Extremal Sasakian Geometry CHARLES BOYER University of New Mexico

Problems:

Given a contact structure or isotopy class of contact structures:

1. Determine the space of compatible Sasakian structures.
2. Determine the (pre)-moduli space of extremal Sasakian structures; those of constant scalar curvature (cscS).

- Contact Manifold M
(compact). A contact 1-
form η such that

$$
\eta \wedge(d \eta)^{n} \neq 0 .
$$

defines a contact structure

$$
\eta^{\prime} \sim \eta \Longleftrightarrow \eta^{\prime}=f \eta
$$

for some $f \neq 0$, take $f>0$. or equivalently a codimension 1 subbundle $\mathcal{D}=$ Ger η of TM with a conformal symplectic structure. A contact invariant: $c_{1}(\mathcal{D})$

Unique vector field ξ, called the Reeb vector field, satisfying

$$
\xi\rfloor \eta=1, \quad \xi\rfloor d \eta=0
$$

The characteristic foliation \mathcal{F}_{ξ} each leaf of \mathcal{F}_{ξ} passes through any nbd U at most k times \Longleftrightarrow quasi-regular, $k=1 \leftrightarrow$ regular, otherwise irregular

Quasi-regularity is strong, most
contact 1-forms are irregular.

Contact bundle $\mathcal{D} \rightarrow$ choose almost complex structure J extend to Φ with $\Phi \xi=0$ with a compatible metric

$$
g=d \eta \circ(\Phi \otimes \mathbb{1})+\eta \otimes \eta
$$

Quadruple $\mathcal{S}=(\xi, \eta, \Phi, g)$ called contact metric structure

The pair (\mathcal{D}, J) is a strictly pseudoconvex almost CR structure.

Definition: The structure $\mathcal{S}=$

(ξ, η, Φ, g) is K-contact if $£_{\xi} g=$
0 (or $£_{\xi} \Phi=0$). It is Sasakian if in addition (\mathcal{D}, J) is integrable.

Transverse Metric $g_{\mathcal{D}}$ is Kähler

Cone (Symplectization)
$C(M)=M \times \mathbb{R}^{+}$
symplectic form $d\left(r^{2} \eta\right), r \in \mathbb{R}^{+}$. Cone Metric $g_{C}=d r^{2}+r^{2} g$

- g_{C} is Kähler $\Longleftrightarrow g$ is Sasaki $\Longleftrightarrow g_{\mathcal{D}}$ is Kähler.

Sasaki-Kähler Sandwich

Symmetries

Contactomorphism Group

$\mathfrak{C o n}(M, \mathcal{D})=$
$\left\{\phi \in \mathfrak{D i f f}(M) \mid \phi_{*} \mathcal{D} \subset \mathcal{D}\right\}$.
CR transformation group: $\mathfrak{C R}(\mathcal{D}, J)$
$=\left\{\phi \in \mathfrak{C o n}(M, \mathcal{D}) \mid \phi_{*} J=J \phi_{*}\right\}$
Have: $T^{k} \subset \mathfrak{C} \mathfrak{R}(\mathcal{D}, J) \subset \mathfrak{C o n}(M, \mathcal{D})$
T^{k} a max'l torus $0 \leq k \leq n+1$.
$\mathcal{J}(\mathcal{D})$ space of compatible almost
CR structures, then a map
$\mathfrak{Q}: \mathcal{J}(\mathcal{D}) \rightarrow$ \{conjugacy classes
of maximal tori\} in $\mathfrak{C o n}(M, \mathcal{D})$

Bouquets of Sasaki cones

$\mathfrak{t}_{k}^{+}(\mathcal{D}, J)=\left\{\xi \in \mathfrak{t}_{k} \mid \eta^{\prime}(\xi)>0,\right\}$
st. $\mathcal{S}=(\xi, \eta, \Phi, g) \in(\mathcal{D}, J)$ is
Sasakian

- finite dim'l moduli of Sasakian structures within CR structure $\kappa(\mathcal{D}, J)=\mathfrak{t}_{k}^{+}(\mathcal{D}, J) / \mathcal{W}(\mathcal{D}, J)$
A given \mathcal{D} can have many Sasaki cones $\mathfrak{t}_{k}^{+}\left(\mathcal{D}, J_{\alpha}\right)$ labelled by comflex structures, and $k=k(\alpha)$. Get bouquet $\cup_{\alpha} \mathfrak{t}_{k(\alpha)}^{+}\left(\mathcal{D}, J_{\alpha}\right)$ union over tori conjugacy classes
- Extremal Sasakian metrics
(B-,Galicki,Simanca)
$E(g)=\int_{M} s_{g}^{2} d \mu_{g}$,
- Deform contact structure

Vary $\eta \mapsto \eta+t d^{c} \varphi, \varphi$ basic, gives critical point of $E(g) \Longleftrightarrow \partial_{g}^{\#} s_{g}$ is transversely holomorphic. $s_{g}=$ scalar curvature.

Special case: constant scalar curvature Sasakian (cscS). If $c_{1}(\mathcal{D})=$
$0 \Rightarrow$ Sasaki- η-Einstein (S ηE)
$\mathrm{Ric}_{g}=a g+b \eta \otimes \eta, a, b$ constants.
Sasaki-Einstein (SE) $b=0$

Extremal Set $\mathfrak{e}(\mathcal{D}, J)$

$\mathfrak{e}(\mathcal{D}, J) \subset \mathfrak{t}_{k}^{+}(\mathcal{D}, J)$ is open in Sasaki cone B-,Galicki,Simanca If $\mathcal{S}=\mathcal{S}_{1} \in \mathfrak{e}(\mathcal{D}, J)$ then entire ray $\mathcal{S}_{a}=\left(a^{-1} \xi, a \eta, \Phi, g_{a}\right) \in \mathfrak{e}(\mathcal{D}, J)$
When is $\mathfrak{e}(\mathcal{D}, J)=\mathfrak{t}_{k}^{+}(\mathcal{D}, J)$?
Many ex's if $\operatorname{dim}_{t_{k}^{+}}(\mathcal{D}, J)=1$ - If $\operatorname{dim} \kappa(\mathcal{D}, J)>1$, sphere, Heisenberg group, $T^{2} \times S^{3}$ have $\mathfrak{e}(\mathcal{D}, J)=\mathfrak{t}_{k}^{+}(\mathcal{D}, J)>1$.
(1) standard CR structure on $S^{2 n+1}$ Toric $(\operatorname{dim} \kappa(\mathcal{D}, J)=n+1$.)
$\kappa(\mathcal{D}, J)=\left\{\mathbf{w}=\left(w_{0}, \cdots, w_{n}\right) \in\right.$
$\left.\mathbb{R}^{n+1} \mid w_{0} \leq w_{1} \leq \cdots \leq w_{n}\right\}$
All \mathcal{S}_{w} have extremal representatives, but only Φ-sect. curv. $c>-3$ has (csc), and only the round sphere $(c=1)$ is SE.
(B, Galicki,Simanca)
(2) The Heisenberg group $\mathfrak{H}^{2 n+1}$ with standard CR structure (noncompact), $\operatorname{dim} \kappa(\mathcal{D}, J)=n$. (B-)

All $\mathcal{S} \in \kappa(\mathcal{D}, J)$ have extremal representatives, but there is only one with constant scalar curvalure, $\mathrm{S}_{\eta} \mathrm{E}$ with Φ-holomorphic curvature $=-3$. Here transverse homothety is induced by diffeomorphism.
Probably $\mathfrak{e}(\mathcal{D}, J)=\mathfrak{t}_{k}^{+}(\mathcal{D}, J)$ also holds for standard CR structure on the hyperbolic ball $B_{\mathbb{C}}^{n} \times \mathbb{R}$. Here Φ-sect. surv. $c<-3$ is (csch).

When: extremal bouquets?

Toric Contact Manifold

 ($M^{2 n+1}, \mathcal{D}$), effective action of torus T^{n+1} leaving \mathcal{D} invariant.(1): Reeb Type Reeb field ξ lies in \mathfrak{t}_{n+1}, Lie algebra of T^{n+1}.
(2): $\xi \notin \mathfrak{t}_{n+1}$. (less interesting)

Reeb type are Sasakian. B-/Galicki.
Other References: Banyaga/Molino, Lerman, Falcao de Moraes/Tomei.

Complete classification: Lerman.

Toric contact manifolds of Reed

 type are classified by certain convex polyhedral cones in t_{n+1}^{*} up to T^{n+1}-equivariant equivalence. (Leman).Theorem: Every boric contact structure of Reed type with $c_{1}(\mathcal{D})=$ 0 admits a unique Sasaki-Einstein metric (Futaki,Ono,Wang,Cho)

There is a ray of csc metrics in an open set of extremal rays. How big is $\mathfrak{e}(\mathcal{D}, J)$?

5-manifolds

Barden-Smale classification of simply connected 5-manifolds $H_{2}\left(M^{5}, \mathbb{Z}\right)$ torsionfree $S^{5}, S^{2} \times S^{3}, X_{\infty}, k \#\left(S^{2} \times S^{3}\right)$, $X_{\infty} \# k \#\left(S^{2} \times S^{3}\right)$.
All admit toric contact structures of Reeb type. (B-/Galicki,Ornea)
All but S^{5} admit infinitely many.
All obtained by Symmetry Reduction by weighted S^{1}-action.
weights $\mathrm{p}=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$.

- S^{3}-bundles over S^{2} :
$M^{5}=S^{2} \times S^{3}$ or X_{∞}. Which?
$w_{2}\left(M^{5}\right) \equiv c_{1}\left(\mathcal{D}_{\mathrm{p}}\right) \bmod 2 . \Rightarrow$
$M^{5}=S^{2} \times S^{3}\left(X_{\infty}\right)$ if $c_{1}\left(\mathcal{D}_{\mathrm{p}}\right)$ is even (odd).
$c_{1}\left(\mathcal{D}_{\mathrm{p}}\right)=\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \gamma$
Calabi extremal Kähler metrics on Hirzebruch surfaces give a bouquet of extremal Sasakian structures on $S^{2} \times S^{3}$ and X_{∞}. Moduli space is non-Hausdorff.
The quotient M^{5} / S_{ϕ}^{1} is an orbifold Hirzebruch surface.
-E. Legendre on cscS metrics:
$M^{5} 5$-manifold with $b_{2}\left(M^{5}\right)=1$ with toric contact structure of Reeb type. \exists at least 1 and at most 7 rays of cscS metrics. 2 rays of cscS non-isometric metrics $M_{k, l}^{1,1} \approx S^{2} \times S^{3}$ if $k>5 l$.

Special case of our special case: $Y^{p, q} \approx S^{2} \times S^{3}$. Physicists:

Gauntlett,Martelli,Sparks,Waldram.
Infinitely many toric contact structures. Each $Y^{p, q}$ admits unique

Sasaki-Einstein metrics.
In our notation $\mathcal{D}_{p-q, p+q, p, p}$ with $\operatorname{gcd}(p, q)=1$ and $1 \leq q<p$. $c_{1}\left(\mathcal{D}_{p-q, p+q, p, p}\right)=0$.
Non-equivalence if $p^{\prime} \neq p$:
Contact homology
(Eliashberg, Givental, Hofer)
(Abreu, Macarini): $\quad Y^{p, 1} \nsim Y^{p^{\prime}, 1}$
when $p^{\prime} \neq p$.
Theorem: (B-) $Y^{p, q}$ and $Y^{p^{\prime}, q^{\prime}}$ are contact equivalent $\Longleftrightarrow p^{\prime}=p$.

5-manifolds, $\pi_{1} \neq\{1\}$

Join Construction: Given quasiregular Sasakian manifolds
$\pi_{i}: M_{i} \rightarrow \mathcal{Z}_{i}$ for $i=1,2$.
Form (k, l)-join (B-, Galicki,Ornea)
$\pi: M_{1} \star_{k, l} M_{2} \rightarrow \mathcal{Z}_{1} \times \mathcal{Z}_{2}$.
$M_{1} \star_{k, l} M_{2}$ - Sasakian structure.
smooth iff $\operatorname{gcd}\left(v_{1} l, v_{2} k\right)=1$,
v_{i} order of orbifold \mathcal{Z}_{i}.
(B-,Tønnesen-Friedman) Construct Sasakian 5-manifolds. Consider $M^{3}{ }_{k, l} S^{3}$ where M^{3} Sasakian 3manifold (Belgun)-uniformization.

Hamiltonian circle action

Two Cases:

(1) M^{3} circle bundle over Remann surface Σ_{g} of genus g.
(2) M^{3} homology sphere as link of complete intersection $L\left(a_{0}, \cdots, a_{n}\right)$.

The $a_{i}>1$ pairwise relatively prime.
$M^{3}{ }_{1, l} S^{3}$ homology of $S^{2} \times S^{3}$.
$L\left(a_{0}, \cdots, a_{n}\right) \neq L(2,3,5)$ and
$\{1\} \neq \pi_{1}\left(M^{3}{ }_{1, l} S^{3}\right)$ perfect, ∞.

Extremal Sasaki metrics

Case (1): Topological rigidity argument of Kreck-Lück \Rightarrow diffeomorphism type:
$M^{3} \star_{k, 1} S^{3}=\Sigma_{g} \times S^{3}, \quad \forall k \in \mathbb{Z}^{+}$. Extrema Sasaki metrics in genera case is in progress.

Case: $g=1$, that is,
$M^{3} \star_{k, 1} S^{3}=T^{2} \times S^{3}, \forall k \in \mathbb{Z}^{+}$.

Ruled Surfaces $g=1$

Complex structures (Atiyah, Suwa)
$\mathbb{P}(E) \approx T^{2} \times S^{2}, \operatorname{rank}(E)=2$

1. nonsplit case (no extremal Kähler metric)
2. $E=L \oplus 1$, degree $L=0$
3. $E=L \oplus 1$, degree $L>0$ Extremal Kähler metr (Fujiki,Hwang) Hamiltonian 2-forms: (Apostolov, Calderbank, Gauduchon, TønnesenFriedman (ACGT))
4. Degree $L=0$:

Representation $\rho: \pi_{1}\left(T^{2}\right) \rightarrow S O$ (3)
Get S^{1}-bundle over $T^{2} \times{ }^{\mathbb{C P}}{ }^{1}$ with CSC Sasaki metrics on $T^{2} \times S^{3}$.
Vary in Sasaki cone, extremal Sasaki metrics exhaust Sasaki cone.
3. Degree $L=2 n>0$: ACGT method: Kähler metric
$g=\frac{1+r \mathfrak{z}}{r} g_{T^{2}}+\frac{d_{\mathfrak{z}}^{2}}{\Theta(\mathfrak{z})}+\Theta(\mathfrak{z}) \theta^{2}$
θ connection 1-form, $d \theta=\omega_{T^{2}}$,
$0<r<1, \Theta(\mathfrak{z})>0$ in $-1<\mathfrak{z}<$
$1, \Theta(\pm 1)=0, \Theta^{\prime}(\pm 1)=\mp 2$
Θ 4th order polynomial gives extremal Kähler metric

Deform in Sasaki cone, extremal

 Sasaki metrics exhaust Sasaki cone. 3rd order polynomial gives cscS metrics. All are quasi-regular. Summary of Results(1): $T^{2} \times S^{3}$ admits a countably infinite number of distinct contact structures \mathcal{D}_{k}.
(2): \mathcal{D}_{k} admits a bouquet of k 2-dimensional Sasaki cones each
with a unique ray of constant scalar curvature Sasaki metrics.
(3): Each member of the bouquet in (2) has an extremal Sasaki metric.
(4): There is a Sasaki cone consisting of a single ray that admits no extremal Sasaki metric.
(5): Some results for quotients of the form $\left(T^{2} \times S^{3}\right) / \mathbb{Z}_{l}$

References

1. Extremal Sasakian Metrics on S^{3}-bundles over S^{2}, Math. Res. Lett. 18 (2011), no. 01, 181189;
2. Maximal Tori in Contactomorphism Groups (submitted); 3. Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on $S^{2} \times S^{3}$, SIGMA Symmetry Integrability Geom. Methods Appl 7 (2011),058, 22.
3. (with J. Pati) On the Equivalence Problem for Toric Contact Structures on S^{3}-bundles over S^{2} (to appear).
4. (with C. Tønnesen-Friedman) Extremal Sasakian Geometry on $T^{2} \times S^{3}$ and Cyclic Quotients (submitted)

General Reference: C.P. B- and K. Galicki, Sasakian Geometry, Oxford University Press, 2008.

