0.10 0.20 0.050 0.027 0.31
2.0 0.20 0.40 010 0.059 0.50
-1.0 0.50 10 0.250 020 0.80
0.0 1.0 2.0 0:50 10 - 10
10 050 1.0 0.250 0.20 0:80
20 020 0.40 0.10 0.059 0.50
3.0 0.10 0.20 0.050 0.027 0.31
40 0059 0120 0.029 0.015 0.20
50 0038 - 007 0.019 0.010 0.14

Scaling vertically makes the graph of the function taller if it is scaled by a value greater
than 1 or shorter if it is scaled by a value less than 1. Scaling horizontally makes the
graph of the function thinner if it is scaled by a value greater than 1 or wider if it is
scaled by a value less than 1.

Vertically and Horizontally Shifting a Function

Consider again the function in Example 1.3.12 (Figure 1.3.44). We will shift the value
and the argument of this function by values both greater than and less than 0.




FIGURE 1.3.45

Vertically and horizontally scaling a
function
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Scaled vertically by a value > 1 Scaled vertically by a value < 1

2
1.8
1.6
1.4
12

1
0.8
0.6
0.4
0.2 ,

5-4-3-2-1 0123435

x
a
Scaled horizontally by a value > 1 Scaled horizontally by a value < 1
: Al f@
x
0.8 Fx) 08
0.6 0.6 f(0.5x)
0.4 f2x) 04
02 02¢L
0 1 1 1 1 I 1
5-43-2-1 012 3 435 -5 -4-3-2-1 1 23 435

Vertically Vertically Horizontally = Horizontally

Original Shifted by Shifted by Shifted by Shifted by
Function aValue>0 aValue<0 aValue>0 a Value <0

-5 0.038 2.04 ~1.96 0.10 0.020
4 0.059 2.06 ~1.94 0.20 0.027
-3 0.10 2.1 ~1.9 0.50 0.038
) 0.20 22 ~18 10 - 0.059
-1 0.50 25 ~15 050 010
0 1.0 3.0 -1.0 0.20 0.20
1 0.50 25 ~15 0.10 0.50
2 0.20 22 1.8 0.059 1.0
3 0.10 2.1 ~19 0.038 0.50
4 0.059 2.06 —1.94 0.027 0.20
5

0.038 2.04 —1.96 0.020 0.10

Shifting vertically moves the function up if it is shifted by a value greater than O or
down if it is shifted by a value less than 0. Shifting horizontally moves the function to
the right if it is shifted by a value greater than O or to the left if it is shifted by a value
less than 0.

Checking: Dimensions and Estimation

Just as it is essential to check the dimensions and units of equations, it is essential
to check the plausibility of the numerical results of calculations. Suppose you wanted
to figure out how many tons all the people in the United States weigh. Each person
(counting children) weighs on average about 100 pounds, or 1/20 of a ton per person. If
there are about 300 million people, they should weigh a net amount of around 15 million



FIGURE 1.3.46

Vertically and horizontally shifting
a function

Example 1.3.14

FIGURE 1.3.47
A bacterial colony on a Petri dish
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tons (using the fundamental relation that total mass is equal to mass per individual times
the number of individuals). If you had worked this out with a more complicated set
of measurements and found a more precise answer of 14.7 million tons, everything is
probably all right. If the complicated method gave an answer of 1.47 million tons, it
needs to be checked.

Estimating the Area of a Bacterial Colony

How much area does a colony of 2.0 x 10° bacteria take up on a Petri dish (Fig-
ure 1.3.47)? One method is to use our computation of the mass (6.2 x 10™* g in Exam-
ple 1.3.4), convert to volume, and then to find the area by dividing by the thickness. If
we assume that bacteria have approximately the density of water (which is 1 g/cm?),
the volume is '

M 62x10"g
p 1.0x10-2g/umd
=6.2 x 10® um?

Here we used the fact that 1.0 um® = 10712 cm? to find density in g/um?>. The next
fundamental relation translates between volume and area and is

V=

volume = area X thickness
so that

volume
thickness

If we estimate the thickness of the colony to be about 20 um (roughly the thickness of
acell),

area=

__ 6.2 10° um’
20 um
~3 x 10" um?

area
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Summary
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This sounds rather large. To convert to sqﬁare éentimeters, we use the basic identity
1pum=10"*cm
so that the conversion factor is
1=10"*cm/um
Multiplying yields
3 x 107 um? =3 x 107 pm? x 10~ cm/um x 10~*cm/um
=0.3 cm?

To find the radius, we use the fundamental geometric relation between the area A
and radius r for a circle,

A=nr’
The radius r of this colony satisfies
nrt~0.3 cm?

Solving for r yields

0.3 cm?
re M ~03cm
7T
This colony is actually quite small, but large enough to be seen.

Fermi’s Piano Tuner Problem

The great physicist Enrico Fermi emphasized our ability to combine educated guesses
of ordinary quantities to estimate more complicated quantities. For example, we can
estimate the number of piano tuners in Salt Lake City and vicinity knowing only that
the population is about 1,000,000 people. First, we estimate the number of pianos. If
the average family contains four members, the number of families is about 250,000.
As a rough guess, suppose that one in five families owns a piano. There will then be
50,000 pianos. If the average piano tuner tunes 4 pianos every day and works for 250
days per year (50 weeks of 5 days), she will tune 1000 pianos per year. If each piano is
tuned once in 2 years (another very rough guess), there will be 25,000 pianos tuned per
year, requiring 25 piano tuners. A quick check of the phone book indicates that there
are in fact about 30 piano tuners. Like all mathematical models, this method requires
us to analyze the problem by breaking it into component parts. If our estimate proved
to be extremely inaccurate, we could check each of our assumptions to find the source
of the error. A

Understanding scientific equations and formulas requires understanding the units and
dimensions of the measurements and variables. Dimensions describe the underlying
quantities and tell what sort of thing is being measured. Units express numerical values
based on a particular scale. Converting between units can be done by starting with basic
identities, deriving conversion factors, and multiplying. Unit conversions correspond
to scaling or shifting the graphs of functions describing the measurements. Trans-
lating between measurements with different dimensions requires using fundamental
relations, such as those between mass and volume or between volume and radius. All
such relations, and every scientific formula, should be checked for consistency with
dimensional analysis. Using basic identities and fundamental relations, we can com-
pute useful estimates of quantities, often without using a calculator. Checking results
for plausibility can help locate mistakes. - '
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m Exercises

Mathematical Techniques
1-6 = Convert the following into the new units.
1. Find 3.4 pounds in grams (1 oz is 28.35 g and 1 Ib is 16 oz).

2. Find one yard in millimeters (1 in. is 25.4 mm and 1 yd is
36 in.).

3. Find 60 years in hours (1.0 year ~ 365.25 days).

4, Find 65 miles per hour in centimeters per second (using in-
formation in Example 1.3.1).

5. Find 2.3 grams per cubic centimeter in pounds per cubic foot
(using conversion factors in Exercises 1 and 2).

6. Find 9.807 m/sec? (the acceleration due to gravity) in miles
per hour per second.
7-10 » Compute-the answers by adding the given quantities.
7. A boy who is 1.34 m tall grows 2.3 cm. How tall is he then?

8. After waiting for 1.2 hr for a plane flight, you are told you
will have to wait another 17 min. What is the total wait?

9. Youpurchase 6 apples that weigh 145 gm each, and 7 oranges
that weigh 123 gm each. What is the total weight if you add
the apples to the oranges?

10. The density of the apples in the previous problem is 0.8 g/cm?
and the density of the oranges is 0.95 g/cm>. What is the total
volume if you add the apples to the oranges?

11-14 = Figure out which is larger.

11. The area of a square with side length 1.7 cm or of a disk with
radius 1.0 cm.

12. The perimeter of a square with side length 1.7 cm or of a
circle with radius 1.0 cm.

13. The volume of a sphere with radius 100 m or of a lake 50 cm
deep with an area of 3.0 km?.

14. The suiface area of a sphere with radius 100 m or the surface
area of a lake with area 3.0 km?.

15-18 = Find the dimensions of the following quantities.
15. Pressure (force per unit area).
16. Energy (force times distance).

17. The rate of change of the area of a colony of bacteria growing
on a plate.

18. The force of .gravity between two objects is equal to
Gmm,/r? where m, and m; are the masses of the two
objects, and r is the distance between them. What are the
dimensions of the gravitational constant G?

19-22 = Check whether the following formulas are dimensionally
consistent.
19. Distance = rate times time

20. Velocity = acceleration times time

21. Force = mass times acceleration

22. FEnergy=1/2 mass times the square of velocity (see
Exercise 16 for the units of energy)

23-26» Using the graph of the function g(x), sketch a graph of the
shifted or scaled function, say which kind of shift or scale it is, and
compare with the original function.
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23. 4g(x)

24, g(x)—-1
25. g(x/3)
26. g(x+1)
Applications

27-30« Find the volumes of the following cartoon trees (drawing
a sketch can help), assuming first that the height is 23.1 m and then
that the height is 24.1 m. What is the ratio of the volume of the

larger tree to that of the smaller tree? '

27. A tree is a perfect cylinder with radius 0.5 m no matter what
the height (the volume of a cylinder with height / and radius
ris whr?).

28. A tree is a perfect cylinder with radius equal to 0.1 times the
height.

29. A tree looks like the tree in Exercise 27, but with half the -
height in the cylindrical trunk and the other half in a spheri-
cal blob on top.

30. A tree looks like the tree in Exercise 27, but with 90% of the
height in the cylindrical trunk and the remaining 10% in a
spherical blob on top.

31-34= Find the masses in kilograms of the following objects (the
density of water is 1.0 g/cm?).

31. A water bed that is 2 meters long, 20 cm thick, and 1.5 m
wide.

32. A spherical cow with diameter 1.3 m and density 1.3 times
that of water.

33. A coral colony consisting of 3200 individuals each weighing
045 g.

34. Acircular colony of mold with diameter of 4.8 cm and density
of 0.0023 g/cm?.



35-38 = Change the units in the following functions, and compare
a graph in the new units with that in the original units.

35.

36.

37.

38.

(Based on Section 1.2, Exercise 45) The number of bees b
on a plant is given by b =2 f + 1 where f is the number of
flowers. Suppose each flower has 4 petals. Graph the number
of bees as a function of the number of petals.

The number of cancerous cells ¢ as a function of radiation
doseris

c=r—4

for r (measured in rads) greater than or equal to-5, and is zero
for r less than 5 (as in Section 1.2, Exercise 46). Suppose
that radiation is instead measured in millirads (1 rad = 1000
millirads).

Insect development time A (in days) obeys A =40 — z
where T represents temperature in °C for C between 10 and
40 (as in Section 1.2, Exercise 47). Suppose that development
time is measured in hours.

Tree height £ (in meters) follows the formula

_ 100a
"~ 100+a
where a represents the age of the tree in years (as in Sec-

tion 1.2, Exercise 48). Suppose that tree age is measured
instead in decades.

39-44 » Estimate the following.

39.

40.

41,

42,

The speed of light in centimeters per nanosecond (1ns=
1077 sec). (The speed of light is about 186,000 miles/s). A
fast computer takes about 0.3 ns per operation. How far does
light travel in the time required by one computer operation?

The speed that your hair grows in miles per hour (this problem
was borrowed from the book Innumeracy).

The weight of the earth in kilograms. The earth is approxi-
mately a sphere with radius 6500 km and density five times
that of water.

Suppose a person eats 2000 kCal per day. Using the facts that
1 kCal is approximately 4.2 kJ (a kilojoule is a unit of energy
equal to 1000 joules) and 1 watt is one joule per second (a
unit of power), about how many watts does a person use?

43,
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If a movi€ is about 2 hours long, how many movies could
you watch if you spent half your time watching movies for
60 years?

The volume of all the people on earth in cubic kilometers. If
a large mine is about 3 km across and 1 km deep, would they
all fit?

45-48 = The following problems give several ways to estimate the”
size or number of cells in your body. A cell is roughly a sphere
10 pm in radius, where 1 um is 107 m.

45,

46.

47.

48.

Using the fact that the density of a cell is approximately the
density of water, and that water weighs 1 g/cm?, estimate the
number of cells in your body.

Estimate your volume in cubic meters by pretending you are
shaped like a board. Pretending that cells are cubes 20 pm on
a side, what do you estimate the number of cells to be by this
method?

The brain weighs about 1.3 kg, and it is estimated to have
about 100 billion neurons and 10 to 50 times as many other
cells (glial cells). Is this consistent with our previous esti-
mates in Exercises 45 and 467

The nematode C. elegans is a cylinder about 1 mm long and
0.1 mm in diameter, consisting of about 1000 cells. Are these
cells about the same size as the ones in your body?

49-50 = The following problems involve tying string around or gift-
wrapping our planet, which can be thought of as a sphere with
radius 6500 km.

49,

50.

How long would a piece of string have to be to go around the
equator? If the string were made 1.0 m longer and stretched
out all the way around, how high would it be above the sur-
face? Does the result surprise you?

How large a piece of wrapping paper would be required to
cover the entire planet? If the wrap-were increased in area
by 1.0 m? and stretched out all around, how high would it be
above the surface? Why do you think the result is so different
from that in the previous problem? (Working this out takes a
lot of decimal places.)

m Linear Functions and Their Graphs

Complicated models are built from simple pieces. Throughout the sciences, the simplest
building blocks for mathematical models are linear functions, functions that have lines
as their graphs. In this section, we derive formulas for linear functions, including the
point-slope formula and the slope-intercept formula. Because linear functions are
simple to work with algebraically, we use them to review methods for solving linear
equations to answer scientific questions. In particular, we interpolate between known
values to make predictions about the results of additional experiments.
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A proportional relation: bacterial
populations

Example 1.4.1

Example 1.4.2
257
20 + (02 72),
15+

~ Ay =y, -y
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FIGURE 1.4.49
Slope and A notation

Definition 1.7
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Proportional Relations

The simplest relations are proportional relations, meaning that the output is propor-
tional to the input. Mathematically, this means that the ratio of the output to the input
is a constant. The general formula for a proportional relation is

fx)=ax
where a is some constant value. The ratio of the output ax to the input x is

output ax

input ~ x

as long as x # 0. When the ratio is constant, the value a is called the constant of
proportionality. Constants of proportionality, like all measurements, have units and
dimensions.

A Proportional Relation Between Population Sizes

The function describing the relation

(Example 1.2.3) multiplies its input by 2.0 to produce the output. The ratio of the output
population to the input population is

by
— =20
b;

a constant value. The graph of this proportional relation, as Figure 1.4.48 shows, is a
line.

A Proportional Relation Between Mass and Volume

In the fundamental relation between mass and volume M = pV (Table 1.3.2), mass is
found by multiplying volume by the constant value p. The ratio of mass to volume is

mass

=density =
volume y=p

again a constant. As it must, the constant of proportionality, p, has the dimensions of
density (mass per unit volume).

The proportion in a proportional relation is the slope of the graph. Slope is often
defined as “rise over run,” but we replace these archaic terms with more scientifically
meaningful synonyms.

Slope of a Line

change in output

slope = 2nge In output
change in input

The “change” is the change between two data points. Suppose we denote two points

on the graph by (x;, y1) and (x,, y,) (Figure 1.4.49). Then

change in output _ y, — y;

change in input T Xy — X

s]ope = (1.4.1)
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251
20 (2, ¥2)
15+
- Ay=20-5=15
10+
(. y1) slope =20/4 =5
T Ax=5-1=4
0 L] ] 1 1 1 J
FIGURE 1.4.50 o 1 2 3 4 5 s
Finding the slope x

Example 1.4.3 Finding the Slope Between Two Data Points

In Figure 1.4.49, the data points are (x, y;) = (1, 5) and (x3, y,) = (4, 20). The slope
(see Figure 1.4.50) is

change in output Y= 20-—5 _ 15

lope = = = =—=5
Siope changeininput x, —x; 4-—-1 3

The changes in the input x and the output y are often written with the shorthand

Ax =x, — X1

Ay=y—
where A (the Greek letter Delta) means “change in.” The slope is Ay divided by Ax,
or
Ay
slope = — (1.4.2)
Ax

This notation will prove very useful when we study derivatives later in this book.

I4

Example 1.4.4 The Slope of a Proportional Relation Between Populations

Recall the data in Example 1.2.3, graphed in Figure 1.4.51.

Colony Initial Population, b; Final Population, by

1 0.47 0.94
2 3.30 6.60
3 0.73 1.46
4 2.80 ‘ 5.60
5 1.50 3.00
6 0.62 1.24

S = N WA NN

bf, final population (millions)

" (0.47, 0.94) change in output = 5.66
FIGURE 1.4.51 i change in input = 2.83 .
The slope of the proportional relation 0 1 2 3 4 5
between bacterial populations b;, initial population (millions)
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FIGURE 1.4.52

The slope of the proportional relation
between mass and volume

Example 1.4.5

2,3
ratio of output

(1,2 to input = 1.5

ratio of output
to input = 2.0

FIGURE 1.4.53

A linear function that is not
a proportional relation

Example 1.4.6

6 -
5k
4t
c
© 3r
= hange i
change in output
2 My My~ M, =24
1+ (1.0,08) change in input
V,- V=30
0 1 1 1 1 1 J
0o 1 2 3 4 5 6

Volume (cm?)

The first two data points are (0.47, 0.94) and (3.30, 6.60). Then

Ab; =3.30—-0.47=2.83
Aby=6.60—0.94=5.66

The slope is
slope = change ifl (?utput _ Aby _ 6.60 — 0.94 _ 5.66 —20
change ininput  Ab; 3.30—-047 2.83
The slope is equal to the constant of proportionality. n

~

The Slope of a Proportional Relation Between Mass and Volume

Suppose that p = 0.8 c—ﬁﬁ' A first object with volume V| = 1.0 cm® has mass M; = 0.8 g.
A second object with volume V, =4.0 cm® has mass M, = 3.2 g (Figure 1.4.52). We
then find
change in output = AM =32 -0.8=24g¢
change in input= AV =4.0 — 1.0=3.0 cm*

The slope is then
change inoutput  AM  24g g

changeininput AV ~ 3.0cm®  cmd

slope =

Again, the slope is equal to the constant of proportionality, complete with the units of
density.

Linear Functions and the Equation of a Line

Proportional relations are described by functions that perform a single operation on
their input: multiplication by a constant. The graphs of such functions are lines with
slope equal to the constant of proportionality. Furthermore, these lines pass through the
point (0, 0) because an input of 0 produces an output of 0.

Many functions other than those describing proportional relations have linear
graphs.

A Linear Function That Is not a Proportional Relation

The graph of the function
y=fx)=x+1

follows a line (Figure 1.4.53). But the relation between the input x and the output y is
not a proportional relation. Two points on this line are (1, 2) and (2, 3). At the first, the

ratio of output to input is % =2. At the second, the ratio of output to input is % =15.

The ratio of output to input is not constant.
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The elements of the general linear graph

Definition 1.8

Definition 1.9
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. 37 AylAx=m
intercept
\ A _ _
/ Y =Y~ Yo
/ase \ Ax=x— Xy
point -5 L

(xg» Yo)

For linear functions, it is the ratio of the change in output to the change in input
that is constant. Suppose we start at the point (0, 1) on the graph. The ratio of change
in output to change in input between this point and (1, 2) is

changeinoutput  2—1 1

change ininput 1 -0 1
The ratio of change in output to change in input between (0, 1) and (2,3) 1s

changeinoutput 3—-1 2 .

change ininput  2—0 —27

In general, a line is characterized by a constant slope, like a constant grade on a
road. We use this fact to find a formula for a line. First, choose any point that lies on
the graph of the function and call it the base point (Figure 1.4.54). If the base point has
coordinates (xo, yo), the slope between it and an arbitrary point (x, y) on the line is

Ay _y—
slope=—=——
Ax x—Xp

Because the slope between any two points on the graph is constant,

y—>X
=m
X — X

for some fixed value of m. Multiplying both sides by (x — xo), we ﬁnd
y — Yo =m(x — Xo)
After solving for y by adding y, to both sides, we find the following form.
The Point-Slope Form for a Line
A line passing through the point (xo, yo) with slope m has formula
y=m(x — Xo) + Yo G

Alternatively, we can multiply out the terms on the right-hand side of the point-slope
form, finding

y =mx + (Yo — mxo)
We can combine the constants yy, 72, and xg into a single new parameter b=y, —mxy.
The letter b represents the point where the graph crosses the y-axis and is called the
y-intercept.
The Slope-Intercept Form for a Line
A line with slope m and y-intercept b has formula

y=mx+b ]




Example 1.4.7

Example 1.4.8

Example 1.4.9

Example 1.4.10

Example 1.4.11
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In functional notation, if the function f has a linear graph passing through the base
point (xg, yo) with slope m, then

fx)=m(x — x0) + Yo
in point-slope form. Similarly,
fx)=mx+b

in slope-intercept form.

Recognizing the Components of a Linear Function: Slope-Intercept Form

The function f(x) = —4x + 5 is a linear function in slope-intercept form. The slope is
the factor multiplying the input x, or m = —4. The intercept is b = 5. A

Recognizing the Components of a Linear Function: Point-Slope Form

The function f(x) = 3(x + 2) + 7is alinear function in point-slope form. To find xo, we
must write x + 2asx — (—2). Thisisin the form x — xo with xy = —2. The y-coordinate
of the point is the added value, so yo = 7. Thus the base point is (xo, yo) = (-2, 7). The
slope is the factor multiplying the variable x, so m = 3. A

Recognizing the Components of a Biological Linear Function

The function describing the relation between initial and final bacterial populations in
(Example 1.4.1),

by = f(b;) =2.0b;

is a linear function with a slope of 2.0 and a y-intercept of O (and is therefore a
proportional relation). In applications, inputs and outputs are rarely called x and y.
Nonetheless, we recognize linear functions by the operations done to the input variable.
If the formula involves only adding, subtracting, and multiplying by constants, the
equation describes a linear function.

Recognizing a Nonlinear Function

The function

5.0
b(t) = ——
@) 1+ 2¢ N
is not a linear function because the input variable ¢ appears in the the denominator. The
function

b(t)=t>+3t+2

is not linear because the input variable ¢ is squared. A

The Linear Relation Between Fahrenheit and Celsius

A once important linear function converts temperature in degrees Fahrenheit into tem-
perature in degrees Celsius (Figure 1.4.55). Recall that

F=18C+32 (1.4.3)

where C represents temperature in degrees Celsius and F represents temperature in
degrees Fahrenheit. Unlike almost all unit conversions, this formula does not express
a proportional relation. The F-intercept of 32 indicates that 0°C corresponds to 32°F
rather than O°F. The slope, nonetheless, describes the number of degrees Fahrenheit per
degree Celsius as in an ordinary conversion. To check the slope, we compute A F and
AC between the points with C =0 and C = 20. Because 20°C corresponds to 68°F, the

e A
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Temperature (°F)
100 (
or (20, 68)
60
intercept 40 F=18C+32
0, 32)
20 ¢
w0 30 7 "1 0 0 20 30 40
FIGURE 1.4.55 ook Temperature (°C)
The relation between Fahrenheit and
Celsius temperatures 4oL
) change in °F (the output) is
AF =68°F — 32°F=136°F
and the change in °C (the input) is ‘
AC=20°C - 0°C=20°C
Therefore
36°F °F
slope = =1.8—
20°C °C
It takes 1.8°F to make up 1.0°C. A
140 Finding Equations and Graphing Lines
120
100 Pet store owners can be plagued by parasites. Suppose the employees spend a week
P observing populations of mites on several lizards and collect the following data, plotted
0 in Figure 1.4.56. '
40

20+ R "
g , Initial Number, x;  Final Number, x;

0 10 20 30 40 50 60 20 70
X; :
30 90
FIGURE 1.4.56 40 110
Graph describing a changing mite 50 130
population

Here x; is the initial number of mites and x ¢ is the final number. Suppose we wish to
estimate the number of mites we would find after a week on a lizard that has 45 mites
today. To do so, we must first find an equation for the function relating x 7 and x; and
then evaluate it at x; = 45.

We can find the equation with the following steps.

M Algorithm 1.3 Finding the Equation of a Line from Data
1. Graph the data and check that the points lie on a line.
2. Pick two data points.

3. Find the slope as the change in output divided by the change in input.
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FIGURE 1.4.57

Finding the equation of the function
describing mites

change in

tput = 60
80| (20,70) outpt

change in input = 30

0 10 20 30 40 50 60

X

4. Find the equation by plugging one point and the slope into the point-slope
form for a line (Definition 1.8).

5. If needed, convert this equation into the slope-intercept form. ry

Example 1.4.12 Finding the Equation of a Line from Data

interpolated value at
(45, 120)

10 20 30 40 50 o

X

FIGURE 1.4.58

Interpolating a value

Example 1.4.13

We can follow this algorithm to find the equation of the function describing our data.
1. The graph in Figure 1.4.56 looks like a line.

2. Pick the first and last data points (any others could be chosen as long as the
data lie on a line (Figure 1.4.57)).

3. The slope m is
_Axp 130-70 60
"SRk T 50-20 30

4. If we choose the point (20, 70) as (xo, yo) in the point-slope form for a line, the
equation is

2.0

xf :m(x,- - (xi)o) + (xf)o
=2.0(x; —20) + 70
5. We can expand this to find the slope-intercept form
x;=2.0x; +30
This defines a function 2 (x;) with formula
xf=h(x;)=2.0x;4+30

This function A(x;) can be interpreted in biological terms. The x s-intercept of 30
is the namber of mites we would find on a lizard that started out with no mites. These
mites probably arrived from other lizards. The slope of 2.0 is the number of additional
mites we would find after a week if we added one mite at the beginning. For example,
h(1) =32, two more than 4(0) = 30. The one additional mite left two offspring.

Using a Linear Function to interpolate

To predict the number of mites we will find after a week on a lizard that has 45 mites
today, we substitute x; =45 into the function A (x;) = 2.0x; + 30, finding

xr=h(x)=2.0-45+30=120

(See Figure 1.4.58.) We have used the formula for the function to interpolate a predic-
tion between known values.

In this example, we used a set of numerical data to plot a graph and derive an
algebraic formula. In other cases, we are given a formula and need to produce a graph.
The easiest way to graph a linear function from its formula is to plug two reasonable
values of the input into the equation, graph the points, and connect them with a line.
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Example 1.4.14 Plotting a Line from an Equation

Suppose we wish to plot the linear function F(x) given by
plot poiat (0, 30) F(x)=—-2x+30

30
251 connect with line Plugging in x = 0 gives F(0) = 39, and x = 10 gives F(10) = 10 (Figure 1.4.59). The
o graph of the line connects the points (0, 30) and (10, 10). This line goes down with a
2By plotpoint  negative slope of —2.
10F (10, 10)
st When the graph goes down when read from left to right (as in Example 1.4.14), we
ol ; ! say that the function is a decreasing function. A larger input produces a smaller output.
0 5 . 10 15 Linear functions with negative slopes are decreasing functions. In contrast, a positive
slope corresponds to an increasing function. Larger inputs produce larger outputs. A
FIGURE 1.4.59 slope of exactly 0 corresponds fo a function with equation
Graphing a line from its equation f(x)=0-x+b=b
Such a function always takes on the constant value b, the y-intercept, and has as its
graph a horizontal line.
Slope Graph Function
positive  goes up increasing
negative  goes down decreasing
ZEro flat constant
An example of each type is shown in Figure 1.4.60.
Solving Equations Involving Lines
Answering questions about linear relations requires solving linear equations, which
are among the simplest equations to solve.
Example 1.4.15 Solving a Linear Equation
Suppose we wish to find where the line
y=3x+1
takes on the value y =7 (Figure 1.4.61).
T=3x+1 substitute the value of y
6=3x subtract 1 from both sides
2=x divide both sides by 3
&) f&x) ' fx
10 - Positive 10 o 10
slope
5 5 L Negative 5L
slope Slope of zero
| I 1 1 1 1 1
-2 70 1 2 B e \\é * -2 -1 0 1 2
a b c
FIGURE 1.4.60

i Linear functions with positive, negative, and zero slopes
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FIGURE 1.4.61

Solving an equation involving a linear
function

Example 1.4.16

Example 1.4.17

157 5&®)

FIGURE 1.4.62

Finding where two lines intersect

Example 1.4.18

141
12+
10}
. 8L (2.0,7.0)
6 L
4|
2 L
0 i 1 i A
0 1 2 3 4

Graphically, this equation corresponds to finding where the line y =3x + 1 crosses the
horizontal line that represents y =7. A

Solving a Linear Equation Involving a Parameter
Suppose we wish to find where the line

y=mx+1
takes on the value y =7 for any value of the slope m.

T=mx+1 substitute the value of y

6=mx subtract 1 from both sides
6
—=X divide both sides by m
m
This solution makes sense for any value of m 5 0. r

Finding the Intersection of Two Lines

Suppose we wish to find where the lines f(x) =3x + 1 and g(x) = —4x +5 intersect
(Figure 1.4.62). We set the two values equal, and solve for x as follows:

3x +1=—4x+5 setthe two formulas equal to each other

Tx+1=5 add 4x to both sides
Tx =4 subtract 1 from both sides
4
x= 3 divide both sides by 7

This gives the vilue of x where the two intersect. The value of y can be found by
substituting x = 7 into either function, or

"f(z_l)_—_3.§+1=§

7 7
4 4 19
l=q._45="2
g<7) 7 + 7
Both functions give the same result, as they must. (A

Solving a Classic Word Problem with Linear Equations

Little Billy’s father is three times as old as Billy in 2001. Ten years later, Billy’s father

- will be only twice as old as Billy. What year was Billy born, and how old was his dad



70 r
D=3B
o 001 N
§ 50+
S 40T p=2B+10
230t \
5 20}
A 10
0 L 1 1 1
0 5 10 15 20
Billy's age (years)

FIGURE 1.4.63

Graphical method to find ages

Example 1.4.19

Dad's age (years)

0 5 10 15 20
Billy's age (years)

FIGURE 1.4.64
Failure of graphical method to find ages

Example 1.4.20
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at that time? Let B represent Billy’s age in 2001, and D his dad’s age. Then
D=3B
Ten years later, Billy is B + 10 and his dad is D + 10. Because his dad is then twice
as old, .
D+10=2(B +10)
We can rewrite this (in slope-intercept form) to find that
D=2B+10

This gives two equations for D (Figure 1.4.63). Setting the right-hand sides equal gives
the single linear equation
3B=2B+10

Subtracting 2B from both sides gives B = 10, Billy’s age in 2001. His dad was three
times as old, or 30. Thus Billy was born in 1991, when his dad was 20. Ten years later,
in 2011, Billy will be 20, exactly half as old as his 40-year-old father. :

A Linear Equation with No Solution

Suppose we are given the following variant of the classic word problem. Little Billy’s
father is three times as old as Billy in 2001. Ten years later, Billy’s father will be 10 years
less than three times Billy’s age. What year was Billy born, and how old was his dad
at that time? Let B represent Billy’s age in 2001, and D his dad’s age. Then

D =3B

Ten years later, Billy is B + 10 and his dad is D + 10. Because his dad is then 10 years
less than three times as old,

D+10=3(B+10)— 10
Subtracting 10 from both sides and solving for D gives
D=3B+10
Setting these two equations for D equal gives
3B=3B+10

Subtracting 3 B from both sides gives 0 = 10, which is impossible. The original problem
has no solution. Graphically, this corresponds to trying to find the intersection of two
parallel lines (Figure 1.4.64). A

A Linear Equation with Many Solutions

Suppose we are given yet another variant of the classic word problem. Little Billy’s
father is three times as old as Billy in 2001. Ten years later, Billy’s father will be 20 years
less than three times Billy’s age. What year was Billy born, and how old was his dad
at that time? Then

D=3B
Ten years later, Billy is B + 10 and his dad is D + 10. Because his dad is then 20 years
less than three times as old,

D +10=3(B+10)—20

Solving for D, we find

D=3B
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FIGURE 1.4.65

Going backwards with the mite
population

Example 1.4.21

Summary

150 "
=
S
£ 100
=1
=%
[*]
O
=
& soF——=2 i final population = 52
5 ]
'1 point where h(x) =52
Ve
0 | A ———

0 10 20 30 40 50 60

x;, initial population

This matches our original equation and works for any value of B. For example, if Billy
was born in 1988, and consequently was 13 in 2001, his dad was three times as old
in 2001, or 39. Ten years later, Billy would be 23, and his dad would be 49, exactly
20 years less than 3 times 23. But if Billy had been born in 1992, he would have been
9 in 2001, and his dad would have been 27. Ten years later, Billy would be 19, and dad
would be 37, again exactly 20 years less than 3 times 19. A

Solving Another Word Problem with Linear Equations

Recall the lizards with mites obeying the equation
Xf= 2.0)6,' -+ 30

(Example 1.4.12). Suppose a lizard ends up with x ; = 52 mites. How many did it have
the week before? This is a kind of “nverse” problem; starting from where we ended
up, we want to try to end up where we started. Fortunately, these problems can be
expressed more clearly in equations than in words. In terms of the variables x; and x¢,
our question can be rephrased. What was X; if x 7 is 527 We want to solve the equation
h(x;) =52 for x;, or

2.0x; +30=52

The two sides of the equation say the same thing in two ways. The right-hand side gives
our measured value 52. The left-hand side gives the measured value as a function of
the unknown x;. We can solve for x; )

2.0x; =52—30=22  subtract 30 from both sides

22
Xi=55 =11 divide both sides by 2

We can check this answer by plugging in, finding
r(11)=2-11+430=52
(Figure 1.4.65). n

The graphs of many important functions in biology are lines. We derived the link
between lines and linear functions. A proportional relation is a special type of linear
function in which the ratio of the output to the input is always the same. This constant
ratio is the slope of the graph of the relation. Lines other than proportional relations
can be expressed in point-slope form or slope-intercept form. The slope can be found
as the change in output divided by the change in input. Equations of linear functions
can be used to interpolate—that is, to estimate outputs from untested inputs.
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W bercises

Mathematical Techniques

1-4 = For the following lines, find the slope between the two given
points by finding the change in output divided by the change in
input. What is the ratio of the output to the input at each of the
points? Which are proportional relations? Which are increasing
and which are decreasing? Sketch a graph.

1. y=2x + 3, using points withx =1 and x =3

2. z=-5w,using points withw=1andw =3 .

3. z=5(w —2)+ 8, using points withw =1andw =3

4, y—5=—3'(x7+2)—6, using points withx =1 and x =3

5-6« Check that the point indicated lies on the line and find the
equation of the line in point-slope form using the given point. Mul-
tiply out to check that the point-slope form matches the original
equation. '

5. Theline f(x) =2x + 3 and the point (2, 7).
6. The line g(y) = —2y + 7 and the point (3, 1).

7-12» Find equations in slope-intercept form for the following
lines. Sketch a graph indicating the original point from the point-
slope form.

7. Theline f(x)=2(x —1)+3.

8. Theline g(z) =—3(z+ 1) - 3.

9. A line passing through the point (1, 6) with slope —2.
10. A line passing through the point (—1, 6) with slope 4.
11. A line passing through the points (1, 6) and (4, 3).
12, A line passing through the points (6, 1) and (3, 4).

13-16 = Check whether the following are linear functions.
i
13. hiz)=—
@ 5z

4. Fr)=r*+5

15. P(q)=8@3g +2)—

16, Q(w)=803Bw +2)—6(w +4)

17-18 » Check that the following curves do not have constant slope
by computing the slopes between the points indicated. Compare
with the graphs in Section 1.2, Exercises 5 and 6.

17. h(z)= 1 atz=1,z=2, and 7 =4, as in Section 1.2, Exer-

cise 5. Find the slope between z = 1 and z =2, and the slope
between z =2 and z =4.

18. F(r)=r2+5atr=0,r=1, and r =4, as in Section 1.2,
Exercise 6. Find the slope between r =0 and r =1, and the
slope betweenr =1 and r =4.

1?"24 = Solve the following equations. Check your answer by plug-
ging in the value you found.

19, 2x43=7

1
20. 5z—3—7

21, 2x+3=3x+7

22, —3y+5=8+2y

28, 25(x — 1) +3)=5Q2(x —2) +5)
24. 2(4(x — 1) +3)=5Q2(x —2) +5)

25-28 = Solve the following equations for the given variable, treat-
ing the other letters as constant parameters.

25. Solve2x +b="7forx.
26. Solve mx + 3 =7 for x.

27. Solve 2x + b =mx + 7 for x. Are there any values of b or m
for which this has no solution?

28. Solve mx + b =3x + 7 for x. Are there any values of b or m
for which this has no solution?

29-32 = Most unit conversions are proportional relations. Find the
slope and graph the relations between the following units.

29. Place inches on the horizontal axis and centimeters on the
vertical axis. Use the fact that 1 in. = 2.54 cm. Mark the
point corresponding to 1 in. on your graph.

30. Place centimeters on the horizontal axis and inches on the
vertical axis. Use the fact that 1 in. = 2.54 cm. Mark the
point corresponding to 1 in. on your graph. '

31. Place grams on the horizontal axis and pounds on the ver-
tical axis. Use the identity 1 1b = 453.6 g. Mark the point
corresponding to 1 1b on your graph.

32. Place pounds on the horizontal axis and grams on the ver-
tical axis. Use the identity 1 1b =~ 453.6 g. Mark the point
corresponding to 1 1b on your graph.

33-34 = Not very many functions commute with each other (Sec-
tion 1.2). The following problems ask you to find all linear func-
tions that commute with the given linear function.

33. Find all functions of the form g(x) =mx + b that commute
with the function f(x) = x + 1. Can you explain your answer
in words?

34. Tind all functions of the form g(x) = mx + b that commute
with the function f(x) = 2x. Can you explain your answer in
words?

Applications
35-38 = Many fundamental relations express a proportional rela-
tion between two measurements with different dimensions. Find

the slopes and the equations of the relations between the following
quantities.

35. Volume = area x thickness. Find the volume V as a function
of the area A if the thickness is 1.0 cm. -

36. Volume = area x thickness. Find the volume V as a function
of thickness T if the area is 7.0 cm?.
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37. Total mass = mass per bacterium x number of bacteria. Find
the total mass M as a function of the number of bacteria b if
the mass per bacterium is 5.0 x 107° g.

38. Total mass = mass per bacterium x number of bacteria. Find
the total mass M as a function of mass per bacterium m if the
number of bacteria is 10°.

39-42 = A ski slope has a slope of —0.2. You start at an altitude of
10,000 feet.

39. Write the equation giving altitude a as a function of horizontal
distance moved 4.

40. Write the equation of the line in meters.

41, What will be your altitude when you have gone 2000 feet
horizontally?

42. The ski run ends at an altitude of 8000 feet. How far will you
have gone horizontally?

43-46 = The following data give the elevation of the surface of the
Great Salt Lake in Utah.

Year, y Elevation, E (ft)

1965 4193
1970 4196
1975 4199
1980 4199
1985 4206
1990 4203
1995 4200

43. Graph these data.

44, During which periods is the surface elevation changing
linearly?

45, What was the slope between 1965 and 19757 What would
the surface elevation have been in 1990 if things had con-
tinued as they began? How different is this from the actual
elevation?

46. What was the slope during the period between 1985 and
19957 What would the surface elevation have been in 1965 if
things had always followed this trend? How different is this
from the actual elevation?

47-50 = Graph the following relations between measurements of
a growing plant, checking that the points lie on a line. Find the
equations in both point-slope and slope-intercept form. What do
the y-intercepts mean?

Age, a Mass, M Volume, V Glucose Production, G
(days)  (g) {em®) (mg)

05 25 51 00
1.0 40 62 34
15 55 7.3 6.8
20 70 8.4 10.2
25 8.5 95 3.6

30 100 10.6 170

47. Mass as a function of age. Find the mass on day 1.75.
48. Volume as a function of age. Find the volume on day 2.75.

49. Glucose production as a function of mass. Estimate glucose
production when the mass reaches 20.0 g.

50. Volume as a function of mass. Estimate the volume when
the mass reaches 30.0 g. How will the density at that time
compare with the density when a =0.57

51-54 = Consider the data in the following table (adapted from
Parasitoids by H. C. E. Godfray), describing the number of wasps
that can develop inside caterpillars of different weights.

Weight of Caterpillar (g} © Number of Wasps

0.5 80
1.0 115
1.5 150
20 175

51. Graph these data. Which point does not lie on the line?
52. Find the equation of the line connecting the first two points.

53. How many wasps does the function predict would develop in
a caterpillar weighing 0.72 g?

54. How many wasps does the function predict would develop
in a caterpillar weighing 0.0 g? Does this make sense? How
many would you really expect?

55-58 = The world record times for various races are decreasing
at roughly linear rates (adapted from Guinness Book of Records,
1990).

55. The men’s Olympic record for the 1500 meters was 3:36.8
(3 minutes and 36.8 seconds) in 1972 and was 3:35.9 in 1988.
Find and graph the line connecting these. (Don’t forget to
convert everything into seconds.)

\

56. The women’s Olympic record for the 1500 meters was 4:01.4
in 1972 and was 3:53.9 in 1988. Find and graph the line con-
necting these.

57. If things continue at this rate, when will women finish the
race in exactly no time? (Set the time equal to 0 and solve for
the date.) What might happen before that date?

58. If things continue at this rate, when will women be running
this race faster than men? (Set the two speeds equal and solve
for the date.)

Computer Exercises

59. Try Exercise 58 on the computer. Compute the year when the
times will reach 0. Give your best guess of the times in the
year 1900.

60. Graph the ratio of temperature measured in Fahrenheit to
temperature measured in Celsius for —273 < C < 200. What
happens near C = 0? What happens for large and small values
of C? How would the results differ if the zero for Fahrenheit
were changed to match that of Celsius?
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Section 1.3, page 38

1.
7. 23 cmis 0.023 m, so the final height is 1,34 +- 0.023=1.363 m,
11.

15.

341b x160z/Ib x 28.35 g/0z~ 1542.24 .

The area of the square is 1.72 =2 g9 cm?, but the area of the disk i
mrl=m .12 cm? % 3.1415 cm?, The disk has a larger area.
Pressure is force per unit area, or

ML
force -5 _ M
area  [2  [7TZ

Rate of spread of bacteria on a plate has dimensions of 7.2 /T, orarea
per time.

. length .
This checks, because length = fn Y X time.
1me
. length length
This checks, because M =mass x 80
time? time?

The vertical axis is scaled by a value greater than 1.

X
2 3 4 5

-5 4 32 ¢ 1
The horizontal axis is scaled by a value less than 1.

1.4
1.3
1.2
1.1

5 4321 9 I 2 3 4 51
The tree with height 23.1 m will have volume of 7.23.].
0.57~18.14 m>. When the height is 24.1, the volume is 18.93 m3.
The ratio is 18.93/18.14 ~ 1.043.
€ volume is 2.0.0.2-1.5=0.6m3 = 6.0 x 10° cm?. This gives a
mass of 6.0 x 10° g =600 kg.
3200 0.45 g/individual = 1440 g = 1.44 kg.
Let p be the number of petals. Then f = p/4, 50 b — P/2+ 1. When
p=0,b=1; when p=10,b=6; whenp=20,b=11.Thenumber
of bees goes up more slowly as a function of the number of petals.

50 Original graph

40
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0

Number of bees

(=)
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Number of flowers

With new units

40
30
20

Number of bees

[l

0 5 10 15 20 25
Number of petals

Answers to Selected Odd Exercises 805

39. 186,000 mile/s ~ 200,000mi1e/w 200,000 mile/s x 60,000 in. /mile
=12x10"in /57412 x 1010 in./s x 2.5 cm/in.
=3.0x10"%cm/s =30 cm/ns

If acomputer is supposed to do an operation in 0.3 ns, it had better not
need to move information for more than the distance light can travel
in that time, or about 9 cm,

43. Youw'd catch 6 movies per day, or about 2000 per year, for a total of
120,000 in your life,

45. The volume of 2 sphere of radius r is 4773 /37 4r3. The radius of the
cell is 1073 cm, so the volume js about 4 x 10~ cm3. The mass of
a cell is therefore around 4 x 107%¢g.1 weigh about 60 kg, which is

g- The number of cells is then

6x10%g
1o o = 1.5 x 1053 celis,
4% 1079 g/cell x 207 cells

47. The brain is about 2% of my weight and should have about 2% of my
cells, or 3 x 10" cells. The number of neurons is 1 x 10", but the
total number of cells in the brain is between 1 x 1012 and 5 x 1012,
bit higher than the previous estimates.

49. The length of the string would be 27zr & 40840704 km. Adding I m
would make it 40840.705 km. The radius corresponding to this is
1 =40840.705 /27 2 6500.0002 km. The string would be 0.0002 km,
of 0.2 m, above the earth. It is amazing that such a relatively tiny
change in the length of the string would produce such a big effect.

Section 1.4, page 51

1 2 3 4

X
5. The point lies on the line because f@)=2-243=7. The point-
slope form is ) =2(x - 2)+7. Multiplying out gives f(x)=
2x—4+7=2x+3, as it should. R
7. Multiplying out, we find that f(x)=2x + 1. The slope is 2 and the
y-intercept is 1. The original point is (1, 2).

N X
9 In point-slope form, this line has equation Jx)=-2(x — 1) + 6.
Multiplying out, we find that f(x) = —2x + 8. The slope is —2 and

the y-intercept is 8.

10
g dintercept

+ Original point

Sx)
S N e
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11.

13.
15.

17.

19.
23.

25.
21.

29.

33.

The slope between the two points is

changeinoutput  3—-6
=i

In point—slo;ie form, the line has equation f(x)=—-1-(x — 1) +6.In

slope-intercept form, it is f(x) = —x + 7. This line has slope —1 and
y-intercept 7.

slope = -1

change in input

intercept
61 N+ (1,6

4 \
43

2 \
0 . . )

0 2 4 6

X

This is not linear because the input z appears in the denominator.
This is linear because the input g is multiplied only by constants and
has constants added to it.
h(1)=1/5, h(2) =1/10, h(4) = 1/20. The slope between z =1 and
z=21is —1/10, and that between z =2 and z =4 is —1/40.

fx)

04
= 02 ‘ X, slope =-1/10
==X slope=-1/40
0 L 1 ..'“'J 1 N =
0 1 2 3 4 5

2x=T7—-3=4,s0x=4/2=2. Plugging in,2-2 +3=7.
Multiplying out, we get 10x —4=10x+5. This has no
solution. T—b

2x=T7—b,s0x=—.

Q-mx=7T—b,sox= H. There is no solution if m = 2. How-

ever, if m =2 and =17, both sides are identical and any value of x
works.
1 in. =2.54 cm. The slope is 2.54 cmo/in..

Centimeters

Inches
(foo)=(mx+b)+1 and (go flx)=mx + 1) +b=
mx + m + b. These match only if the intercepts are equal, orb + 1 =
m + b. This is true for any b as long as m = 1. In this case, both f
and g have slope 1, meaning that each just adds a constant to its input.
The order cannot matter because addition is commutative.

. The slope is 1.0 cm, and the equation is V = 1.0A.
. The slope is 5.0 x 10~ g, and the equation is M = 5.0 x 10~%.
. The line has slope —0.2 and intercept 10,000. The equation is thus

a =-—0.2d 4+ 10,000.
4210

4205
4200

4195 ¢

Surface elevation (ft)

1965 1970 1975 1980 1985 1990 1995
Year - ’

4190

45, Theslopeis 3 ftevery 5 years. It would have been

47. Using the first two rows for mass, we find a slope of

to4
5 ft higher than the actual level. P10 4208 by 1990,

change in mass _40-25

lope = = =
siope changeinage 1.0—05 ~ >0

Using (1.0, 4.0) as the base point,
M=30(a-10)+40=30a+10.
The y-intercept is 1.0, meaning that the mass was 1.0 g at

This might be the mass of a new seedling. Interpolating at 4 =agie7(5),
M=30-175+1.0=6.25. o
10 .
8 +
+
2 6 +
<
= 4
2 +
0 1 1 1
0 1 2 3
Age

51. The point (2.0, 175) lies below the line.

200

180 .

160

140

120 .

100
80
60

Number N

Weight W

53. N=70(0.72 - 0.5) + 80=954.
55. The time decreases from 216.8 to 215.9 seconds, giving a change of

—0.9 second in 16 years or a slope of —0.9/16 ~ —0.0563 second per
year. In point-slope form, the men’s time m as a function of the year
yis

m = —0.0563(y — 1972) +216.8

Section 1.5, page 64

1. The updating function is f(p;) = p; — 2, and f(5) =3, f(10)=8,
f(15) =13. This is a linear function.

3. The updating function is f(x,) =x2+2, and f(0)=2, f(2)=6.
f(4) = 18. This is not a linear function because the input x, is squared.

5. Denote the updating function by f(v)=1.5v. Then (f o f)(v)=
f(1.5v) = 1.5(1.5v) = 2.25v, 50 v;42 = 2.25v,. Applying f tothe ipl-
tial condition twice gives f(1220) = 1830 and f(1830) == 2745, which
is equal to 2.25 - 1220.

9. Solving for v, gives v; = v,4.1/1.5. Then vy = 1220/1.5=813.3.

X

(fof)(x)=f(f<x>>=f<lfrx)=f§‘

1+
X
o l+x _ X
T4+ T 142
1+x

To find the inverse, set y = f(x) and solve

_ X
r= 14x
(I+x)y=x
y+xy=x
y=x—xy
2
1—-y

Therefore, f~1(y) = T%—y—




