Extremal Sasakian Geometry

CHARLES BOYER University of New Mexico

Problems:

Given a contact structure or isotopy class of contact structures:

1. Determine the space of compatible Sasakian structures.

2. Determine the (pre)-moduli space of extremal Sasakian structures; those of constant scalar curvature (cscS). Contact Manifold M
(compact). A contact 1 form η such that

 $\eta \wedge (d\eta)^n \neq 0.$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some $f \neq 0$, take f > 0. or equivalently a codimension 1 subbundle $\mathcal{D} = \text{Ker } \eta$ of TM with a conformal symplectic structure. A contact invariant: $c_1(\mathcal{D})$ Unique vector field ξ , called the **Reeb vector field**, satisfying

 $\xi \rfloor \eta = 1, \qquad \xi \rfloor d\eta = 0.$

The characteristic foliation \mathcal{F}_{ξ} each leaf of \mathcal{F}_{ξ} passes through any nbd U at most k times \iff quasi-regular, $k = 1 \leftrightarrow$ regular, otherwise irregular

Quasi-regularity is strong, most contact 1-forms are irregular.

Contact bundle $\mathcal{D} \rightarrow$ choose almost complex structure J extend to Φ with $\Phi \xi = 0$ with a compatible metric

 $g = d\eta \circ (\Phi \otimes \mathbb{1}) + \eta \otimes \eta$

Quadruple $S = (\xi, \eta, \Phi, g)$ called contact metric structure

The pair (\mathcal{D}, J) is a strictly pseudoconvex almost CR structure. **Definition**: The structure $S = (\xi, \eta, \Phi, g)$ is **K-contact** if $\pounds_{\xi}g = 0$ (or $\pounds_{\xi}\Phi = 0$). It is **Sasakian** if in addition (\mathcal{D}, J) is integrable. **Transverse Metric** $g_{\mathcal{D}}$ is Kähler

Cone (Symplectization) $C(M) = M \times \mathbb{R}^+$ symplectic form $d(r^2\eta), r \in \mathbb{R}^+$. Cone Metric $g_C = dr^2 + r^2g$ • g_C is Kähler $\iff g$ is Sasaki $\iff g_D$ is Kähler.

Sasaki-Kähler Sandwich

Symmetries

 Contactomorphism Group $\mathfrak{Con}(M,\mathcal{D}) =$ $\{\phi \in \mathfrak{Diff}(M) \mid \phi_*\mathcal{D} \subset \mathcal{D}\}.$ **CR transformation group**: $\mathfrak{CR}(\mathcal{D}, J)$ $= \{ \phi \in \mathfrak{con}(M, \mathcal{D}) \mid \phi_*J = J\phi_* \}$ Have: $T^k \subset \mathfrak{CR}(\mathcal{D}, J) \subset \mathfrak{Con}(M, \mathcal{D})$ T^{k} a max'l torus 0 < k < n + 1. $\mathcal{J}(\mathcal{D})$ space of compatible almost CR structures, then a map $\mathfrak{Q} : \mathcal{J}(\mathcal{D}) \to \{ conjugacy \ classes \}$ of maximal tori in $\mathfrak{Con}(M, \mathcal{D})$

Bouquets of Sasaki cones

 $\mathfrak{t}_{k}^{+}(\mathcal{D},J) = \{\xi \in \mathfrak{t}_{k} \mid \eta'(\xi) > 0, \}$ s.t. $\mathcal{S} = (\xi,\eta,\Phi,g) \in (\mathcal{D},J)$ is Sasakian

• finite dim'l moduli of Sasakian structures within CR structure $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}(\mathcal{D}, J)$ A given \mathcal{D} can have many Sasaki cones $\mathfrak{t}_k^+(\mathcal{D}, J_\alpha)$ labelled by complex structures, and $k = k(\alpha)$. Get **bouquet** $\bigcup_{\alpha} \mathfrak{t}_{k(\alpha)}^+(\mathcal{D}, J_\alpha)$ union over tori conjugacy classes

Extremal Sasakian metrics (B-,Galicki,Simanca)

- $E(g) = \int_M s_g^2 d\mu_g,$
- Deform contact structure

Vary $\eta \mapsto \eta + td^c \varphi$, φ basic, gives critical point of $E(g) \iff \partial_g^{\#} s_g$ is transversely holomorphic. $s_g =$ scalar curvature.

Special case: constant scalar curvature Sasakian (cscS). If $c_1(\mathcal{D}) = 0 \Rightarrow$ Sasaki- η -Einstein (S η E) Ric_g = $ag + b\eta \otimes \eta$, a, b constants. Sasaki-Einstein (SE) b = 0

Extremal Set $\mathfrak{e}(\mathcal{D}, J)$

 $\mathfrak{e}(\mathcal{D},J) \subset \mathfrak{t}_k^+(\mathcal{D},J)$ is open in Sasaki cone B-, Galicki, Simanca If $\mathcal{S} = \mathcal{S}_1 \in \mathfrak{e}(\mathcal{D}, J)$ then entire ray $\mathcal{S}_a = (a^{-1}\xi, a\eta, \Phi, g_a) \in \mathfrak{e}(\mathcal{D}, J)$ When is $\mathfrak{e}(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)$? Many ex's if dim $\mathfrak{t}_k^+(\mathcal{D}, J) = 1$ • If dim $\kappa(\mathcal{D}, J) > 1$, sphere, Heisenberg group, $T^2 \times S^3$ have $\mathfrak{e}(\mathcal{D},J) = \mathfrak{t}_{k}^{+}(\mathcal{D},J) > 1.$

(1) standard CR structure on S^{2n+1} Toric (dim $\kappa(\mathcal{D}, J) = n + 1.$) $\kappa(\mathcal{D},J) = \{\mathbf{w} = (w_0,\cdots,w_n) \in$ $\mathbb{R}^{n+1} \mid w_0 < w_1 < \cdots < w_n$ All Sw have extremal representatives, but only Φ -sect. curv. c > -3 has (cscS), and only the round sphere (c = 1) is SE. (B,Galicki,Simanca)

(2) The Heisenberg group \mathfrak{H}^{2n+1} with standard CR structure (noncompact), dim $\kappa(\mathcal{D}, J) = n$. (B-) All $S \in \kappa(\mathcal{D}, J)$ have extremal representatives, but there is only one with constant scalar curvature, $S\eta E$ with Φ -holomorphic curvature = -3. Here transverse homothety is induced by diffeomorphism.

Probably $e(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)$ also holds for standard CR structure on the hyperbolic ball $B^n_{\mathbb{C}} \times \mathbb{R}$. Here Φ -sect. curv. c < -3 is (cscS).

When: extremal bouquets?

Toric Contact Manifold

 (M^{2n+1}, \mathcal{D}) , effective action of torus T^{n+1} leaving \mathcal{D} invariant.

(1): Reeb Type Reeb field ξ lies in t_{n+1} , Lie algebra of T^{n+1} . (2): $\xi \notin t_{n+1}$. (less interesting) Reeb type are Sasakian. B-/Galicki. Other References: Banyaga/Molino, Lerman, Falcao de Moraes/Tomei. Complete classification: Lerman. Toric contact manifolds of Reeb type are classified by certain convex polyhedral cones in \mathfrak{t}_{n+1}^* up to T^{n+1} -equivariant equivalence. (Lerman).

Theorem: Every toric contact structure of Reeb type with $c_1(\mathcal{D}) =$ 0 admits a unique Sasaki-Einstein metric (Futaki,Ono,Wang,Cho)

There is a ray of cscS metrics in an open set of extremal rays. How big is $e(\mathcal{D}, J)$?

5-manifolds

Barden-Smale classification of simply connected 5-manifolds $H_2(M^5, \mathbb{Z})$ torsionfree $S^5, S^2 \times S^3, X_{\infty}, k \# (S^2 \times S^3),$ $X_{\infty} \# k \# (S^2 \times S^3).$

All admit toric contact structures of Reeb type. (B-/Galicki,Ornea) All but S^5 admit infinitely many. All obtained by **Symmetry Reduction** by weighted S^1 -action. weights $\mathbf{p} = (p_1, p_2, p_3, p_4)$.

• S^3 -bundles over S^2 : $M^5 = S^2 \times S^3$ or X_{∞} . Which? $w_2(M^5) \equiv c_1(\mathcal{D}_p) \mod 2. \Rightarrow$ $M^5 = S^2 \times S^3(X_\infty)$ if $c_1(\mathcal{D}_p)$ is even (odd). $c_1(\mathcal{D}_p) = (p_1 + p_2 - p_3 - p_4)\gamma$ Calabi extremal Kähler metrics on Hirzebruch surfaces give a bouquet of extremal Sasakian structures on $S^2 \times S^3$ and X_{∞} . Moduli space is non-Hausdorff. The quotient M^5/S_{ϕ}^1 is an orbifold Hirzebruch surface.

•E. Legendre on cscS metrics: M^5 5-manifold with $b_2(M^5) = 1$ with toric contact structure of Reeb type. \exists at least 1 and at most 7 rays of cscS metrics. 2 rays of cscS non-isometric metrics $M_{k,l}^{1,1} \approx S^2 \times S^3$ if k > 5l.

Special case of our special case: $Y^{p,q} \approx S^2 \times S^3$. Physicists:

Gauntlett, Martelli, Sparks, Waldram. Infinitely many toric contact structures. Each $Y^{p,q}$ admits unique

Sasaki-Einstein metrics.

In our notation $\mathcal{D}_{p-q,p+q,p,p}$ with gcd(p,q) = 1 and $1 \le q < p$. $c_1(\mathcal{D}_{p-q,p+q,p,p}) = 0.$ Non-equivalence if $p' \neq p$: **Contact homology** (Eliashberg, Givental, Hofer) (Abreu, Macarini): $Y^{p,1} \not\sim Y^{p',1}$ when $p' \neq p$. **Theorem**: (B-) $Y^{p,q}$ and $Y^{p',q'}$ are

contact equivalent $\iff p' = p$.

5-manifolds, $\pi_1 \neq \{1\}$

Join Construction: Given quasiregular Sasakian manifolds $\pi_i: M_i \rightarrow \mathcal{Z}_i \text{ for } i = 1, 2.$ Form (k, l)-join (B-, Galicki, Ornea) $\pi: M_1 \star_{k,l} M_2 \to \mathcal{Z}_1 \times \mathcal{Z}_2.$ $M_1 \star_{k,l} M_2$ – Sasakian structure. smooth iff $gcd(v_1l, v_2k) = 1$, v_i order of orbifold Z_i . (B-, Tønnesen-Friedman) Construct Sasakian 5-manifolds. Consider $M^3 \star_{k,l} S^3$ where M^3 Sasakian 3manifold (Belgun)-uniformization.

Hamiltonian circle action

Two Cases:

(1) M^3 circle bundle over Riemann surface Σ_g of genus g.

(2) M^3 homology sphere as link of complete intersection $L(a_0, \dots, a_n)$. The $a_i > 1$ pairwise relatively prime. $M^3 \star_{1,l} S^3$ homology of $S^2 \times S^3$. $L(a_0, \dots, a_n) \neq L(2, 3, 5)$ and $\{1\} \neq \pi_1(M^3 \star_{1,l} S^3)$ perfect, ∞ .

Extremal Sasaki metrics

Case (1): Topological rigidity argument of Kreck-Lück \Rightarrow diffeomorphism type:

 $M^3 \star_{k,1} S^3 = \Sigma_g \times S^3, \quad \forall k \in \mathbb{Z}^+.$ Extremal Sasaki metrics in general case is in progress.

Case: g = 1, that is, $M^3 \star_{k,1} S^3 = T^2 \times S^3, \ \forall k \in \mathbb{Z}^+.$

Ruled Surfaces g = 1

Complex structures (Atiyah, Suwa) $\mathbb{P}(E) \approx T^2 \times S^2$, rank(E) = 21. nonsplit case (no extremal Kähler metric)

2. $E = L \oplus 1$, degree L = 0

3. $E = L \oplus \mathbb{1}$, degree L > 0

Extremal Kähler metr (Fujiki,Hwang) Hamiltonian 2-forms: (Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman (ACGT)) 2. Degree L = 0:

Representation $\rho : \pi_1(T^2) \to SO(3)$ Get S^1 -bundle over $T^2 \times_{\rho} \mathbb{CP}^1$ with CSC Sasaki metrics on $T^2 \times S^3$. Vary in Sasaki cone, extremal Sasaki metrics exhaust Sasaki cone.

3. Degree L = 2n > 0: ACGT method: Kähler metric

 $g = \frac{1+r_3}{r}g_{T^2} + \frac{d\mathfrak{z}^2}{\Theta(\mathfrak{z})} + \Theta(\mathfrak{z})\theta^2$ θ connection 1-form, $d\theta = \omega_{T^2}$, $0 < r < 1, \ \Theta(\mathfrak{z}) > 0$ in $-1 < \mathfrak{z} < 1, \ \Theta(\mathfrak{z}) = 0, \ \Theta'(\mathfrak{z}) = \mathfrak{z}^2$ Θ 4th order polynomial gives extremal Kähler metric Deform in Sasaki cone, extremal Sasaki metrics exhaust Sasaki cone. 3rd order polynomial gives cscS metrics. All are quasi-regular. Summary of Results

(1): $T^2 \times S^3$ admits a countably infinite number of distinct contact structures \mathcal{D}_k .

(2): \mathcal{D}_k admits a bouquet of k2-dimensional Sasaki cones each with a unique ray of constant scalar curvature Sasaki metrics.

(3): Each member of the bouquet in (2) has an extremal Sasaki metric.

(4): There is a Sasaki cone consisting of a single ray that admits no extremal Sasaki metric.

(5): Some results for quotients of the form $(T^2 \times S^3)/\mathbb{Z}_l$

References

- Extremal Sasakian Metrics on S³-bundles over S², Math. Res.
 Lett. 18 (2011), no. 01, 181-189;
- 2. Maximal Tori in Contactomorphism Groups (submitted); 3. Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on $S^2 \times S^3$,
- SIGMA Symmetry Integrability Geom. Methods Appl 7 (2011),058, 22.

4. (with J. Pati) On the Equivalence Problem for Toric Contact Structures on S^3 -bundles over S^2 (to appear).

5. (with C. Tønnesen-Friedman) Extremal Sasakian Geometry on $T^2 \times S^3$ and Cyclic Quotients (submitted)

General Reference: **C.P. B- and K. Galicki, Sasakian Geometry**, Oxford University Press, 2008.