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his chapter introduces the main tools needed to use mathematics to study
biology: functions and modeling. Biological phenomena are described by mea-
surements, a set of numerical values with units (like degrees or centimeters).
Many relations between measurements are described by functions, which take one
value as an input and return another as an output. We review the important functions
used to describe biological systems: linear, trigonometric, power, logarithmic, and ex-
ponential functions.

Modeling is the art of taking a description of a biological phenomenon and con-
verting it into mathematical form. Living things are characterized by change. One goal

. of modeling is to quantify these dynamics with an appropriate function. By using our

understanding of the system and carefully following how a set of basic measurements
change step by step, we will learn to derive an updating function that models the
change in a discrete-time dynamical system. We will follow this process to derive
models of bacterial population growth, gas exchange in the lung, and genetic change
in a population of competing bacteria. We will develop a set of algebraic and graphi-
cal tools to deduce the dynamics that result from a particular discrete-time dynamical
system.
Throughout this chapter, keep the following questions in mind:

» What biological process are we trying to describe?

» What biological questions do we seek to answer?

» What are the basic measurements and their units?

= What are the relationships between the basic measurements?

= What do results mean biologically?

IEER Biology and Dynamics

Living systems, from cells to organisms to ecosystems, are characterized by change
and dynamics. Living things grow, maintain themselves, and reproduce. Even remaining
the same requires dynamical responses to a changing environment. Understanding the
mechanisms behind these dynamics and deducing their consequences is crucial to
understanding biology. This book uses a dynamical approach to address questions
about biology.

This dynamical approach is necessarily mathematical because describing dynamics
requires quantifying measurements. What is changing? How fast is it changing? What
is it changing into? ’

In this book, we use the languagé of mathematics to describe quantitatively the
working of living systems and develop the mathematical tools needed to compute
how they change. From measurements describing the initia] state of a system and
a set of rules describing how change occurs, we will attempt to predict what will
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FIGURE 1.1.1

The workings of applied mathematics:
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happen to the system. For example, using the position and velocity of a planet (the

- -initial state) and the laws of gravitation and inertia (the set of rules), Isaac Newton

invented the mathematical methods of calculus to predict the planet’s position at any
future time. This example illustrates the approach of applied mathematics, the use of
mathematics to answer scientific questions (Figure 1.1.1). Applied mathematics begins
with scientific observations and questions, perhaps about the position of a planet, which
are then quantified into a model. When possible, mathematical methods are developed
to answer the question. In other cases, computers are used to simulate the process and
find answers in particular cases.

The steps in applied mathematics

Step Definition
Quantify the basic measurements. The numerical values that describe the system
Describe a dynamical rule. A description of how the basic measurements change
Develop a model. A mathematical translation of the observations
Find a solution. Use of mathematical methods to predict behavior
Write a simulation. Use of a computer to predict behavior

This book is organized around three basic biological processes: growth, mainte-
nance, and replication. Mathematical methods have contributed significantly to the
understanding of each of these three processes. After briefly describing these contribu-
tions, we will outline the different types of models and mathematics to be used in this

‘book.

Growth: Models of Malaria

Early in this century, Sir Ronald Ross discovered that malaria is transmitted by cer-
tain types of mosquitos. Because the disease was (and remains) difficult to treat, one
promising strategy for control seemed to be reduction of the number of mosquitos.
Many people thought that all the mosquitos would have to be killed to eradicate the dis-
ease. Because killing every single mosquito was impossible, it was feared that malaria
might be impossible to control in this way.

Ross decided to use mathematics to convince people that mosquito control could
be effective. The problem can be formulated dynamically as a problem in population
growth. His first step was to quantify the basic measurements—in this case, the
numbers of people and mosquitos with and without malaria. The dynamical rule

describes how these numbers change. Ross knew that an uninfected person can become

infected upon being bitten by an infected mosquito and that an uninfected mosquito can
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The dynamics of malaria

1.1 Biology and Dynamics 3

Healthy

- Healthy
people

mosquitos i i
infection

infection .
from bitin, from being ,
& bitten by a

a sick persion . .
sick mosquito
recovery A 7 recovery
~ -

Sick
mosquitos

- ~ Sick
people

be infected when it bites an infected person (Figure 1.1.2). From these assumptions,
he built a mathematical model describing the population dynamics of malaria. With
this model he proved that the disease could be eradicated without killing every single
mosquito (we will study a simple version of this model in Section 5.5). We see evidence
of this today in the United States, where malaria has been virtually eliminated even
though the mosquitos capable of transmitting the disease persist in many regions.

Many dynamical biological processes besides population dynamics are forms of
growth. Growth in size is ubiquitous. One might use measurements of size (such as
weight, height, or stomach volume) and a rule describing change in size (increase in
weight due to large stomach volume) to predict the size of an organism over time.
For example, one organism might add a constant amount to its weight every day, and
another might add a constant fraction to its weight every day. '

Organisms can also grow in complexity. For example, a tree can add branches as
well as increase in size. The quantitative description of the system might include the
number of branches and their ages, sizes, and pattern. The dynamical rule might give
the number of new branches produced each day, the probability that a given branch
divides during the next month, or the rate at which new branches are formed. From
the description and rule, we could compute the number of branches as a function of
age.

Maintenance: Models of Neurons

Neurons are cells that transmit information throughout the brain and body. Even the
simplest neuron faces a challenging task. It must be able to amplify an appropriate
incoming stimulus, transmit it to neighboring neurons, and then turn off and be ready
for the next stimulus. This task is not as simple as it might seem. If we imagine the
stimulus to be an input of electrical charge, a plausible sounding rule is “If electrical
charge is raised above a certain level, increase it further”” Such a rule works well for
the first stimulus but provides no way for the cell to turn itself off. How does a neuron
maintain functionality?

In the early 1950s, Hodgkin and Huxley used their own measurements of neurons
to develop a mathematical model of dynamics to explain the behavior of neurons. The
idea, explained in detail in Section 5.8, is that the neuron has fast and slow mechanisms
to open and close specialized ion channels in response to electrical charge (Figure 1.1.3).
Hodgkin and Huxley measured the dynamical behavior of these channels and showed
mathematically that their mechanism explained many aspects of the functioning of
neurons. They received the Nobel Prize in physiology or medicine for this work in
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FIGURE 1.1.3
The dynamics of a neuron
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1963 and, perhaps even more impressively, developed a model that is still used today
to study neurons and other types of cells.

In general, maintenance of biological systems depends on preserving the distinction
between inside and outside while maintaining flows of necessary materials from outside
to inside, and vice versa. The neuron maintains itself at a different electrical potential

from the surrounding tissue in order to be able to respond, while remaining ready to

exchange ions with the outside to create the response. As applied mathematicians, we
quantify the basic measurements, the concentrations of various substances inside and
outside the cell. The dynamical rules express how concentrations change, generally
as a function of properties of the cell membrane. Most commonly, the rule describes
the process of diffusion, movement of materials from regions of high concentration to
regions of low concentration.

Replication: Models of Genetics

Although Mendel’s work on genetics from the 1860s had been rediscovered around
1900, many biologists in the following decades remained unconvinced of his proposed
mechanism of genetic transmission. In particular, it was unclear whether Darwin’s
theory of evolution by natural selection was consistent with this, or any other, proposed
mechanism.

Working independently, biologists R. A. Fisher, J. B. S. Haldane, and Sewall Wright
developed mathematical models of the dynamics of evolution in natural populations.
These scientists quantified the basic measurement—in this case, the number of indi-
viduals with a particular allele (a version of a gene). Their dynamical rules described
how many individuals in a subsequent generation would have a particular allele as
a function of numerous factors, including selection (differential success of particular
types in reproducing) and drift (the workings of chance). They showed that Mendel’s
ideas were indeed consistent with observations of evolution. This work led to the devel-
opment of methods of genetic analysis used to analyze DNA sequences today. We study
a simple model of selection in Section 1.10 and examine some of the consequences of
Mendel’s laws in Section 6.2.

Types of Dynamical Systems

We will study each of the three processes—growth, maintenance, and replication—with
three types of dynamical systems: discrete-time, continuous-time, and probabilistic
systems. The first two types are deterministic, meaning that the dynamics include no
chance factors. In this case, the values of the basic measurements can be predicted
exactly at all future times. Probabilistic dynamical systems include chance factors, and
values can be predicted only on average.

Discrete-time dynamical systems describe a sequence of measurements made at equally
spaced intervals (Figure 1.1.4). These dynamical systems are described mathematically

- by arule that gives the value at one time as a function of the value at the previous time.
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For example, a discrete-time dynamical system describing population growth is a rule
that gives the population in one year as a function of the population in the previous
year. A discrete-time dynamical system describing the concentration of oxygen in the
lung is a rule that gives the concentration of oxygen in a lung after one breath as
a function of the concentration after the previous breath. A discrete-time dynamical
system describing the spread of a mutant allele is a rule that gives the number of
mutant alleles in one generation as a function of the number in the previous generation.
‘Mathematical analysis of the rule can make scientific predictions, such as the maximum
population size, the average concentration of oxygen in the lung, or the final number
of mutant alleles. The study of these systems requires the mathematical methods of
modeling (Chapter 1) and differential calculus (Chapters 2 and 3).

Continuous-Time  Continuous-time dynamical systems, usually known as differential equations,
Dynamical Systems  describe measurements that are collected continuously (Figure 1.1.5). A differential
equation consists of a rule that gives the instantaneous rate of change of a set of
measurements. The beauty of differential equations is that information about a system
at one time is sufficient to predict the state of a system at all future times. For example,
a continuous-time dynamical system describing the growth of a population is a rule that
gives the rate of change of population size as a function of the population size itself.
The study of these systems requires the mathematical methods of integral calculus
(Chapters 4 and 5).

Probabilistic Probabilistic dynamical systems describe measurements, in either discrete or contin-
Dynamical Systems uous time, that are affected by random factors. In the discreté time case, data are
collected at equally spaced time intervals (Figure 1.1.6). The rule indicating how the
measurements at one time depend on measurements at the previous time includes ran-
dom factors. Rather than knowing the next measurements with certainty, we know only
a set of possible outcomes and their associated probabilities and can therefore predict
the outcome only in a probabilistic or statistical sense. For example, a probabilistic
dynamical system describing population growth is a rule that gives the probability
that a population has a particular size in one year as a function of the population in
the previous year. The study of such systems requires the mathematical methods of
probability theory (Chapters 6 and 7).

Quantitative science is built upon measurements. Mathematics provides the notation
for describing and thinking about measurements and relations between them. In fact,
the development of clear notation for measurements and relations was essential for the
progress of modern science. In this section, we develop the algebraic notation needed to
describe measurements, introducing variables to describe measurements that change
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Definition 1.1

Example 1.2.1

0.0 1.00
1.0 1.24
2.0 1.95
3.0 3.14
4.0 4.81
5.0 6.95
6.0 9.57

Ordered pair (a, v)
™Y represents point with
input ¢ and output v

Origin

Input

Example 1.2.2

during the course of an experiment and parameters that remain constant during an
experiment but can change between different experiments. The most important types of
relations between measurements are described with functions, where the value of one
can be computed from the value of the other. We will review how to graph functions,
how to combine them with addition, multiplication, and composition, and how to
recognize whether a function has an inverse and how to compute it.

Describing Measurements with Variables,
Paramete_rs, and Graphs

Algebra uses letters or other symbols to represent numerical quantities.

A variable is a symbol that represents a measurement that can change during the course

of an experiment. B

A simple experiment measures how the population of bacteria in a culture changes
over time. Because two changing quantities are being measured (time and bacterial
population), we need two variables to represent them. In applied mathematics, we
choose variables that remind us of the measurements they represent. In this case, we
can use ¢ to represent time and b to represent the population of bacteria. Because
there are fewer letters than quantities to be measured, the same letter can be used to
represent different quantities in different problems. Always define variables explicitly
when writing a model, and be sure to check their definitions when reading one.

Describing Bacterial Population Growth

The table lists measurements of bacterial population size (in millions), denoted by the
variable b, at different times ¢ after the beginning of an experiment. Y

Thinking about data is often easier with a graph. Graphs are drawn on the Carte-
sian coordinate plane—that is, by using two perpendicular number lines called axes to
describe two numbers (Figure 1.2.7). The input is placed on the horizontal axis (some-
times called the x-axis) and the output is placed on the vertical axis (sometimes called
the y-axis). The crossing point of the two axes is the origin. The axes are labeled with
the variable name, the measurement it represents, and often the units of measurement
(Section 1.3). Never draw a graph without labeling the axes.

<2 107 (6.0,9.57)e
ki (5.0, 6.95)e
~— 6 -
8 o (4.0,481)
£ 4f
2 (0.0, 1.00) *(3.0,3.14)
FIGURE 1.2.7 FIGURE 1.2.8 & 207, *@20,19)
The components of a Results of bacterial ® 0 (1.0, 1.24)
graph using growth experiment: 0 1 2 3-4 5 6
Cartesian coordinates Cartesian coordinates t, time (h)

Graphing Data Describing Bacterial Population Growth

To graph the six data points in Example 1.2.1, plot each point by moving a distance ¢
to the right of the origin along the horizontal axis and a distance up from the origin
along the vertical axis (Figure 1.2.8). For example, the data point at  =4.0 is graphed
by moving a distance 4.0 to the right of the origin on the horizontal axis and a distance
- 4.81 up from the origin on the vertical axis.
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Describing the Dynamics of a Bacterial Pbpulaﬁon

Suppose several bacterial cultures with different initial population sizes are grown in
controlled conditions for one hour and then carefully counted. The population size acts
as the basic measurement at both times. We must use different variables to represent
these values, and we choose to use subscripts to distinguish them. In particular, we let b;
(for the initial population) represent the population at the beginning of the experiment,
and welet b ¢ (for the final population) represent the population at the end. The following
table and Figure 1.2.9 present the results for six colonies.

r

Colony Initial Population, b; Final Population, by

1 0.47 094
2 3.30 660
3 0.73 146
4 2.80 ' 5.60
5 7150 3.00
6 0.62 1.24

Experimenté of this sort form the basis of discrete-time dynamical systems (Section 1.5)
and are the central topic of this chapter.

Experiments are done in a particular set of controlled conditions that remain
constant during the experiment. However, these conditions might differ between
experiments.

A parameter is a symbol that represents a measurement that does not change during
the course of an experiment. -

Different experiments tracking the growth of bacterial populations over time might
take place at temperatures that are constant during an experiment but differ between
experiments. The temperature, in this case, is represented by a parameter. Parameters,
like variables, are represented by symbols that recall the measurement. We canuse T to
represent temperature. In applied mathematics, capital letters (like T') and small letters
(like ) are often used in the same problem to represent different quantities.

Variables and Parameters

Suppose a biologist measures growing bacterial populations at three different temper-
atures. During the course of each experiment, the temperature is held constant, while
the population changes.

t bwhen T=25°C phwhen T=235°C bwhen T=45°C

0.0 1.00 - 1.00 1.00
1.0 1.14 145 093
2.0 1.30 2.10 0.87
3.0 1.48 3.03 0.81
40 1.68 439 . 0.76
5.0 1.92 6.36 0.70
6.0 2.18 9.21 0.66

Figure 1.2.10 compares the population sizes of the three populations. The population
grows most quickly at the intermediate temperature of 35°C and declines at the high
temperature of 45°C. - : ry




FIGURE 1.2.10

Results of bacterial growth experiment
at three temperatures

Example 1.2.5

25.0 2.18
25.0 2.45
25.0 2.10
25.0 3.03
35.0 9.21
35.0 7.39
35.0 6.36
45.0 0.66
45.0 0.93
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Describing Relations Between Measurements
with Functions

Numbers describe measurements, and functions describe relations between measure-
ments. For example, bacterial population growth relates two measurements, denoted
by the variables ¢ and b. In general, a relation between two variables is the set of all
pairs of values that occur.

A Relation Between Temperature and Population Size

Suppose the temperature 7' and final population size P are measured for 9 populations,
with the results shown in the table and Figure 1.2.11. These values could result from
repeating the experiment in Example 1.2.4 several times and measuring the population
atr =6.0.

0}
+
8.
£ +
5 6 +
&
[=¥
g4
= +
I -
. , +
25 35 45 FIGURE 1.2.11

T, temperature (°C) Final population size at three temperatures

Different values of the population P are related to each temperature, perhaps, because
of differences in experimental conditions. A

A function describes a specific, and important, type of relation. A function is a
mathematical object that takes something (such as a number) as input, performs an oper-
ation on it, and returns a unique new object (such as another number) as output. The input
is called the argument (or the independent variable) and the output is called the
value (or the dependent variable) (Figure 1.2.12). The set of all possible things
that a function can accept as inputs is called the domain. The set of all possible
things that a function can return as outputs is called the codomain, and the set of all
things the function does return as outputs is called the range.
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Plotting a function from its formula
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Data That Can Be Described by a Function

The data in Example 1.2.1 can be described by a function. Each value of the input ¢ is
associated with only a single value of the output b. ;

Graphing a Function from its Formula

To graph a function from a formula, it is easiest to start by plugging in some represen-
tative arguments. Suppose we wish to graph the function f(x)=4+x—x*forx >0
(restricting the domain to positive numbers and zero). Evaluating the function at the
arguments 0, 1, 2 and 3, we find

fO)=4+0-0>=4

fH=4+1-1"=4

f)y=4+2-2"=2

fG)=4+3-3"=-2
We plot the four ordered pairs (0,4), (1, 4), (2,2) and (3, —2), and connect them
with a smooth curve (Figure 1.2.13). This is precisely the method that calculators and

computers use to plot functions, except that they generally use 20 or more points to
make a graph. :

X

One of the great advantages of functional notation is that functions can be evaluated
at arguments that consist of parameters and variables (combinations of letters). To do so,
replace the basic variable in the formula with the new argument, however complicated.

Evaluating a Function at a Complicated _Argurhent

To evaluate the function f(x) =4+ x — x? (Example 1.2.7) at the more complicated
argument 2z + 3, replace all occurrences of x in the formula with the new argument
2z + 3, obtaining

Rz +3) =4+ (2z+3) — 2z+3)
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Example 1.2.9

Example 1.2.10

Animal Number of Legs

Ant 6
Crab 10
Duck

Fish
Human

Mouse

0 BN O N

Spider

FIGURE 1.2.14

Numbers of legs on various organisms,
plotted on a graph

To avoid confusion, place the new argument in parentheses wherever it appears. Al-
though doing so is not always necessary, this expression can be multiplied out and
simplified as follows:

fQRz+3)=4+ (2z+3) — 2z + 3)* original expression
=4+ 2z+3)— (4z2 + 12z + 9) expand the square
=44+274+3—-4z2-12z-9 multiply negative sign through
=44+3-9427 12747 group like terms
=-2—10z —47° combine like terms

A Function Describing Bacterial Population Growth

The population in Examples 1.2.1 and 1.2.2 obeys the formula

2

t
b(t)=—+1.0
€2 4‘2+

The population size b is a function of the time ¢. The argument of the function b is ¢, the

time after the beginning of the experiment. The value of the function is the population
of bacteria. The formula summarizes the relation between these two measurements:
The output is found by squaring the input, dividing by 4.2, and then adding 1.0.

The function b takes time after the beginning of the experiment as its input. Because
negative time does not make sense in this case, the domain of this function consists of
all positive numbers and zero. We write that

b is defined on the domain ¢z >0

Because the function b returns population sizes as output, the codomain of b also
consists of all positive numbers and zero. We write that

b has codomain b >0
The range is b > 1. \

A Function with Non-Numerical Domain

Consider the adjacent table of data. These data describe a relation between two obser-
vations: the identity of the species and the number of legs. We can express this as the
function L (to remind us of legs). According to the table,

L(Ant)=6, L(Crab)=10

and so forth. The domain of this function is “types of animals,” and the codomain is the
non-negative integers (0, 1, 2, 3, .. .). We plot the input (“‘animal”) along the horizontal

axis and the output (“number of legs”) on the vertical axis (Figure 1.2.14).
10+ +
8r +

®

= 6 o+

(=]

2

g 4 +

4
2r + +
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Ant Crab Duck Fish Human Mouse Spider
Animal
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Time Population Size
0 0.86
2 1.69
4 298
6 449
8 5.69
10 6.17
12 5.95
14 5.29
16 441
18 3.50

20 2.67
22 1.96
24 1.41

Example 1.2.12

FIGURE 1.2.16

A bacterial population plotted from
a verbal description
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It is important to realize that the graph of a function is not the function, just as the
spot labeled 2 on the number line is not the number 2 and a photograph of a dog is not
a dog. The graph is a depiction of the function.

Functions can be described in four ways: (1) numerically (by means of a table),
(2) algebraically (as a formula), (3) pictorially (as a graph), and (4) verbally. Biologists
or applied mathematicians need to learn to use all four methods and to translate fluently
between them. In particular, we must know how to translate graphical information into
words that communicate key observations to colleagues and the public.

Describing Results in Graphs and Words

A more complicated pattern of change in population size is presented in the adjacent
table.

Bacterial population (millions)
+
+

0 5 10 15 20 25
Time (h)

FIGURE 1.2.15

The population of bacteria in a culture

We can see (more easily from the graph, Figure 1.2.15, than from the table) that
the bacterial population grew during the first ten hours and declined thereafter. The
population reached a maximum at time 10. This graph and its description can be used
to understand the results even without a mathematical formula.

Sketching a Graph from a Verbal Description

Conversely, it can be useful to sketch a graph of a function from a verbal description.

Suppose we are told that a population increases between time 0 and time 5, decreases
nearly to 0 by time 12, increases to a higher maximum at time 20, and goes extinct at time:
30. A graph (Figure 1.2.16) translates this information into pictorial form. Because we

Second
peak

Population size

First
peak

Time

were not given exact values, the graph is not exact. It instead gives a qualitative picture
of the results.

Not all relations are described by functions. A function must give a unique out-
put for a given input. Relations between measurements can be more complicated.
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FIGURE 1.2.17

The vertical line test

Example 1.2.13

Example 1.2.14
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The circle describes a relation that is
not a function
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2. -1 0 1 2
Input

The vertical line test provides a graphical method to recognize relations that cannot
be described by functions.

-The Vertical Line Test A relation is not a function if some vertical line crosses the

graph two or more times.

In Figure 1.2.17, there are three outputs associated with the input 0.2: 1.12, 1.79,
and 3.09.

There is nothing wrong with relations that cannot be described by functions. Ex-
periments, even when performed under apparently identical conditions, rarely produce
identical results. As we will see when we study statistics (Chapter 8), functions are a
useful mathematical idealization of the expected or average result of an experiment.

A Mathematical Formula Describing a Relation That Is Not a Function

The set of solutions for x and y satisfying the equation

¥y’ =1
is the circle of radius 1 centered at the origin (Figure 1.2.18). Each value of x between
x =—1and x =1 is associated with two different values of y. For example, the value
x = 0.6 is associated with both y =0.8 and y = —0.8. A

A Relation That Is Not a Function

Suppose several bacterial cultures with different initial population sizes are grown in
controlled conditions for 1 hour, as in Example 1.2.3, with the results shown in the
accompanying table and in Figure 1.2.19.

Colony Initial Population, b; Final Population, by

1 0.5 0.9
2 05 - 1.0
3 1.0 22
4 1.0 1.9
5 1.5 3.0
6 L5 2.8

Each initial population was used twice, with similar but not identical results. We cannot
treat final population size as a function of initial population size.

Combining Functions

Mathematics makes complicated problems simpler by building complicated struc-
tures from simple pieces. Understanding each of the simple pieces and the rules for



FIGURE 1.2.19

Bacterial growth experiment where
results are not a function

Definition 1.3

Definition 1.4

Example 1.2.15

FIGURE 1.2.20
Adding functions
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combining them makes it possible to analyze and understand a huge array of compli-
cated relations. The most 1mportant ways to combine functions are as sums, products,
and composntlons

Adding Functions The height of the graph of the sum of two functions is the height of
the first plus the height of the second. Geometrically, we can graph each of the pieces
and add them together point by point.

Algebraically, the value of the function f + g is computed as the sum of the values
of the functions f and g.

The sum f + g of the functions f and g is the function defined by
(f +8)(x) = f(x) + g(x) &

Multiplying Functions The value of the product f - g is computed as the product of
the values of the functions f and g.

The product f - g of the functions f and g is the function defined by
(f-8)(x0) = flx) - g(x) B

We use the dot - rather than the times sign x to indicate multlphcatlon to avoid confusing
the latter with the variable x.

Adding and Multiplying Functions

Consider the functions f(x) and g(x) with formulas
fx)=4+x—x?
g(x) =2x

graphed in Figures 1.2.20 and 1.2.21. The table on p. 14 computes the values of f + g
and f - g at several points.

Z) I £

5 L

: (f+ &)%)
2

1

0
-1t &)
2

0 1 2 3
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FIGURE 1.2.21 0 1 2 3
Multiplying functions x
x Fix) gix) (f+glx)  (f-glix)
0 4 0 4 0
0.5 4.25 1 5.25 4.25
1 4 2 6 8
1.5 3.25 3 6.25 9.75
2 2 4 6 8
25 0.25 5 5.25 1.25
3 -2 6 4 —12
A

Example 1.2.16 Adding Biological Functions

If two bacterial populations are separately counted, the total population is the sum of the
two individual populations. Suppose a growing population is described by the function

bi(ty=t*+1

and a declining population is described by the function

by ()=

142t

The individual population sizes and their sum are computed in the following table and
graphed in Figure 1.2.22.

t bi{t}  baft)  {b1+ by)lt)

0.00 - 1.00 5.00 6.00
0.50 1.25 2.50 3.75
1.00 2.00 1.67 3.67
1.50 3.25 1.25 4.50
2.00 5.00 1.00 6.00
2.50 725 0.83 8.08
3.00 10.00 0.71 10.71

Example 1.2.17 Multiblying Biological Functions

Many quantities in science are built as products of simpler quantities. For example, the
mass of a population is the product of the mass of each individual and the number of
individuals. Consider a population growing according to

2

t
=-—+1.
b(t) 12 +1.0



FIGURE 1.2.22
Adding biological functions
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FIGURE 1.2.23
Mauttiplying biological functions

t b 72 u-b
0.0 1.00 1.00 1.00
1.0 1.24 0.50 0.62
2.0 1.95 0.33 0.65
3.0 3.14 0.25 0.79
4.0 481 0.20 0.96
5.0 6.95 0.17 1.16
6.0 9.57 0.14 1.37

Definition 1.5

Example 1.2.18
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(Example 1.2.9). Suppose that as the population gets larger, the individuals become
smaller. Let u(z) (the Greek letter mu)! represent the mass of an individual at time f,
and suppose that

1
fy=——
w(t) =7 T
We can find the total mass by multiplying the mass per individual by the number of
individuals, as in the table. (See also Figure 1.2.23.) )
The total mass of this population initially declines and then increases after about
2 hours. S Al

Composition of Functions The most important way to combine functions is through
composition, where the output of one function acts as the input of another.

The composition f o g of functions f and g is the function defined by
(f 0 8)(x) = flg(x))

We say “ f composed with g evaluated at x” or “f of g of x.” The function f is called
the outer function, and g is called the inner function. See Figure 1.2.24. B

(1.2.1)

Computing the Value of a Functional Composition

Consider the functions f(x) and g(x) from Example 1.2.15,

fx)=4+x— x?
glx)=2x

! Applied mathematicians often use Greek letters to represent variables and parameters. The Greek
alphabet, along with pronunciations of the letters, is given on the inside back cover.
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FIGURE 1.2.24

Composition of functions

Example 1.2.19

inner function outer function

8 f

NI AR

~_ 7

fog

composition

To find the value of the composition f o g at x =2, we compute

(f o ©)(2) = f(g(2)) definition of composition
= f(2-2) substitute 2 for x in the formula for g(x)
= f@&) compute 2-2=4

=44+4—42 substitute 4 for x in the formula for f{x)

=-8 compute the numerical answer

Similarly, to find the value of the composition g o f at x =2, we compute

(g o HQ2)=2g(f(2)) definition of composition
= g(4 +2— 22) substitute 2 for x in the formula for f(x)
=g(2) compute 4 +2 — 22 =2
=2-2 substitute 2 for x in the formula for g(x)
=4 compute the numerical answer A

Computing the Formula of a Functional Composition

Consider again the functions f(x) and g(x) from Example 1.2.18,

fx)=4+x— x2

g(x)=2x
with domains consisting of all numbers. To find the composition f o g, plug the defi-
nition of the inner function g into the formula for the outer function f,or

(f o g)(x) = fgx)) the definition
= f(2x) write out the formula for the inner function g(x)
=4+ (2x) — (2x)*  plug the formula for g(x) into the outer function f
=4+ 2x — 4x? expand the square
This is the same procedure we used to compute the value of the function f(x) ata
complicated argument in Example 1.2.8. In Example 1.2.18 we computed that
(f 0 g)(2)=—8. If we evaluate by substituting into the formula (f o g)(x) =4+
2x — 4x2, we find
(fog)2)=4+2-2—-4-22=-8

matching our earlier result.
We find the composition g o f by following the same steps, or

(go Hx)=g(f(x) the definition
= g(4 +x— x2) write out the formula for the inner function f(x)
= 2(4 +x— x2) plug the formula for f(x) into the outer function g
=8+ 2x — 2x? multiply through
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FIGURE 1.2.25
Composing biological functions
The key step is substituting the output of the inner function into the outer function. In
Example 1.2.18 we computed that (g o )(2) =4. If we evaluate by substituting into
the formula (g o f)(x) =8 + 2x — 2x?, we find
(go f)2)=8+4+2-2—-2-2=4

again matching our earlier result.

Example 1.2.19 illustrates an important point about the composition of functions:
the answer is generally different when the functions are composed in a different order.
If f o g=g o f, we say that the two functions commute. When the two compositions
do not match, we say that the two functions do not commute. Without a good reason,
never assume that two functions commute. If you think of functions as operations, this
should make sense. Sterilizing the scalpel and then making an incision produces a quite
different result from making an incision and then sterilizing the scalpel.

Example 1.2.20 Composition of Functions in Biology

Numbers of bacteria are usually measured indirectly, by measuring the optical density of
the medium. Water allows through less light as the population becomes larger. Suppose
that the optical density p is a function of the bacterial population size b with formula

1
t  blt) (b(t)) b)=—-—-
P =175

0.00 1.00 0500
050 106 0486
100 124 0447
150 154  0.394 ,
200 195 0339 o(b(1)) = p<4t—2 + 1.0) = _[21_
250 249 0287 : I+ - +1.0
300 314 0241

illustrated in Figure 1.2.25a. Then the optical density as a function of time is the

2
composition of the function p(b) with the function b(z). Suppose that b(¢) = 5 +1.0
as in Example 1.2.9 (Figure 1.2.25b). Then. '

with values given in the table-and graphed in Figure 1.2.25c¢.

The composition b o p is not merely different from the composition p o b, it does
not even make sense. The function b accepts as input only the time ¢, not the optical
density returned as output by the function p. We will study this issue more carefully in
Section 1.3. A

Finding Inverse Functions

A function describes the relation between two measurements and- gives us a way to

compute the output from a given input. Sometimes we wish to reverse the process and
; figure out which input produced a given output. The inverse function, when it exists,
i? provides a way to do this.




il Example 1.2.21

Example 1.2.22

Definition 1.6

f—l
FIGURE 1.2.26

The action of a function and its inverse

»  Algorithm 1.1
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A Simple Inverse Operation

What number, when doubled, gives 8? It is not difficult to guess that the answer is 4.
However, we can formalize this process using functional notation. Let f(x) =2x be
the function that doubles. Our problem is then solving

fx)=8
Using the formula for f(x), we find

2x =8  the equation to be solved
x=4  divide both sides by 2 n

A Simple Inverse Function

Example 1.2.21 undoes the act of multiplying by 2. What function does this in general?
If we set y = f(x), we would like to know what value of x produces a given y in general,
without picking a particular value such as y = 8. We follow the same steps,

2x=y the equation to be solved

X = % divide both sides by 2

The function f~!, which is read “ f inverse” and defined by

f‘l(y)=%

is the inverse of f; the function that undoes what f did in the first place. Whereas
f takes a number as input and returns double that number as output, ! takes the
doubled number as input and returns the initial number as output.

We can use this inverse like any other function, finding that

8
-1
8)y==-=4
fo® =7
as we found in Example 1.2.21. n

The definition of an inverse function in general states precisely that the inverse
undoes the action of the original function.

The function f~! is the inverse of f if

@) =x

and
FH(fx) =x
Each of f and f~! undoes the action of the other (Figure 1.2.26).

The steps for computing the inverse of a function can be summarize in an algorithm,
which can be thought of as a recipe. This book contains many algorithms for solving
particular problems. As with a recipe, following an algorithm without thinking about
the steps can lead to disaster. Unlike most algorithms in this book, this one is not
guaranteed to work.

Finding the Inverse of a Function
1. Write the equation y = f(x).
2. Solve for x in terms of y.
3. The inverse function is the operation done to y.

It may look odd to have a function defined in terms of ¥. Do not change the letters
around to make it look normal. In applied mathematics, different letters stand for
different things and resent having their names switched as much as we do.



FIGURE 1.2.27

Going backwards with the inverse
function

Example 1.2.23

Example 1.2.24
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This algorithm may fail in two different ways: a function might not have an inverse,
or the inverse might be impossible to compute. There is a useful way to recognize a
function that fails to have an inverse. An operation can be undone only if you can
deduce the input from the output. If any particular output is associated with more than
one input, there is no way to tell where you started solely on the basis of where you
ended up.

Finding a More Complicated Inverse

Consider the population that changes in accordance with the equation

2

t
b(t)=—+1.0
() 4.2+

(Example 1.2.9 and Figure 1.2.27a). If we wish to find the time ¢ from the population
b, we must solve for z.

)
12 +1.0=>b the equation to be solved for
2
i b—1.0 subtract 1.0 from both sides
12 =4.2(b—1.0) multiply both sides by 4.2

t =./42(b—1.0) take the positive square root of both sides because 7 > 0

This function is graphed in Figure 1.2.27b. The last step requires that b > 1.0 because
we cannot take the square root of a negative number. For example, the time associated

with a population of 5.0 is
t=+/4.2(5.0—1.0)~4.1 A
A Relation That Cannot Be Inverted

Consider the data in the following table.

Initial Mass Final Mass Initial Mass Final Mass

{g) {g) {g) {g)
1.0 7.0 9.0 20.0
20 12.0 10.0 18.0
3.0 16.0 11.0 15.0
40 190 120 12.0
5.0 20 13.0 9.0
6.0 23.0 14.0 6.0
70 23.0 15.0 3.0

8.0 22.0 16.0 " 1.0



FIGURE 1.2.28 .

A relation with no inverse

Horizontal line intersects
graph at three points

Output

Input

FIGURE 1.2.29
The horizontal line test

Example 1.2.25

FIGURE 1.2.30
The inverse of x? is defined when x >0

Example 1.2.26

FIGURE 1.2.31
A function with no inverse
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Suppose you were told that the mass at the end of the experiment was 12.0 grams. Initial
masses of 2.0 and 12.0 grams both produce a final mass of 12.0 grams. You cannot tell

~ whether the input was 2.0 or 12.0. This function has no inverse (Figure 1.228). I\

This reasoning leads to a useful graphical test for whether a function has an inverse.

The Horizontal Line Test A function has no inverse if it takes on the same value twice.
This can be established by graphing the function and checking whether the graph
intersects any horizontal line two or more times (Figure 1.2.29).

One can think of functions without inverses as losing information over the course
of the experiment: things that started out different ended up the same.

A Function That Has an Inverse on Part of Its Domain

Consider the function g(x) = x2 defined for x > 0 (Figure 1.2.30). We find the inverse
f~(y) by solving y = x? for x.

fx
O == N WA LN~ 00O
.

1. Set y =x2

2. Then x =,/ because x > 0.

3. 7' =47
A Function Without an Inverse.

Consider the function f(x)=4+x — x? (used in Example 1.2.7). We found that the
inputs x = 0 and x = 1 both produce the same output of f(x) = 4 (Figure 1.2.31). If the

r fails horizontal line test

g




Example 1.2.27

FIGURE 1.2.32

A function with an inverse that is
impossible to compute

Summary
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output is 4, it is impossible to tell which was the input. A graph shows that this function
fails the horizontal line test at almost all values in its range.

In addition, Algorithm 1.1 might fail because the algebra is impossible. Step 2
requires solving an equation. Many equations cannot be solved algebraically.

A Function with an Inverse That Is Impossible to Compute Algebraically

Consider the function
fx)= X 4x+1

The graph satisfies the horizontal line test (see Figure 1.2.32). We try to find the inverse
£ 1(y) as follows:

1. Sety=x>+x+ 1.

2. Try to solve for x. Even with the cleverest algebraic tricks, this is impossible (a
remarkable theorem, proved by the French mathematician Evariste Galois
when he was just 20 years old, assures us that there is no formula for the
solution of a general polynomial with degree greater than 4).

3. Give up. A

In mathematical modeling, however, it is often more important to know that some-
thing exists (such as the inverse in this case) than to be able to write down a formula.
We will later learn a method to compute this inverse numerically, with a computer
(Section 3.8).

Quantitative science is built upon measurements, and mathematics provides the methods
for describing and thinking about measurements and relations between them. Variables
describe measurements that change during the course of an experiment, and param-
eters describe measurements that remain constant during an experiment but might
change between different experiments. Functions describe relations between different
measurements when a single ouput is associated with each input; they can be recog-
nized graphically with the vertical line test. New functions are built by combining
functions through addition, multiplication, and composition. In functional composi-
tion, the output of the inner function is used as the input of the outer function. Many
functions do not commute, meaning that composing the functions in a different order
gives a different result. Finally, we can use the horizontal line test to check whether a
functions has an inverse. If it does, the inverse can be used to compute the input from
the output.

m Exercises

Mathematical Techniques

1-2= Give mathematical names to the measurements in the fol-

square kilometer in the second, and 15 wombats per square
kilometer in the third.

lowing situations, and identify the variables and parameters.

1. Ascientist measures the density of wombats at three altitudes:
500 m, 750 m, and 1000 m. He repeats the experiment in 3

3-6= Compute the values of the following functions at the points
indicated and sketch a graph.

different years, with rainfall of 30 cm in the first year, 50 cm 3. fx)=x+5atx=0,x=1andx=4

in the second, and 60 cm in the third. 4.

g(y)=>5y aty=0,y=1,andy=4

2. A scientist measures the density of bandicoots at three alti- 1
tudes: 500 m, 750 m, and 1000 m. She repeats the experiment 5 h@)=_ atz= l,z=2,andz=4
in three different years that have different densities of wom- ¢
bats, which compete with bandicoots. The density is 10 wom- 6. F(ry=r*+5atr=0,r=1,andr=4
bats per square kilometer in the first year, 20 wombats per '
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7-10= Graph the given points and say which point does not seem
to fall on the graph of a simple function that describes the other
four.

7. (0,-D,(1,1),(2,2),3,5), 4,7) v
8. (0,8),(1,10), (2,8), (3,6), 4,4)
9. (0,2),(1,3),(2,6), (3,11), 4, 12)
10. (0, 30), (1,25), (2,15), (3, 12), 4, 10)
11-14 = Evaluate the following functions at the given algebraic ar-
guments. _
11. fxX)=x+5atx=a,x=a+1,and x =4q
12. g)=Syaty=x?,y=2x+1,and y=2—x

13. h(z):%atzzg,zzg,andz=c+l

14. F(r)=r2-|—5atr=x+1,r=3x,andr=l
X

15-16 = Sketch graphs of the following relations. Is there a more
convenient order for the arguments?

15. A function whose argument is the name of a state and whose
value is the highest altitude in that state.

Highest Altitude

State {ft)
California 14,491
Idaho 12,662
Nevada 13,143
Oregon 11,239
Utah 13,528
Washington 14,410

16. A function whose argument is the name of a bird and whose
value is the average length of that bird.

Length
Bird {cm)
Cooper’s hawk 50
Goshawk 66

Sharp-shinned hawk 35

17-20 = For each of the following pairs of functions, graph each
component piece. Compute the value of the sum at x = —2,x=-1,
x=0,x=1,and x =2 and plot the result.

17. fix)=2x+3andg(x)=3x—5

18. f(x)=2x+3and h(x)=—3x — 12

19, F(x)=x?>+1and G(x)=x+1

2. Fx)=x’+1and Hx)=—x+1 - '

21-24= For each of the following pairs of functions, graph each
component piece. Compute the value of the product at x = —2,
x=-1,x=0,x=1,and x =2 and graph the result.

21, Sx)=2x+3and g(x)=3x -5
2. fr)y=2x+3andh(x)=—-3x—12
2. Fx)=x*4+1andG(x)=x +1

2. F(x)=x>+1and Hx)=—x +1

25-28 = Find the inverse of each of the following functions when
an inverse exists. In each case, compute the output at an input of
1.0, and show that the inverse undoes the action of the function.

25, f(x)=2x+3
26. g(x)=3x-5
27, F(y)=y>+1
28. F(y)=y2+1fory20

29-32 = Graph each of the following functions and its inverse if it
exists. Mark the given point on the graph of each function.

29, f(x)=2x + 3. Mark the point (1, (1)) on the graphs of f
and the corresponding point on 7! (based on Exercise 25).

30. g(x)=3x — 5. Mark the point (1, g(1)) on the graphs of g
and the corresponding point on g=! (based on Exercise 26).

31. F(y)=y%+ 1. Mark the point (1, F(1)) on the graphs of F
and the corresponding point on F~! (based on Exercise 27).

32. F(y)=y2+1 for ¥ > 0. Mark the point (1, F(1)) on the
graphs of F and the corresponding point on F~! (based on
Exercise 28).

33-36 * Find the compositions of the given functions. Which pairs
of functions commute? -

3. fx)=2x+3and g(x)=3x -5
4. fx)=2x+3and h(x)=—3x — 12
3. Fx)=x>+1and G(x)=x+1

36. F(x)=x?>+1and H(x)=—x +1

Applications
37-40 = Describe what is happening in the graphs shown.

37. A plot of cell volume against time in days.

) to}
8_

Volume (um?3)

0 1 1 1 1 ]
0 2 4 6 8 10

Time (days)




38, Aplotofa Pacific salmon population against time in years.
1000
800
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400 |
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200 | )

0 1 1 1 — |
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39, A plot of the average height of a population of trees plotted
against age in years.

Height (m)

0 1 ] ] J
0 10 20 30 40

Age (years)

40. A plot of an Internet stock price against time.

160
140
120
100
80
60
40
20
0

Stock price

T T T T T T T

0 5 10 15 20 25
Time (days)

41-44» Draw graphs based on the following descriptions.

41, A population of birds begins at a large value, decreases to a
tiny value, and then increases again to an intermediate value.

42, The amount of DNA in an experiment increases rapidly from
a very small value and then levels out at a large value before
declining rapidly to 0.

43. Body temperature oscillates between high values during the
day and low values at night.

44, Soil is wet at dawn, quickly dries out and stays dry during
the day, and then becomes gradually wetter again during the
night.

45-48 = Evaluate the following functions over the suggested range,
sketch a graph of the function, and answer the biological question.

45. The number of bees b found on a plantis givenby b =2f + 1
where f is the number of flowers, ranging from O to about
20. Explain what might be happening when f =0.
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46. The number of cancerous cells ¢ as a function of radiation
dose r (measured in rads) is

c=r—4

for r greater than or equal to 5, and is zero for r less than 5.
Suppose r ranges from 0 to 10. What is happening at r =5
rads?

47. Insect development time A (in days) obeys A=40— %
where T represents temperature in °C for 10 < T < 40. Which
temperature leads to the most rapid development?

48. Tree height & (in meters) follows the formula

_ 100a
T 100+a

where a represents the age of the tree in years. The formula
is valid for any positive value of a, which ranges from 0to
1000. How tall would this tree get if it lived forever?

49-52 » Consider the following data describing the growth of an
tadpole.

Age, a Length, Taillength, Mass

{days) L {cm) T (cm) M {(g)
0.5 15 1.0 15
1.0 3.0 0.9 3.0
1.5 45 0.8 6.0
2.0 6.0 0.7 12.0
2.5 7.5 0.6 24.0
3.0 9.0 . 0.5 : 48.0

49, Graph length as a function of age.
50. Graph tail length as a function of age.
51, Graph tail length as a function of length.

52. Graph mass as a function of length,and then graph Iength as
a function of mass. How do the two graphs compare?

53-56= The following series of functional compositions describe
connections between several measurements.

53. The number of mosquitos (M) that end up in a room is a
function of how much the window is open (W, in square
centimeters) according to M(W)=5W + 2. The number of
bites (B) depends on the number of mosquitos according to
B(M)=0.5M.Find the number of bites as a function of how
much the window is open. How many bites would you get if
the window were 10 cm? open?

54. The temperature of a room (T, in degrees Celsius) is a func-
tion of how much the window is open (W, in square cen-
timeters) according to T(W) =40 — 0.2W. How long you
sleep (S, measured in hours) is a function of the temperature

according to S(T) =14 — Z Find how long you sleep as a

function of how much the window is open. How long would
you sleep if the window were 10 cm? open?
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55. The number of viruses (V, measured in trillions) that infect
a person is a function of the degree of immunosuppression
(I, the fraction of the immune system that is turned off by
medication) according to V(I) = 51%. The fever (F, measured
in °C) associated with an infection is a function of the number
of viruses according to F(V)=3740.4V. Find fever as a
function of immunosuppression. How high will the fever be
if immunosuppression is complete (I = 1)?

56. The length of an insect (L, in millimeters) is a function of
the temperature during development (T, measured in °C) ac-

cording to L(T)=10+ IS The volume of the insect (V,

in cubic millimeters) is a function of the length according
to V(L)=2L3 The mass (M in milligrams) depends on
volume according to M(V)=1.3V. Find mass as a func-
tion of temperature. How much would an insect weigh that
developed at 25°C? Would you be frightened to meet this
insect? ’

57-58 = Each. of the following measurements is the sum of two
components. Find the formula for the sum. Sketch a graph of each
component and the total as functions of time for 0 < ¢ < 3. Describe
each component and the sum in words.

57. A population of bacteria consists of two types, a and b. The
first follows a(r) =1+ 12, and the second follows b(z) =
1 — 2t + * where populations are measured in millions and
time is measured in hours. The total population is P() =
a(t) +b(t).

58. The above-ground volumze (stem and leaves) of a plant

is V,(t)=3.0t +20.0+ = and the below-ground volume

(roots) is V() = —1.0¢ 4 40.0 where ¢ is measured in days
after seed germination and volumes are measured in cm®.
The domain is 0 <t < 40. The total volume is V(¢) = V,(¢) +

Vi (2).

59-62 » Consider the following data describing a plant.

Age, a Mass, VI Volume, V Glucose production,
(days}  (g) {cm®) G (mg)

0.5 1.5 5.1 0.0
1.0 3.0 6.2 34
15 43 72 6.8
2.0 5.1 8.1 8.2
25 56 8.9 9.4
3.0 56 9.6 8.2

59. Graph M as a function of a. Does this function have an in-
verse? Could we use mass to figure out the age of the plant?

60. Graph V as a function of a. Does this function have an in-
verse? Could we use volume to figure out the age of the plant?

61. Graph G as a function of a. Does this function have an in-
verse? Could we use glucose production to figure out the age
of the plant? ’

62. Graph G as a function of M. Does this function have an
inverse? What is strange about it? Could we use glucose pro-
duction to figure out the mass of the plant?

63-66 = The total mass of a population (in kg) as a function of the
number of years, ¢, is the product of the number of individuals,
P(1), and the mass per person, W(¢) (in kg). In each of the follow-
ing exercises, find the formula for the total mass, sketch graphs of
P(t), W(¢), and the total mass as functions of time for 0 < ¢ < 100,
and describe the results as words.

63. The population of people P is P(t)=2.0 x 10% +
2.0 x 10%, and the mass per person W(z) (in kg) is W(1) =
80 — 0.5¢.

64. The population P is P(¢) =2.0 x 10% — 2.0 x 10*;, and the
mass per person W(¢) is W(¢) =80+ 0.5z.

65. The population P is P(¢) = 2.0 x 105 4 1000¢2, and the mass
per person W(t) is W(t) =80 — 0.5z.

66. The population P is P(t) =2.0 x 10° 4+ 2.0 x 10*, and the
mass per person W(z) is W(r) = 80 — 0.0052.

Computer Exercises

67-70 = Have your graphics calculator or computer plot the follow-
ing functions. How would you describe them in words?

67. a. flx)=x’*for0<x<20
b gx)=1.54 ¢ %% gin(x) for0 <x <20

c. h(x)=sin(5x) — cos(7x) for 0 < x <20 for x measured

in radians N
d.  f(x)+ h(x) for 0 < x <20 (using the functions in parts
aand ¢)

e. g(x)-h(x) for 0 <x <20 (using the functions in parts b
and ¢)

f. h(x)-h(x) for 0<x <20 (using the function in
part c)

68. Have your computer plot the function
h(x) =e—x2 _ 6—1000(:(—0‘13)2 —02
for values of x between —10 and 10.

How would you describe the result in words?

b. Blow up the graph by changing the range to find all points
where the value of the function is 0. For example, one
suc@ walue is between 1 and 2. Plot the function again for
x between 1 and 2 to zoom in

c. If you found only two points where A(x) =0, blow up
the region between 0 and 1 to try to find two more

69. Use your computer to find and plot the following funétional
compositions.

a. (fog)x)and(go f)(x)if f(x)=sin(x) and g(x) = x?
b. (fog)(x)and (go f)(x)if f(x)=e" and g(x) = x?
c. (fog)x)and(go f)(x)if f(x) = e* and g(x) =sin(x)



Answers to Selected 0dd Exercises

Answers to all odd exercises can be found at

up://www.brookscole.com/cgi-wadsworth/course.products_wp.pl?ﬁd=M20b&product_isbn_issn=0534404863&discipline_number=1

Chapter 1
Section 1.2, page 21

1. The variables are the altitude and the wombat density, which we can
call @ and w, respectively. The parameter is the rainfall, which we can
call R.

3. f0)=5, f(1)=6, f(4)=9.
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N, flay=a+s5, fla+1)=a+s6, f4a) =da + 5.
15. 1put them in increasing order to look nice,

15000
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1. L gi g1 [
-2 -1 11 -12
-1 1 -8 -7
0 3 -5 —2
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21,

1
3

1 5 -2 -10
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25. If we write y=2x+3,w
y—3=2x
y-—3
2
Therefore f~1(y) = yT_3

=x

20
€ can solve for x with the steps

subtract 3 from both sides
divide both sides by 2.

- Also, f(1)=5, and f-1(5) = ? =1

27. The function F(y) fails the horizontal line test because, for example,

F-1)=F1)=2. Therefore it has no inverse.
9, The function

—5 .
31. This function doesn’t have an inverse because it fails the horizontal
line test. From the graph, we couldn’t tell whether f—1 @)islor—1.

The function -

¥
30

the point (1, 2)
x
1 2 3 4 5

-5 4 3 2 4

What the inverse would look like

<

the point (2, 1)
i é L ' L x

3 4 5
the point (2, —1)

1
:“|.5.°:"‘.'\’
Do ia
T

_25 L
33. (fog)(x):f(3x—5)=2~(3x—5)+3=6x —7and(g o f)(x) =

8(2x +3y=3.(2x + 3) —5=6x 4. These don’t match, so the
functions do not commute. .
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37. The cell volume is generally increasing but decreases during part of

. : . 22 14
its cycle. The cell might get smaller when it gets ready to divide or 12
during the night. = 10
39. The height increases up until about age 30 and then decreases. 2 g
1. Population _§: 6
initial o4
2
0
intermediate Time
Here a is increasing, b decreases to 0 at time 1.0 and then increaseg
tiny v ) and the sum P decreases slightly and then increases, ’
start tiny levels out 59. Because the mass is the same at ages 2.5 days and 3.0 days, the func.
) tion relating @ and M has no inverse. Knowing the mass does not give
Time us enough information to estimate the age.
43. Temperature
) O =
maximum 5 +
4 +
2
average temp S 3 +
2 +
1
minimum 0 ) 1 L
: : ' 0 1 2 3

~ day night day night
. Time
45. When f =0,b=1; when f =10, b=21; when f =20, b =41. Per-
haps one bee will check out the plant even if there are no flowers.

50

[
< O

Number of bees
™
<

—_
(=)

0 5 10 15 20 25
Number of flowers

49. Length as a function of age
10
+
8 +
86 *
4 4 . *
2 +
O 1 1 1 1 1 L
0 05 1 15 2 25 3
Age
51. Tail length as a function of length
1 + .
£ 08 +
5 o6 L
E 04
£
0.2
0 1 1 1 1 1
0 2 4 6 8 10

Length

53. B(M)=B(SW +2)=2.5W + 1.Pluggingin W = 10 gives 26 bites.
85. F(V(I)) = F(51%) =37 + 21%. The fever is 39°Cif [ =1.
57. The formulais P(t) = (1 +2) + (1 — 2t +12) =2 — 2 + 242,

t alt) blt) Pt)

0.00 1.00 -1.00 2.00
0.50 125 025 1.50
1.00 2.00 0.00 2.00
1.50 325 025 3.50
2.00 5.00 1.00 6.00
2.50 725 225 9.50
300 1000 400 14.00

. Age

63. Denote the total mass by T(r). Then T(¢) = PHW(T) = (2.0 x 105 +
2.0 x 10*1)(80 — 0.5¢). Measuring population in millions gives

t P{t} Wit) Tt}

0.0 20 80.0 1600
20,0 24 70.0  168.0
40.0 28 60.0 168.0
60.0 32 50.0 1600
80.0 3.6 40.0 1440
100.0 4.0 30,0 1200

Population

Population (millions)

Mass per individual

0 20 40 60 80 100
Year

Total mass

1 1 1 1 N— |
0 20 40 60 80 100
Year

Mass (millions of kilograms)
O = =N w A

.. C e d the
The population increases, the mass per individual decreases, an
total mass increases and then decreases.
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