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Fundamental Problems

Problems:
1 Given a manifold determine how many contact structures D of Sasaki type there are.

with distinct first Chern class c1(D).
with the same first Chern class c1(D).

2 Given a contact structure or isotopy class of contact structures:

Determine the space of compatible Sasakian structures.
Determine the (pre)-moduli space of Sasaki classes.
Determine the (pre)-moduli space of extremal Sasakian structures.
Determine those of constant scalar curvature (cscS). How many?
Determine the (pre)-moduli space of Sasaki-Einstein and/or η-Einstein structures.
Determine the (pre)-moduli space of Sasakian structures with the same underlying CR structure.
Determine those having distinct underlying CR structures within the same isotopy class of contact
structures.

We give partial answers to these problems for particular cases. My talk is based on joint work with
various colleagues: Leonardo Macarini, Justin Pati, Christina Tønnesen-Friedman, and Otto van
Koert.
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Contact manifold

• Closed Contact Manifold M.

A contact 1-form η such that
η ∧ (dη)n 6= 0.

defines a contact structure
η′ ∼ η ⇐⇒ η′ = fη

for some f 6= 0, take f > 0, or equivalently a codimension 1 subbundle D = Ker η of TM with
a conformal symplectic structure. So {oriented contact 1-forms in D} ≈ C∞(M)+

Unique vector field ξ, called the Reeb vector field, satisfying

ξcη = 1, ξcdη = 0.

The characteristic foliation Fξ: It is called quasi-regular if each leaf of Fξ passes through
any nbd U at most k times. It is regular if k = 1; otherwise, it is irregular.
Quasi-regularity is strong, most contact 1-forms are irregular.
Contact bundle D→ choose almost complex structure J extend to an endomorphism Φ
with Φξ = 0 with a compatible metric g = dη ◦ (Φ⊗ 1l) + η ⊗ η. Quadruple S = (ξ, η,Φ, g)
called contact metric structure
The pair (D, J) is a strictly pseudo-convex almost CR structure (sψCR structure).
If (D, J) is an integrable CR structure, and Lξg = 0 then S = (ξ, η,Φ, g) is a Sasakian
structure. Then contact manifold (M,D) is of Sasaki type.
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Distinguishing Contact Structures

• Contact Invariants.

Gray Stability Theorem: On a closed contact manifold all deformations are trivial.

A classical invariant: The first Chern class: c1(D).
contact homology: has serious transversality problems, so we work with fillings.

Definition
A (strong) symplectic filling of (M,D) is a compact symplectic manifold (W , ω) such that ∂W = M,
there is a local outward pointing vector field Ψ on W such that LΨω = ω and D = ker(Ψ ω)|M . If
Ψ is globally defined (W , ω) is a Liouville filling. It is a holomorphic filling if W has a complex
structure J such that (M, J) is strictly pseudo-convex and D = TM ∩ JTM. It is a Stein (Kähler)
filling if (W , ω) is biholomorphic to a Stein (Kähler) manifold.

Think of the cone (M × R+, ω) and smoothing singularity at cone point.
Kähler fillability coincides with holomorphic fillability. Stein fillable implies Liouville fillable.
For a Liouville filling (W , ω), the symplectic form ω is exact.
A Sasaki manifold is holomorphically (Kähler) fillable, but not necessarily Stein fillable.
S1-equivariant symplectic homology of the filling is a Floer homology introduced by Viterbo
and developed further by Bourgeois-Oancea.
We need a Liouville filling which we extend to a full cone W̄ = W ∪M × R+.
Obtain an S1-equivariant theory on the free loop space ΛW̄ of W̄ which gives equivariant
“Morse-Floer” type homology groups SH+,S1

(W ). The +⇒ truncate action functional at 0.
Morally, SH+,S1

(W ) is generated by periodic Reeb orbits on the boundary M.
Under the right assumptions SH+,S1

(W ) is a contact invariant.
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The Mean Euler Characteristic

.

Assume the filling is Liouville, define the symplectic Betti numbers by

sbi := rank SH+,S1

i (W ).

Definition (van Koert)
For a convenient Liouville filling (W , ω), the mean Euler characteristic is defined by

χm(W ) =
1
2

0@lim inf
N→∞

1
N

NX
i=−N

(−1)i sbi (W ) + lim sup
N→∞

1
N

NX
i=−N

(−1)i sbi (W )

1A
if this number exists.

Under various technical assumptions, χm(W ) exists and is a contact invariant independent
of the Liouville filling.

χm(W ) and SH+,S1
(W ) allows us to distinguish components of the Sasaki moduli space.
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Sasaki Manifolds

All Sasakian structures are:

Nested structures: Sasakian ⊂ strictly pseudo-convex CR ⊂ Contact

with nested symmetry groups: T k ⊂ Aut(S) ⊂ CR(D, J) ⊂ Con(M,D).

1 Contactomorphism Group: Con(M,D) = {φ ∈ Diff(M) | φ∗D ⊂ D}
2 CR automorphism group: CR(D, J) = {φ ∈ Con(M,D) | φ∗J = Jφ∗}
3 Sasakian automorphism group: Aut(S) = {φ ∈ CR(D, J) | φ∗ξ = ξ, φ∗g = g}
4 maximal torus: T k in Aut(S) with 1 ≤ k ≤ n + 1.

Construction of Sasaki Manifolds

1 Total space M of an S1-orbibundle over a projective algebraic orbifold.
2 Sasakian manifold with many symmetries, e.g. toric contact structures of Reeb type.
3 Links of weighted homogeneous polynomials, e.g. Brieskorn manifolds.
4 Sasaki join construction. Analog of Kähler products.

The first construction is general. We concentrate here on constructions (3) and (4).

Constructions (3) and (4) are complementary. Links are highly connected, i.e. in dimension
2n + 1 they are n − 1-connected; whereas, the join construction always adds to H2(M,Q).

They can intersect in dimension five, but otherwise are complementary.

On a highly connected manifold of dimension greater than five, any contact structure D
satisfies c1(D) = 0.

On a simply connected rational homology sphere, c1(D) = 0.
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Deformations of Sasakian Structures and Sasaki Classes

Three Types of Deformations of Sasakian Structures

1 Fix CR structure (D, J), deform characteristic foliation F. This gives rise to Sasaki cones. After this
type of deformation the transverse holonomy becomes irreducible.

2 Fix contact structure D, deform transverse complex structure (CR) J. This gives rise to Sasaki
bouquets. Here Sasaki cones in bouquets are related to conjugacy classes of tori in the
contactomorphism group Con(M,D).

3 Fix characteristic foliation F, deform contact structure D. This is used to obtain extremal Sasaki
metrics. This type of deformation does not change the transverse holonomy nor the isotopy class of
contact structure.

Denote by F(M) the space of all Sasakian structures on M, and by F(M, ξ, J̄) the subspace of
F(M) with Reeb vector field ξ and transverse complex structure J̄. The identification space
F(M)/F(M, ξ, J̄) is the pre-moduli space of Sasaki classes.

The moduli space M(M) of Sasaki classes is the quotient of F(M)/F(M, ξ, J̄) by Diff(M).

M(M) can be non-Hausdorff.

We think of an element of M(M) as represented by a basic cohomology class
[dη]B ∈ H1,1(Fξ).

We are mainly interested in those classes with c1(Fξ) positive and with c1(D) = c which we
denote by M+,c .

By the transverse Yau Theorem M+,c has a representative with positive Ricci curvature.
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Brieskorn Manifolds - Rational Homology Spheres,
B-, Macarini, van Koert

A Brieskorn manifold L(a) is a link of a Brieskorn-Pham polynomial f (z) = za0
0 + · · · zan

n ,
namely L(a) = {f (z) = 0} ∩ S2n+1 with a = (a0, . . . , an) ∈ Zn+1

≥2 .

L(a) has a natural Sasakian structure.
By smoothing singularity L(a) is Stein hence Liouville fillable.
On L(a) the mean Euler characteristic χm(W ) is a rational number that can be computed.

Simply connected Rational Homology Spheres in Dimension Five

Smale manifolds Mr with H2(Mr ,Z) = Zr + Zr and connected sums kMr .

Theorem (B-,Macarini,van Koert)

On the rational homology spheres M = S5,M2,M3,M5, 2M3, 4M2 we have |π0(M+,0(M))| = ℵ0.
Moreover, each component belongs to a distinct contact structure, so there are infinitely many
inequivalent contact structures of positive Sasaki type on each of the above rational homology
5-spheres.

Proof: Represent M by a sequence of Brieskorn links L(a) and compute the mean Euler
characteristic.
Example: M2 can be represented by the links L(2, 3, 3, 3 + 6k) and χm(W ) = 3+10k

6+4k .

All except 4M2 are known to admit Sasaki-Einstein metrics.

Charles Boyer (University of New Mexico) Moduli Problems in Sasakian Geometry
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Sasaki-Einstein Moduli

We denote the Sasaki-Einstein moduli space on M by MSE (M) (excludes standard round
sphere).

There is a natural map c : MSE (M)−−−→M+,0(M).

82 families of SE metrics on S5 (B-,Galicki,Kollár; Ghigi,Kollár; B-,Macarini,van Koert; Sun,Li).

Lower bound: |π0(MSE (S5))| ≥ 76 (B-,Macarini,van Koert).

There are 6 pairs that cannot be distinguished by χm(W ) or SH+,S1
(W ).

55 components are single points.

There are other components of real dimension 2, 4, 6, 8, 10, 20.

SE metrics on higher homotopy spheres

On the 28 oriented homotopy spheres homeomorphic to S7, the lower bounds on
|π0(MSE (Σ7))| vary between 424 and 229.

|π0(MSE (S9))| ≥ 983 and |π0(MSE (Σ9))| ≥ 494.

|π0(MSE (S4n+1)| grows double exponentially with dimension.

Other Results for M+,0

|π0(M+,0(k(S2 × S3)| = ℵ0 and
|π0(M+,0(S2n × S2n+1)| = |π0(M+,0(S2n × S2n+1#Σ4n+1)| = ℵ0.

T = unit tangent sphere bundle over S2n+1, then |π0(M+,0(T )| = ℵ0.

Charles Boyer (University of New Mexico) Moduli Problems in Sasakian Geometry
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Extremal Sasakian metrics (B-Galicki-Simanca)

Sasakian structure S = (ξ, η,Φ, g) with scalar curvature sg .

Calabi-Sasaki Energy functional E(g) =

Z
M

s2
gdµg ,

Deform contact structure η 7→ η + tdcϕ within its isotopy class where ϕ is basic.

This gives critical point of E(g) ⇐⇒ ∂#
g sg is transversely holomorphic.

We say that g is extremal if it is critical point of E .

g is extremal Sasaki metric ⇐⇒ the transverse metric gD is extremal Kähler metric.

Special case: constant scalar curvature Sasakian (CSC). If c1(D) = 0⇒ Sasaki-η-Einstein
(SηE) with Ricci curvature Ricg = ag + bη ⊗ η, a, b constants. If b = 0 get Sasaki-Einstein
(SE).

If S = (ξ, η,Φ, g) is extremal (or CSC) then so is Sa = (a−1ξ, aη,Φ, ga) for any a > 0.
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Sasaki cones and bouquets

Sasaki cones

1 tk the Lie algebra of T k

2 Sasaki cone (unreduced): t+
k (D, J) = {ξ′ ∈ tk | η(ξ′) > 0, } s.t. S = (ξ, η,Φ, g) ∈ (D, J) is

Sasakian.
3 Sasaki cone (reduced): κ(D, J) = t+

k (D, J)/W where W is the Weyl group of CR(D, J)
4 κ(D, J) is finite dim’l moduli of Sasakian structures with underlying CR structure (D, J).
5 1 ≤ dimκ(D, J) ≤ n + 1 and if dimκ(D, J) = n + 1, M is toric Sasakian.
6 The set of extremal rays e(D, J) is open in κ(D, J).

Sasaki bouquets

1 a contact structure D of Sasaki type with a space of compatible CR structures J(D)
2 a map Q : J(D)→ { conjugacy classes of tori in the contactomorphism group Con(M,D)}
3 Get bouquet

[
α

κ(D, Jα) of Sasaki cones, Jα ∈ J(D), α ranges over distinct conjugacy classes.

4 A bouquet consisting of N Sasaki cones is called an N-bouquet, denoted by BN . The Sasaki cones
in an N-bouquet can have different dimension. The pre-moduli space is typically non-Hausdorff.

5 the Sasaki cones κ(D, Jα) can be distinguished by equivariant Gromov-Witten invariants
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The Join Construction (B-,Galicki,Ornea)

Join Construction: Given quasi-regular Sasakian manifolds πi : Mi−−−→ Zi with
Dim Mi = 2ni + 1 for i = 1, 2.

Form (l1, l2)-join π : M1 ?l1,l2 M2−−→ Z1 ×Z2 as an S1-orbibundle.

M1 ?l1,l2 M2 has a natural quasi-regular Sasakian structure Sl1,l2 for all relatively prime
positive integers l1, l2. Fixing l1, l2 fixes the contact orbifold. It is a smooth manifold iff
gcd(υ1l2, υ2l1) = 1 where υi is the order of orbifold Zi .

The dimension of M1 ?l1,l2 M2 is 2(n1 + n2) + 1.

The join M1 ?l1,l2 M2 has reducible transverse holonomy a subgroup of U(n1)× U(n2).

Take π2 : M2−−−→ Z2 to be the S1 orbibundle π2 : S3
w−−−→ CP1[w] determined by a weighted

S1 action on S3 with weights w = (w1,w2) satisfying gcd(l2, l1wi ) = 1, and M1 = M regular
Sasaki manifold whose quotient is a compact Kähler manifold N.

In this case the Join Construction and Admissible Contruction of Apostolov, Calderbank,
Gauduchon, Tønnesen-Friedman fit as hand and glove.

An S1 orbibundle M ?l1,l2 S3
w−−−→N × CP1[w], where N is compact Kähler.

The join M ?l1,l2 S3
w can be realized as a lens space bundle over N with fiber the lens space

L(l2; l1w1, l1,w2).

I present two fundamental theorems about M ?l1,l2 S3
w and then present brief outlines of

their proofs. Finally, I discuss the special case of S3-bundles over a Riemann surface Σg .

Charles Boyer (University of New Mexico) Moduli Problems in Sasakian Geometry
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/ 18



The Join Construction (B-,Galicki,Ornea)

Join Construction: Given quasi-regular Sasakian manifolds πi : Mi−−−→ Zi with
Dim Mi = 2ni + 1 for i = 1, 2.

Form (l1, l2)-join π : M1 ?l1,l2 M2−−→ Z1 ×Z2 as an S1-orbibundle.

M1 ?l1,l2 M2 has a natural quasi-regular Sasakian structure Sl1,l2 for all relatively prime
positive integers l1, l2. Fixing l1, l2 fixes the contact orbifold. It is a smooth manifold iff
gcd(υ1l2, υ2l1) = 1 where υi is the order of orbifold Zi .

The dimension of M1 ?l1,l2 M2 is 2(n1 + n2) + 1.

The join M1 ?l1,l2 M2 has reducible transverse holonomy a subgroup of U(n1)× U(n2).

Take π2 : M2−−−→ Z2 to be the S1 orbibundle π2 : S3
w−−−→ CP1[w] determined by a weighted

S1 action on S3 with weights w = (w1,w2) satisfying gcd(l2, l1wi ) = 1, and M1 = M regular
Sasaki manifold whose quotient is a compact Kähler manifold N.

In this case the Join Construction and Admissible Contruction of Apostolov, Calderbank,
Gauduchon, Tønnesen-Friedman fit as hand and glove.

An S1 orbibundle M ?l1,l2 S3
w−−−→N × CP1[w], where N is compact Kähler.

The join M ?l1,l2 S3
w can be realized as a lens space bundle over N with fiber the lens space

L(l2; l1w1, l1,w2).

I present two fundamental theorems about M ?l1,l2 S3
w and then present brief outlines of

their proofs. Finally, I discuss the special case of S3-bundles over a Riemann surface Σg .

Charles Boyer (University of New Mexico) Moduli Problems in Sasakian Geometry
May 20, 2015,Recent Advances in Kähler Geometry,Vanderbilt University 12

/ 18



The Join Construction (B-,Galicki,Ornea)

Join Construction: Given quasi-regular Sasakian manifolds πi : Mi−−−→ Zi with
Dim Mi = 2ni + 1 for i = 1, 2.

Form (l1, l2)-join π : M1 ?l1,l2 M2−−→ Z1 ×Z2 as an S1-orbibundle.

M1 ?l1,l2 M2 has a natural quasi-regular Sasakian structure Sl1,l2 for all relatively prime
positive integers l1, l2. Fixing l1, l2 fixes the contact orbifold. It is a smooth manifold iff
gcd(υ1l2, υ2l1) = 1 where υi is the order of orbifold Zi .

The dimension of M1 ?l1,l2 M2 is 2(n1 + n2) + 1.

The join M1 ?l1,l2 M2 has reducible transverse holonomy a subgroup of U(n1)× U(n2).

Take π2 : M2−−−→ Z2 to be the S1 orbibundle π2 : S3
w−−−→ CP1[w] determined by a weighted

S1 action on S3 with weights w = (w1,w2) satisfying gcd(l2, l1wi ) = 1, and M1 = M regular
Sasaki manifold whose quotient is a compact Kähler manifold N.

In this case the Join Construction and Admissible Contruction of Apostolov, Calderbank,
Gauduchon, Tønnesen-Friedman fit as hand and glove.

An S1 orbibundle M ?l1,l2 S3
w−−−→N × CP1[w], where N is compact Kähler.

The join M ?l1,l2 S3
w can be realized as a lens space bundle over N with fiber the lens space

L(l2; l1w1, l1,w2).

I present two fundamental theorems about M ?l1,l2 S3
w and then present brief outlines of

their proofs. Finally, I discuss the special case of S3-bundles over a Riemann surface Σg .

Charles Boyer (University of New Mexico) Moduli Problems in Sasakian Geometry
May 20, 2015,Recent Advances in Kähler Geometry,Vanderbilt University 12

/ 18



The Join Construction (B-,Galicki,Ornea)

Join Construction: Given quasi-regular Sasakian manifolds πi : Mi−−−→ Zi with
Dim Mi = 2ni + 1 for i = 1, 2.

Form (l1, l2)-join π : M1 ?l1,l2 M2−−→ Z1 ×Z2 as an S1-orbibundle.

M1 ?l1,l2 M2 has a natural quasi-regular Sasakian structure Sl1,l2 for all relatively prime
positive integers l1, l2. Fixing l1, l2 fixes the contact orbifold. It is a smooth manifold iff
gcd(υ1l2, υ2l1) = 1 where υi is the order of orbifold Zi .

The dimension of M1 ?l1,l2 M2 is 2(n1 + n2) + 1.

The join M1 ?l1,l2 M2 has reducible transverse holonomy a subgroup of U(n1)× U(n2).

Take π2 : M2−−−→ Z2 to be the S1 orbibundle π2 : S3
w−−−→ CP1[w] determined by a weighted

S1 action on S3 with weights w = (w1,w2) satisfying gcd(l2, l1wi ) = 1, and M1 = M regular
Sasaki manifold whose quotient is a compact Kähler manifold N.

In this case the Join Construction and Admissible Contruction of Apostolov, Calderbank,
Gauduchon, Tønnesen-Friedman fit as hand and glove.

An S1 orbibundle M ?l1,l2 S3
w−−−→N × CP1[w], where N is compact Kähler.

The join M ?l1,l2 S3
w can be realized as a lens space bundle over N with fiber the lens space

L(l2; l1w1, l1,w2).

I present two fundamental theorems about M ?l1,l2 S3
w and then present brief outlines of

their proofs. Finally, I discuss the special case of S3-bundles over a Riemann surface Σg .

Charles Boyer (University of New Mexico) Moduli Problems in Sasakian Geometry
May 20, 2015,Recent Advances in Kähler Geometry,Vanderbilt University 12

/ 18



The Join Construction (B-,Galicki,Ornea)

Join Construction: Given quasi-regular Sasakian manifolds πi : Mi−−−→ Zi with
Dim Mi = 2ni + 1 for i = 1, 2.

Form (l1, l2)-join π : M1 ?l1,l2 M2−−→ Z1 ×Z2 as an S1-orbibundle.

M1 ?l1,l2 M2 has a natural quasi-regular Sasakian structure Sl1,l2 for all relatively prime
positive integers l1, l2. Fixing l1, l2 fixes the contact orbifold. It is a smooth manifold iff
gcd(υ1l2, υ2l1) = 1 where υi is the order of orbifold Zi .

The dimension of M1 ?l1,l2 M2 is 2(n1 + n2) + 1.

The join M1 ?l1,l2 M2 has reducible transverse holonomy a subgroup of U(n1)× U(n2).

Take π2 : M2−−−→ Z2 to be the S1 orbibundle π2 : S3
w−−−→ CP1[w] determined by a weighted

S1 action on S3 with weights w = (w1,w2) satisfying gcd(l2, l1wi ) = 1, and M1 = M regular
Sasaki manifold whose quotient is a compact Kähler manifold N.

In this case the Join Construction and Admissible Contruction of Apostolov, Calderbank,
Gauduchon, Tønnesen-Friedman fit as hand and glove.

An S1 orbibundle M ?l1,l2 S3
w−−−→N × CP1[w], where N is compact Kähler.

The join M ?l1,l2 S3
w can be realized as a lens space bundle over N with fiber the lens space

L(l2; l1w1, l1,w2).

I present two fundamental theorems about M ?l1,l2 S3
w and then present brief outlines of

their proofs. Finally, I discuss the special case of S3-bundles over a Riemann surface Σg .

Charles Boyer (University of New Mexico) Moduli Problems in Sasakian Geometry
May 20, 2015,Recent Advances in Kähler Geometry,Vanderbilt University 12

/ 18



The Join Construction (B-,Galicki,Ornea)

Join Construction: Given quasi-regular Sasakian manifolds πi : Mi−−−→ Zi with
Dim Mi = 2ni + 1 for i = 1, 2.

Form (l1, l2)-join π : M1 ?l1,l2 M2−−→ Z1 ×Z2 as an S1-orbibundle.

M1 ?l1,l2 M2 has a natural quasi-regular Sasakian structure Sl1,l2 for all relatively prime
positive integers l1, l2. Fixing l1, l2 fixes the contact orbifold. It is a smooth manifold iff
gcd(υ1l2, υ2l1) = 1 where υi is the order of orbifold Zi .

The dimension of M1 ?l1,l2 M2 is 2(n1 + n2) + 1.

The join M1 ?l1,l2 M2 has reducible transverse holonomy a subgroup of U(n1)× U(n2).

Take π2 : M2−−−→ Z2 to be the S1 orbibundle π2 : S3
w−−−→ CP1[w] determined by a weighted

S1 action on S3 with weights w = (w1,w2) satisfying gcd(l2, l1wi ) = 1, and M1 = M regular
Sasaki manifold whose quotient is a compact Kähler manifold N.

In this case the Join Construction and Admissible Contruction of Apostolov, Calderbank,
Gauduchon, Tønnesen-Friedman fit as hand and glove.

An S1 orbibundle M ?l1,l2 S3
w−−−→N × CP1[w], where N is compact Kähler.

The join M ?l1,l2 S3
w can be realized as a lens space bundle over N with fiber the lens space

L(l2; l1w1, l1,w2).

I present two fundamental theorems about M ?l1,l2 S3
w and then present brief outlines of

their proofs. Finally, I discuss the special case of S3-bundles over a Riemann surface Σg .

Charles Boyer (University of New Mexico) Moduli Problems in Sasakian Geometry
May 20, 2015,Recent Advances in Kähler Geometry,Vanderbilt University 12

/ 18



The Join Construction (B-,Galicki,Ornea)

Join Construction: Given quasi-regular Sasakian manifolds πi : Mi−−−→ Zi with
Dim Mi = 2ni + 1 for i = 1, 2.

Form (l1, l2)-join π : M1 ?l1,l2 M2−−→ Z1 ×Z2 as an S1-orbibundle.

M1 ?l1,l2 M2 has a natural quasi-regular Sasakian structure Sl1,l2 for all relatively prime
positive integers l1, l2. Fixing l1, l2 fixes the contact orbifold. It is a smooth manifold iff
gcd(υ1l2, υ2l1) = 1 where υi is the order of orbifold Zi .

The dimension of M1 ?l1,l2 M2 is 2(n1 + n2) + 1.

The join M1 ?l1,l2 M2 has reducible transverse holonomy a subgroup of U(n1)× U(n2).

Take π2 : M2−−−→ Z2 to be the S1 orbibundle π2 : S3
w−−−→ CP1[w] determined by a weighted

S1 action on S3 with weights w = (w1,w2) satisfying gcd(l2, l1wi ) = 1, and M1 = M regular
Sasaki manifold whose quotient is a compact Kähler manifold N.

In this case the Join Construction and Admissible Contruction of Apostolov, Calderbank,
Gauduchon, Tønnesen-Friedman fit as hand and glove.

An S1 orbibundle M ?l1,l2 S3
w−−−→N × CP1[w], where N is compact Kähler.

The join M ?l1,l2 S3
w can be realized as a lens space bundle over N with fiber the lens space

L(l2; l1w1, l1,w2).

I present two fundamental theorems about M ?l1,l2 S3
w and then present brief outlines of

their proofs. Finally, I discuss the special case of S3-bundles over a Riemann surface Σg .

Charles Boyer (University of New Mexico) Moduli Problems in Sasakian Geometry
May 20, 2015,Recent Advances in Kähler Geometry,Vanderbilt University 12

/ 18



The Join Construction (B-,Galicki,Ornea)

Join Construction: Given quasi-regular Sasakian manifolds πi : Mi−−−→ Zi with
Dim Mi = 2ni + 1 for i = 1, 2.

Form (l1, l2)-join π : M1 ?l1,l2 M2−−→ Z1 ×Z2 as an S1-orbibundle.

M1 ?l1,l2 M2 has a natural quasi-regular Sasakian structure Sl1,l2 for all relatively prime
positive integers l1, l2. Fixing l1, l2 fixes the contact orbifold. It is a smooth manifold iff
gcd(υ1l2, υ2l1) = 1 where υi is the order of orbifold Zi .

The dimension of M1 ?l1,l2 M2 is 2(n1 + n2) + 1.

The join M1 ?l1,l2 M2 has reducible transverse holonomy a subgroup of U(n1)× U(n2).

Take π2 : M2−−−→ Z2 to be the S1 orbibundle π2 : S3
w−−−→ CP1[w] determined by a weighted

S1 action on S3 with weights w = (w1,w2) satisfying gcd(l2, l1wi ) = 1, and M1 = M regular
Sasaki manifold whose quotient is a compact Kähler manifold N.

In this case the Join Construction and Admissible Contruction of Apostolov, Calderbank,
Gauduchon, Tønnesen-Friedman fit as hand and glove.

An S1 orbibundle M ?l1,l2 S3
w−−−→N × CP1[w], where N is compact Kähler.

The join M ?l1,l2 S3
w can be realized as a lens space bundle over N with fiber the lens space

L(l2; l1w1, l1,w2).

I present two fundamental theorems about M ?l1,l2 S3
w and then present brief outlines of

their proofs. Finally, I discuss the special case of S3-bundles over a Riemann surface Σg .

Charles Boyer (University of New Mexico) Moduli Problems in Sasakian Geometry
May 20, 2015,Recent Advances in Kähler Geometry,Vanderbilt University 12

/ 18



The Join Construction (B-,Galicki,Ornea)

Join Construction: Given quasi-regular Sasakian manifolds πi : Mi−−−→ Zi with
Dim Mi = 2ni + 1 for i = 1, 2.

Form (l1, l2)-join π : M1 ?l1,l2 M2−−→ Z1 ×Z2 as an S1-orbibundle.

M1 ?l1,l2 M2 has a natural quasi-regular Sasakian structure Sl1,l2 for all relatively prime
positive integers l1, l2. Fixing l1, l2 fixes the contact orbifold. It is a smooth manifold iff
gcd(υ1l2, υ2l1) = 1 where υi is the order of orbifold Zi .

The dimension of M1 ?l1,l2 M2 is 2(n1 + n2) + 1.

The join M1 ?l1,l2 M2 has reducible transverse holonomy a subgroup of U(n1)× U(n2).

Take π2 : M2−−−→ Z2 to be the S1 orbibundle π2 : S3
w−−−→ CP1[w] determined by a weighted

S1 action on S3 with weights w = (w1,w2) satisfying gcd(l2, l1wi ) = 1, and M1 = M regular
Sasaki manifold whose quotient is a compact Kähler manifold N.

In this case the Join Construction and Admissible Contruction of Apostolov, Calderbank,
Gauduchon, Tønnesen-Friedman fit as hand and glove.

An S1 orbibundle M ?l1,l2 S3
w−−−→N × CP1[w], where N is compact Kähler.

The join M ?l1,l2 S3
w can be realized as a lens space bundle over N with fiber the lens space

L(l2; l1w1, l1,w2).

I present two fundamental theorems about M ?l1,l2 S3
w and then present brief outlines of

their proofs. Finally, I discuss the special case of S3-bundles over a Riemann surface Σg .

Charles Boyer (University of New Mexico) Moduli Problems in Sasakian Geometry
May 20, 2015,Recent Advances in Kähler Geometry,Vanderbilt University 12

/ 18



The Join Construction (B-,Galicki,Ornea)

Join Construction: Given quasi-regular Sasakian manifolds πi : Mi−−−→ Zi with
Dim Mi = 2ni + 1 for i = 1, 2.

Form (l1, l2)-join π : M1 ?l1,l2 M2−−→ Z1 ×Z2 as an S1-orbibundle.

M1 ?l1,l2 M2 has a natural quasi-regular Sasakian structure Sl1,l2 for all relatively prime
positive integers l1, l2. Fixing l1, l2 fixes the contact orbifold. It is a smooth manifold iff
gcd(υ1l2, υ2l1) = 1 where υi is the order of orbifold Zi .

The dimension of M1 ?l1,l2 M2 is 2(n1 + n2) + 1.

The join M1 ?l1,l2 M2 has reducible transverse holonomy a subgroup of U(n1)× U(n2).

Take π2 : M2−−−→ Z2 to be the S1 orbibundle π2 : S3
w−−−→ CP1[w] determined by a weighted

S1 action on S3 with weights w = (w1,w2) satisfying gcd(l2, l1wi ) = 1, and M1 = M regular
Sasaki manifold whose quotient is a compact Kähler manifold N.

In this case the Join Construction and Admissible Contruction of Apostolov, Calderbank,
Gauduchon, Tønnesen-Friedman fit as hand and glove.

An S1 orbibundle M ?l1,l2 S3
w−−−→N × CP1[w], where N is compact Kähler.

The join M ?l1,l2 S3
w can be realized as a lens space bundle over N with fiber the lens space

L(l2; l1w1, l1,w2).

I present two fundamental theorems about M ?l1,l2 S3
w and then present brief outlines of

their proofs. Finally, I discuss the special case of S3-bundles over a Riemann surface Σg .

Charles Boyer (University of New Mexico) Moduli Problems in Sasakian Geometry
May 20, 2015,Recent Advances in Kähler Geometry,Vanderbilt University 12

/ 18



Fundamental Theorem (B-,Tønnesen-Friedman)

Existence of extremal and CSC Sasaki metrics by deforming in the Sasaki cone

Theorem (B-,Tønnesen-Friedman)

Let Ml1,l2,w = M ?l1,l2 S3
w be the S3

w-join with a regular Sasaki manifold M which is an S1-bundle
over a compact Kähler manifold N with constant scalar curvature. Then for each vector
w = (w1,w2) ∈ Z+ × Z+ with relatively prime components satisfying w1 > w2 there exists a Reeb
vector field ξv in a 2-dimensional sub cone, the w-cone, of the Sasaki cone on Ml1,l2,w such that
the corresponding ray of Sasakian structures Sa = (a−1ξv, aηv,Φ, ga) has constant scalar
curvature.

1 If the scalar curvature sN of N is nonnegative, then the w-cone is exhausted by extremal Sasaki metrics.

2 If the scalar curvature sN of N is positive and l2 is large enough there are infinitely many contact CR
structures with at least 3 rays of CSC Sasakian structures in the w-cone.

3 When N is positive KE get SE metric on Ml1,l2,w for appropriate choice of (l1, l2).

The SE metrics of 3 were previously obtained by physicists (Gauntlett, Martelli, Sparks,
Waldram) by another method.
Most of the CSC Sasakian structures are irregular.
Relation to CR Yamabe Problem (Jerison and Lee): For a Sasaki structure the Webster
pseudo-Hermitian metric coincides with the transverse Kähler metric. So a CSC Sasaki
metric provides a solution to the CR Yamabe Problem. It is know that when the CR Yamabe
invariant λ(M) is nonpositive, the CSC metric is unique. However, when λ(M) > 0 there
can be several CSC solutions. Our results provides many such examples.

Charles Boyer (University of New Mexico) Moduli Problems in Sasakian Geometry
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Outline of proof of Fundamental Theorem:

The existence of an extra Hamiltonian Killing vector field from S3
w gives the 2-dimensional

Sasaki w-cone t+
w .

The quotient space of the S1-action generated by any quasi-regular Reeb vector field ξv ∈ t+
w

is a ruled orbifold (Sn,∆mv1,mv2 ) with a branch divisor

∆mv1,mv2 =
`
1−

1
mv1

´
D1 +

`
1−

1
mv2

´
D2

consisting of the zero D1 and infinity D2 sections of the projective bundle Sn = P(1l⊕ Ln)
over N with ramification indices mv1,mv2, respectively and n an integer determined by
l1, l2,w, v.
For n 6= 0, apply the admissible construction of Apostolov, Calderbank, Gauduchon,
Tønnesen-Friedman on Hamiltonian 2-forms to the ruled Kähler orbifolds (Sn,∆mv1,mv2 )

This gives the Kähler orbifold metric g(Sn,∆) = 1+rz
r gΣg + dz2

Θ(z)
+ Θ(z)θ2 where θ is a

connection 1-form, dθ = nωN , 0 < r < 1, Θ(z) > 0 and
−1 < z < 1,Θ(±1) = 0,Θ′(−1) = 2

mv2
,Θ′(1) = − 2

mv1
.

When Θ(z)(1 + rz)d is a (d + 3) order ((d + 2) order) polynomial we get extremal (CSC)
Kähler metrics. Here d is the complex dimension of N.
Lifing to Ml1,l2,w gives extremal (CSC) Sasaki metrics in the quasi-regular case.
The irregular case uses a continuity argument together with the fact that quasi-regular
Sasaki structures are dense in the Sasaki cone.
The existence of multiple rays of CSC Sasaki metrics comes from a sign changing count.
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S3-bundles over Riemann surface Σg of genus g: Case 1: genus g = 0
B-,Pati;B-,Tønnesen-Friedman

When g = 0 we get Sasakian structures on the two S3-bundles over the S2 for all relatively
prime positive integers l1, l2. (B-,B-Pati) (Also E. Legendre).

When c1(D) = 0 we recover the SE metrics on Y p,q of the physicists Guantlett, Martelli,
Sparks, Waldram on the manifold S2 × S3.

If contact homology is well-defined Y p,q and Y p′,q′ belong to distinct contact structures when
p′ 6= p (Abreu,Macarini; B-,Pati).

For fixed p there are φ(p) (Euler phi-function) inequivalent SE structures belonging to the
same contact structure giving a φ(p)-bouquet Bφ(p)(D0) (B-,Pati).

So Y p,q and Y p,q′ map to the same component of M+,0 under c.

Example: A regular 4-bouquet B4(D−6) on S2 × S3 with l2 = 1 and c1(D) = −6γ. The base
spaces are Hirzebruch surfaces S0,S2,S4,S6, respectively.

If we take l2 > 1 we get c1(D) = (2l2 − 8)γ and we loose the product base S0 = CP1 × CP1

and regularity giving a 3-bouquet on S2 × S3 with orbifold Hirzebruch surfaces
(S2,∆l2 ), (S4,∆l2 ), (S6,∆l2 ) as base spaces. In each case the fiber is CP1/Zl2 .

In each case we have at least one CSC ray of Sasaki metrics in each Sasaki cone.

If l2 > 53 all three Sasaki cones have 3 CSC rays of Sasaki metrics.

Similar results hold for the non-trivial S3-bundle over S2, but no SE metrics.
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(S2,∆l2 ), (S4,∆l2 ), (S6,∆l2 ) as base spaces. In each case the fiber is CP1/Zl2 .

In each case we have at least one CSC ray of Sasaki metrics in each Sasaki cone.

If l2 > 53 all three Sasaki cones have 3 CSC rays of Sasaki metrics.

Similar results hold for the non-trivial S3-bundle over S2, but no SE metrics.

Charles Boyer (University of New Mexico) Moduli Problems in Sasakian Geometry
May 20, 2015,Recent Advances in Kähler Geometry,Vanderbilt University 15

/ 18



S3-bundles over Riemann surface Σg of genus g: Case 1: genus g = 0
B-,Pati;B-,Tønnesen-Friedman
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S3-bundles over Riemann surface Σg of genus g: Case 1: genus g > 0
B-,Tønnesen-Friedman

When g > 0 we need l2 = 1 to get S3-bundles over a Riemann surface Σg . There are two
diffeomorphism types, the trivial bundle Σg × S3, the non-trivial bundle Σg e×S3.

On both manifolds there is a countably infinite number of inequivalent contact structures Dk
admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem 1
admits a unique ray of CSC Sasakian structures.

When 0 < g ≤ 4 all 2-dimensional Sasaki cones κ(Dk , J) on S3-bundles over Σg are
exhausted by extremal Sasaki metrics
For g ≥ 20 there are rays in κ(Dk , J) which admit no extremal Sasaki metrics.

For any genus g ≥ 1 and for each positive integer k , the contact manifold (Σg × S3,Dk ) has
a k -bouquet Bk of 2-dimensional Sasaki cones.

Example: The 4-bouquet in the g = 0 case persists on Σg × S3 for all genera g, but the base
spaces are pseudo-Hirzebruch surfaces in this case.

The distinct Sasaki cones in the bouquet Bk correspond to distinct conjugacy classes of
maximal tori in Con(Dl1,l2,w). Uses the work of Buşe on equivariant Gromov-Witten invariants.

The construction can be ‘twisted’ by reducible representations of the fundamental group
π1(Σg). The irreducible representations of π1(Σg) give 1-dimensional Sasaki cones. They
arise from stable rank two vector bundles and have CSC Sasaki metrics.

When l2 > 1 some of the same type of results have been obtained on 5-manifolds whose
fundamental group is a non-Abelian extension of π1(Σg) in Castañeda’s thesis.
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THANK YOU!
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