# Extremal Sasakian Metrics on S<sup>3</sup>-bundles over Riemann Surfaces Santiago de Compostela, Conference in Honor of Luis Cordero

Charles Boyer

University of New Mexico

June 2012



#### Problems:

Given a contact structure or isotopy class of contact structures:

• Determine the space of compatible Sasakian structures.

#### Problems:

Given a contact structure or isotopy class of contact structures:

- Determine the space of compatible Sasakian structures.
- Determine the (pre)-moduli space of extremal Sasakian structures

#### Problems:

Given a contact structure or isotopy class of contact structures:

- Determine the space of compatible Sasakian structures.
- Determine the (pre)-moduli space of extremal Sasakian structures
- Determine those of constant scalar curvature (CSC).

#### **Problems:**

Given a contact structure or isotopy class of contact structures:

- Determine the space of compatible Sasakian structures.
- Determine the (pre)-moduli space of extremal Sasakian structures
- Determine those of constant scalar curvature (CSC).
- Given a manifold determine how many contact structures of Sasaki type there are.

- Compact Contact Manifold M.
- A contact 1-form  $\eta$  such that

$$\eta \wedge (d\eta)^n \neq 0$$
.

#### Compact Contact Manifold M.

• A contact 1-form  $\eta$  such that

$$\eta \wedge (d\eta)^n \neq 0.$$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some  $f \neq 0$ , take f > 0. or equivalently a codimension 1 subbundle  $\mathfrak{D} = \operatorname{Ker} \eta$  of TM with a conformal symplectic structure.

#### Compact Contact Manifold M.

• A contact 1-form  $\eta$  such that

$$\eta \wedge (d\eta)^n \neq 0.$$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some  $f \neq 0$ , take f > 0. or equivalently a codimension 1 subbundle  $\mathcal{D} = \operatorname{Ker} \eta$  of TM with a conformal symplectic structure.

• A contact invariant: the first Chern class  $c_1(\mathcal{D})$ 

## Compact Contact Manifold M.

• A contact 1-form  $\eta$  such that

$$\eta \wedge (d\eta)^n \neq 0.$$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some  $f \neq 0$ , take f > 0. or equivalently a codimension 1 subbundle  $\mathcal{D} = \operatorname{Ker} \eta$  of TM with a conformal symplectic structure.

- A contact invariant: the first Chern class  $c_1(\mathcal{D})$
- Unique vector field  $\xi$ , called the **Reeb vector field**, satisfying

$$\xi \rfloor \eta = 1, \qquad \xi \rfloor d\eta = 0.$$

#### Compact Contact Manifold M.

• A contact 1-form  $\eta$  such that

$$\eta \wedge (d\eta)^n \neq 0.$$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some  $f \neq 0$ , take f > 0. or equivalently a codimension 1 subbundle  $\mathcal{D} = \operatorname{Ker} \eta$  of TM with a conformal symplectic structure.

- A contact invariant: the first Chern class  $c_1(\mathcal{D})$
- Unique vector field  $\xi$ , called the **Reeb vector field**, satisfying

$$\xi \rfloor \eta = 1, \qquad \xi \rfloor d\eta = 0.$$

• The characteristic foliation  $\mathcal{F}_{\xi}$ : It is called quasi-regular if each leaf of  $\mathcal{F}_{\xi}$  passes through any nbd U at most k times. It is regular if k = 1; otherwise, it is irregular.

#### Compact Contact Manifold M.

• A contact 1-form  $\eta$  such that

$$\eta \wedge (d\eta)^n \neq 0.$$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some  $f \neq 0$ , take f > 0. or equivalently a codimension 1 subbundle  $\mathcal{D} = \operatorname{Ker} \eta$  of TM with a conformal symplectic structure.

- A contact invariant: the first Chern class  $c_1(\mathcal{D})$
- Unique vector field  $\xi$ , called the **Reeb vector field**, satisfying

$$\xi \rfloor \eta = 1, \qquad \xi \rfloor d\eta = 0.$$

- The characteristic foliation  $\mathcal{F}_{\xi}$ : It is called quasi-regular if each leaf of  $\mathcal{F}_{\xi}$  passes through any nbd U at most k times. It is regular if k = 1; otherwise, it is irregular.
- Quasi-regularity is strong, most contact 1-forms are irregular.

#### Compact Contact Manifold M.

• A contact 1-form  $\eta$  such that

$$\eta \wedge (d\eta)^n \neq 0.$$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some  $f \neq 0$ , take f > 0. or equivalently a codimension 1 subbundle  $\mathcal{D} = \operatorname{Ker} \eta$  of TM with a conformal symplectic structure.

- A contact invariant: the first Chern class  $c_1(\mathcal{D})$
- Unique vector field  $\xi$ , called the **Reeb vector field**, satisfying

$$\xi \rfloor \eta = 1, \qquad \xi \rfloor d\eta = 0.$$

- The characteristic foliation  $\mathcal{F}_{\xi}$ : It is called quasi-regular if each leaf of  $\mathcal{F}_{\xi}$  passes through any nbd U at most k times. It is regular if k = 1; otherwise, it is irregular.
- Quasi-regularity is strong, most contact 1-forms are irregular.
- Contact bundle D → choose almost complex structure J extend to an endomorphism Φ with Φξ = 0 with a compatible metric

$$g = d\eta \circ (\Phi \otimes \mathbb{1}) + \eta \otimes \eta$$

Quadruple  $S = (\xi, \eta, \Phi, g)$  called **contact metric structure** 

#### Compact Contact Manifold M.

• A contact 1-form  $\eta$  such that

$$\eta \wedge (d\eta)^n \neq 0.$$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some  $f \neq 0$ , take f > 0. or equivalently a codimension 1 subbundle  $\mathcal{D} = \operatorname{Ker} \eta$  of TM with a conformal symplectic structure.

- A contact invariant: the first Chern class  $c_1(\mathcal{D})$
- Unique vector field  $\xi$ , called the **Reeb vector field**, satisfying

$$\xi \rfloor \eta = 1, \qquad \xi \rfloor d\eta = 0.$$

- The characteristic foliation  $\mathcal{F}_{\xi}$ : It is called quasi-regular if each leaf of  $\mathcal{F}_{\xi}$  passes through any nbd U at most k times. It is regular if k = 1; otherwise, it is irregular.
- Quasi-regularity is strong, most contact 1-forms are irregular.
- Contact bundle  $\mathfrak{D} \to$  choose almost complex structure J extend to an endomorphism  $\Phi$  with  $\Phi \xi = 0$  with a compatible metric

$$g = d\eta \circ (\Phi \otimes 1) + \eta \otimes \eta$$

Quadruple  $S = (\xi, \eta, \Phi, g)$  called **contact metric structure** 

• The pair  $(\mathfrak{D}, J)$  is a **strictly pseudo-convex almost CR structure** (s $\psi$ CR structure).

# Definition

# **Definition**

The contact metric structure  $\mathcal{S}=(\xi,\eta,\Phi,g)$  is **K-contact** if  $\mathcal{L}_{\xi}g=0$  (or  $\mathcal{L}_{\xi}\Phi=0$ ). It is **Sasakian** if in addition  $(\mathcal{D},J)$  is integrable and the **Transverse Metric**  $g_{\mathcal{D}}$  is Kähler. In the latter case we say that the contact structure  $\mathcal{D}$  is of **Sasaki** type.

• Cone (Symplectization):  $C(M) = M \times \mathbb{R}^+$  with symplectic form  $d(r^2\eta), r \in \mathbb{R}^+$ .

## Definition

- Cone (Symplectization):  $C(M) = M \times \mathbb{R}^+$  with symplectic form  $d(r^2\eta), r \in \mathbb{R}^+$ .
- Cone Metric  $g_C = dr^2 + r^2g$

## Definition

- Cone (Symplectization):  $C(M) = M \times \mathbb{R}^+$  with symplectic form  $d(r^2\eta), r \in \mathbb{R}^+$ .
- Cone Metric  $g_C = dr^2 + r^2g$
- $g_C$  is Kähler  $\iff g$  is Sasaki  $\iff g_D$  is Kähler.

## **Definition**

- Cone (Symplectization):  $C(M) = M \times \mathbb{R}^+$  with symplectic form  $d(r^2\eta), r \in \mathbb{R}^+$ .
- Cone Metric  $g_C = dr^2 + r^2g$
- $ullet \ g_{\mathcal C}$  is Kähler  $\iff g$  is Sasaki  $\iff g_{\mathbb D}$  is Kähler.
- Nested structures: Sasakian ⊂ sψCR ⊂ Contact

#### Definition

- Cone (Symplectization):  $C(M) = M \times \mathbb{R}^+$  with symplectic form  $d(r^2\eta), r \in \mathbb{R}^+$ .
- Cone Metric  $g_C = dr^2 + r^2g$
- $ullet \ g_{\mathcal{C}}$  is Kähler  $\iff g$  is Sasaki  $\iff g_{\mathfrak{D}}$  is Kähler.
- Nested structures: Sasakian ⊂ sψCR ⊂ Contact
- Sasakian structure gives pseudo convex CR structure  $(\mathfrak{D},J)$  and a transverse holomorphic structure  $(\xi,\bar{J})$ . The former fixes the contact structure while the latter fixes the characteristic foliation.

#### **Symmetries**

Contactomorphism Group

$$\mathfrak{Con}(M, \mathcal{D}) = \{ \phi \in \mathfrak{Diff}(M) \mid \phi_* \mathcal{D} \subset \mathcal{D} \}.$$

#### **Symmetries**

Contactomorphism Group

$$\mathfrak{Con}(\mathit{M},\mathfrak{D}) = \{ \phi \in \mathfrak{Diff}(\mathit{M}) \mid \phi_* \mathfrak{D} \subset \mathfrak{D} \}.$$

Strict Contactomorphism Group

$$\mathfrak{Con}(M, \eta) = \{ \phi \in \mathfrak{Diff}(M) \mid \phi^* \eta = \eta \} \subset \mathfrak{Con}(M, \mathfrak{D}).$$

#### **Symmetries**

Contactomorphism Group

$$\mathfrak{Con}(M, \mathcal{D}) = \{ \phi \in \mathfrak{Diff}(M) \mid \phi_* \mathcal{D} \subset \mathcal{D} \}.$$

Strict Contactomorphism Group

$$\mathfrak{Con}(M, \eta) = \{ \phi \in \mathfrak{Diff}(M) \mid \phi^* \eta = \eta \} \subset \mathfrak{Con}(M, \mathcal{D}).$$

CR transformation group

$$\mathfrak{CR}(\mathfrak{D},J) = \{ \phi \in \mathfrak{Con}(M,\mathfrak{D}) \mid \phi_*J = J\phi_* \}$$

#### **Symmetries**

Contactomorphism Group

$$\mathfrak{Con}(M, \mathcal{D}) = \{ \phi \in \mathfrak{Diff}(M) \mid \phi_* \mathcal{D} \subset \mathcal{D} \}.$$

Strict Contactomorphism Group

$$\mathfrak{Con}(M, \eta) = \{ \phi \in \mathfrak{Diff}(M) \mid \phi^* \eta = \eta \} \subset \mathfrak{Con}(M, \mathfrak{D}).$$

CR transformation group

$$\mathfrak{CR}(\mathfrak{D}, J) = \{ \phi \in \mathfrak{Con}(M, \mathfrak{D}) \mid \phi_* J = J \phi_* \}$$

Sasakian automorphism group

$$\mathfrak{Aut}(\mathcal{S}) = \{ \phi \in \mathfrak{CR}(\mathcal{D}, \mathbf{J}) \mid \phi_* \xi = \xi, \ \phi^* g = g \}.$$

#### **Symmetries**

Contactomorphism Group

$$\mathfrak{Con}(M, \mathfrak{D}) = \{ \phi \in \mathfrak{Diff}(M) \mid \phi_* \mathfrak{D} \subset \mathfrak{D} \}.$$

Strict Contactomorphism Group

$$\mathfrak{Con}(M, \eta) = \{ \phi \in \mathfrak{Diff}(M) \mid \phi^* \eta = \eta \} \subset \mathfrak{Con}(M, \mathcal{D}).$$

CR transformation group

$$\mathfrak{CR}(\mathcal{D}, J) = \{ \phi \in \mathfrak{Con}(M, \mathcal{D}) \mid \phi_* J = J \phi_* \}$$

Sasakian automorphism group

$$\mathfrak{Aut}(\mathcal{S}) = \{ \phi \in \mathfrak{CR}(\mathcal{D}, \mathbf{J}) \mid \phi_* \xi = \xi, \ \phi^* g = g \}.$$

• maximal torus with  $0 \le k \le n+1$ 



#### Sasaki cones and bouquets (B-Galicki-Simanca,B-)

- space of compatible CR structures  $\mathcal{J}(\mathcal{D})$

- space of compatible CR structures  $\mathcal{J}(\mathcal{D})$
- a map  $\mathfrak{Q}: \mathcal{J}(\mathfrak{D}) \to \{\text{conjugacy classes of maximal tori in } \mathfrak{Con}(M, \mathfrak{D})\}$

- space of compatible CR structures J(D)
- a map  $\mathfrak{Q}: \mathcal{J}(\mathfrak{D}) \to \{\text{conjugacy classes of maximal tori in } \mathfrak{Con}(M, \mathfrak{D})\}$
- unreduced Sasaki cone:  $\mathfrak{t}_k^+(\mathcal{D},J)=\{\xi'\in\mathfrak{t}_k\mid\eta(\xi')>0,\}$  s.t.  $\mathcal{S}=(\xi,\eta,\Phi,g)\in(\mathcal{D},J)$  is Sasakian.

- space of compatible CR structures  $\mathcal{J}(\mathcal{D})$
- a map  $\mathfrak{Q}: \mathcal{J}(\mathfrak{D}) \to \{\text{conjugacy classes of maximal tori in } \mathfrak{Con}(M, \mathfrak{D})\}$
- unreduced Sasaki cone:  $\mathfrak{t}_k^+(\mathcal{D},J)=\{\xi'\in\mathfrak{t}_k\mid\eta(\xi')>0,\}$  s.t.  $\mathcal{S}=(\xi,\eta,\Phi,g)\in(\mathcal{D},J)$  is Sasakian.
- Note that when  $(\mathcal{D}, J)$  is fixed, a choice of  $\xi' \in \mathfrak{t}_k^+$  determines the Sasakian structure  $\mathcal{S}$  uniquely.

- space of compatible CR structures J(D)
- a map  $\mathfrak{Q}: \mathcal{J}(\mathfrak{D}) \to \{\text{conjugacy classes of maximal tori in } \mathfrak{Con}(M, \mathfrak{D})\}$
- unreduced Sasaki cone:  $\mathfrak{t}_k^+(\mathcal{D},J)=\{\xi'\in\mathfrak{t}_k\mid\eta(\xi')>0,\}$  s.t.  $\mathcal{S}=(\xi,\eta,\Phi,g)\in(\mathcal{D},J)$  is Sasakian.
- Note that when  $(\mathcal{D}, J)$  is fixed, a choice of  $\xi' \in \mathfrak{t}_k^+$  determines the Sasakian structure  $\mathcal{S}$  uniquely.
- finite dim'l moduli of Sasakian structures within CR structure, the Sasaki cone  $\kappa(\mathcal{D},J)=\mathfrak{t}_k^+(\mathcal{D},J)/\mathcal{W}(\mathcal{D},J)$  where  $\mathcal{W}$  is the Weyl group of  $\mathfrak{CR}(\mathcal{D},J)$ .

- space of compatible CR structures J(D)
- a map  $\mathfrak{Q}: \mathcal{J}(\mathfrak{D}) \to \{\text{conjugacy classes of maximal tori in } \mathfrak{Con}(M, \mathfrak{D})\}$
- unreduced Sasaki cone:  $\mathfrak{t}_k^+(\mathcal{D},J)=\{\xi'\in\mathfrak{t}_k\mid\eta(\xi')>0,\}$  s.t.  $\mathcal{S}=(\xi,\eta,\Phi,g)\in(\mathcal{D},J)$  is Sasakian.
- Note that when  $(\mathcal{D}, J)$  is fixed, a choice of  $\xi' \in \mathfrak{t}_k^+$  determines the Sasakian structure  $\mathcal{S}$  uniquely.
- finite dim'l moduli of Sasakian structures within CR structure, the Sasaki cone  $\kappa(\mathcal{D},J)=\mathfrak{t}_k^+(\mathcal{D},J)/\mathcal{W}(\mathcal{D},J)$  where  $\mathcal{W}$  is the Weyl group of  $\mathfrak{CR}(\mathcal{D},J)$ .
- A given  $\mathcal D$  can have many Sasaki cones  $\kappa(\mathcal D,J_\alpha)$  labelled by distinct complex structures. Get bouquet  $\bigcup \kappa(\mathcal D,J_\alpha)$  of Sasaki cones.

- space of compatible CR structures  $\mathcal{J}(\mathcal{D})$
- a map  $\mathfrak{Q}: \mathcal{J}(\mathfrak{D}) \to \{\text{conjugacy classes of maximal tori in } \mathfrak{Con}(M, \mathfrak{D})\}$
- unreduced Sasaki cone:  $\mathfrak{t}_k^+(\mathcal{D},J)=\{\xi'\in\mathfrak{t}_k\mid\eta(\xi')>0,\}$  s.t.  $\mathcal{S}=(\xi,\eta,\Phi,g)\in(\mathcal{D},J)$  is Sasakian.
- Note that when  $(\mathcal{D}, J)$  is fixed, a choice of  $\xi' \in \mathfrak{t}_k^+$  determines the Sasakian structure  $\mathcal{S}$  uniquely.
- finite dim'l moduli of Sasakian structures within CR structure, the Sasaki cone  $\kappa(\mathcal{D},J)=\mathfrak{t}_k^+(\mathcal{D},J)/\mathcal{W}(\mathcal{D},J)$  where  $\mathcal{W}$  is the Weyl group of  $\mathfrak{CR}(\mathcal{D},J)$ .
- A given  $\mathcal D$  can have many Sasaki cones  $\kappa(\mathcal D,J_\alpha)$  labelled by distinct complex structures. Get bouquet  $\bigcup_{\alpha} \kappa(\mathcal D,J_\alpha)$  of Sasaki cones.
- A bouquet consisting of N Sasaki cones is called an N-bouquet, denoted by  $\mathfrak{B}_N$ . The Sasaki cones in an N-bouquet can have different dimension.

- space of compatible CR structures  $\mathcal{J}(\mathcal{D})$
- a map  $\mathfrak{Q}: \mathcal{J}(\mathfrak{D}) \to \{\text{conjugacy classes of maximal tori in } \mathfrak{Con}(M, \mathfrak{D})\}$
- unreduced Sasaki cone:  $\mathfrak{t}_k^+(\mathcal{D},J)=\{\xi'\in\mathfrak{t}_k\mid\eta(\xi')>0,\}$  s.t.  $\mathcal{S}=(\xi,\eta,\Phi,g)\in(\mathcal{D},J)$  is Sasakian.
- Note that when  $(\mathcal{D}, J)$  is fixed, a choice of  $\xi' \in \mathfrak{t}_k^+$  determines the Sasakian structure  $\mathcal{S}$  uniquely.
- finite dim'l moduli of Sasakian structures within CR structure, the Sasaki cone  $\kappa(\mathcal{D},J)=\mathfrak{t}_k^+(\mathcal{D},J)/\mathcal{W}(\mathcal{D},J)$  where  $\mathcal{W}$  is the Weyl group of  $\mathfrak{CR}(\mathcal{D},J)$ .
- A given  $\mathcal D$  can have many Sasaki cones  $\kappa(\mathcal D,J_\alpha)$  labelled by distinct complex structures. Get bouquet  $\bigcup \kappa(\mathcal D,J_\alpha)$  of Sasaki cones.
- A bouquet consisting of N Sasaki cones is called an N-bouquet, denoted by B<sub>N</sub>. The Sasaki cones in an N-bouquet can have different dimension.
- The distinct Sasaki cones  $\kappa(\mathcal{D}, J_{\alpha})$ 's correspond to distinct conjugacy classes of maximal tori in  $\mathfrak{Con}(M, \mathcal{D})$ .

## Extremal Sasakian metrics

#### Extremal Sasakian metrics (B-Galicki-Simanca)

• Sasakian structure  $S = (\xi, \eta, \Phi, g)$  with scalar curvature  $s_g$ .

## Extremal Sasakian metrics

#### Extremal Sasakian metrics (B-Galicki-Simanca)

- Sasakian structure  $S = (\xi, \eta, \Phi, g)$  with scalar curvature  $s_g$ .
- ullet Calabi-Sasaki Energy functional  $E(g)=\int_{M}s_{g}^{2}d\mu_{g},$

- Sasakian structure  $S = (\xi, \eta, \Phi, g)$  with scalar curvature  $s_g$ .
- Calabi-Sasaki Energy functional  $E(g) = \int_{M} s_g^2 d\mu_g$ ,
- Deform contact structure  $\eta \mapsto \eta + td^c \varphi$  within its isotopy class where  $\varphi$  is basic.

- Sasakian structure  $S = (\xi, \eta, \Phi, g)$  with scalar curvature  $S_g$ .
- Calabi-Sasaki Energy functional  $E(g) = \int_M s_g^2 d\mu_g$ ,
- Deform contact structure  $\eta \mapsto \eta + td^c \varphi$  within its isotopy class where  $\varphi$  is basic.
- This gives critical point of  $E(g) \iff \partial_q^\# s_g$  is transversely holomorphic.

- Sasakian structure  $S = (\xi, \eta, \Phi, g)$  with scalar curvature  $s_g$ .
- Calabi-Sasaki Energy functional  $E(g) = \int_M s_g^2 d\mu_g$ ,
- ullet Deform contact structure  $\eta\mapsto \eta+td^c \varphi$  within its isotopy class where  $\varphi$  is basic.
- This gives critical point of  $E(g) \iff \partial_q^\# s_g$  is transversely holomorphic.
- We say that g is extremal if it is critical point of E.

- Sasakian structure  $S = (\xi, \eta, \Phi, g)$  with scalar curvature  $S_g$ .
- Calabi-Sasaki Energy functional  $E(g) = \int_{M} s_g^2 d\mu_g$ ,
- Deform contact structure  $\eta \mapsto \eta + td^c \varphi$  within its isotopy class where  $\varphi$  is basic.
- This gives critical point of  $E(g) \iff \partial_q^\# s_g$  is transversely holomorphic.
- We say that g is **extremal** if it is critical point of E.
- g is extremal Sasaki metric  $\iff$  the transverse metric  $g_{\mathcal{D}}$  is extremal Kähler metric.

- Sasakian structure  $S = (\xi, \eta, \Phi, g)$  with scalar curvature  $s_g$ .
- ullet Calabi-Sasaki Energy functional  $E(g)=\int_{M}s_{g}^{2}d\mu_{g},$
- Deform contact structure  $\eta \mapsto \eta + td^c \varphi$  within its isotopy class where  $\varphi$  is basic.
- This gives critical point of  $E(g) \iff \partial_q^\# s_g$  is transversely holomorphic.
- We say that g is **extremal** if it is critical point of *E*.
- g is extremal Sasaki metric  $\iff$  the transverse metric  $g_{\mathbb{D}}$  is extremal Kähler metric.
- If  $S = (\xi, \eta, \Phi, g)$  is extremal (or cscS) then so is  $S_a = (a^{-1}\xi, a\eta, \Phi, g_a)$  for any a > 0.

- Sasakian structure  $S = (\xi, \eta, \Phi, g)$  with scalar curvature  $s_g$ .
- ullet Calabi-Sasaki Energy functional  $E(g)=\int_{M}s_{g}^{2}d\mu_{g},$
- Deform contact structure  $\eta \mapsto \eta + td^c \varphi$  within its isotopy class where  $\varphi$  is basic.
- This gives critical point of  $E(g) \iff \partial_q^\# s_g$  is transversely holomorphic.
- We say that g is **extremal** if it is critical point of E.
- g is extremal Sasaki metric  $\iff$  the transverse metric  $g_{\mathbb{D}}$  is extremal Kähler metric.
- If  $S = (\xi, \eta, \Phi, g)$  is extremal (or cscS) then so is  $S_a = (a^{-1}\xi, a\eta, \Phi, g_a)$  for any a > 0.
- Calabi: Critical points have maximal symmetry.

- Sasakian structure  $S = (\xi, \eta, \Phi, g)$  with scalar curvature  $s_g$ .
- ullet Calabi-Sasaki Energy functional  $E(g)=\int_{M}s_{g}^{2}d\mu_{g},$
- Deform contact structure  $\eta \mapsto \eta + td^c \varphi$  within its isotopy class where  $\varphi$  is basic.
- This gives critical point of  $E(g) \iff \partial_q^\# s_g$  is transversely holomorphic.
- We say that g is **extremal** if it is critical point of *E*.
- g is extremal Sasaki metric  $\iff$  the transverse metric  $g_{\mathbb{D}}$  is extremal Kähler metric.
- If  $S = (\xi, \eta, \Phi, g)$  is extremal (or cscS) then so is  $S_a = (a^{-1}\xi, a\eta, \Phi, g_a)$  for any a > 0.
- Calabi: Critical points have maximal symmetry.
- Special case: constant scalar curvature Sasakian (cscS). If  $c_1(\mathcal{D})=0 \Rightarrow$  Sasaki- $\eta$ -Einstein (S $\eta$ E) with Ricci curvature Ric $_g=ag+b\eta\otimes\eta,\ a,b$  constants. If b=0 get Sasaki-Einstein (SE).

- Sasakian structure  $S = (\xi, \eta, \Phi, g)$  with scalar curvature  $S_g$ .
- Calabi-Sasaki Energy functional  $E(g) = \int_M s_g^2 d\mu_g$ ,
- Deform contact structure  $\eta \mapsto \eta + t d^c \varphi$  within its isotopy class where  $\varphi$  is basic.
- This gives critical point of  $E(g) \iff \partial_q^\# s_g$  is transversely holomorphic.
- We say that g is **extremal** if it is critical point of *E*.
- g is extremal Sasaki metric  $\iff$  the transverse metric  $g_{\mathcal{D}}$  is extremal Kähler metric.
- If  $S = (\xi, \eta, \Phi, g)$  is extremal (or cscS) then so is  $S_a = (a^{-1}\xi, a\eta, \Phi, g_a)$  for any a > 0.
- Calabi: Critical points have maximal symmetry.
- Special case: constant scalar curvature Sasakian (cscS). If  $c_1(\mathcal{D})=0\Rightarrow$  Sasaki- $\eta$ -Einstein (S $\eta$ E) with Ricci curvature  $\mathrm{Ric}_g=ag+b\eta\otimes\eta,\ a,b$  constants. If b=0 get Sasaki-Einstein (SE).
- The Sasaki-Futaki invariant  $\mathfrak{F}(X)=\int_{M}X(\psi_g)d\mu_g$  where X is transversely holomorphic and  $\psi_g$  is the Ricci potential satisfying  $\rho^T=\rho_h^T+i\partial\bar\partial\psi_g$  where  $\rho^T$  is the transverse Ricci form and  $\rho_h^T$  is its harmonic part.

#### Extremal Sasakian metrics (B-Galicki-Simanca)

- Sasakian structure  $S = (\xi, \eta, \Phi, g)$  with scalar curvature  $S_g$ .
- Calabi-Sasaki Energy functional  $E(g) = \int_M s_g^2 d\mu_g$ ,
- Deform contact structure  $\eta \mapsto \eta + td^c \varphi$  within its isotopy class where  $\varphi$  is basic.
- This gives critical point of  $E(g) \iff \partial_q^\# s_g$  is transversely holomorphic.
- We say that g is **extremal** if it is critical point of *E*.
- g is extremal Sasaki metric  $\iff$  the transverse metric  $g_{\mathbb{D}}$  is extremal Kähler metric.
- If  $S = (\xi, \eta, \Phi, g)$  is extremal (or cscS) then so is  $S_a = (a^{-1}\xi, a\eta, \Phi, g_a)$  for any a > 0.
- Calabi: Critical points have maximal symmetry.
- Special case: constant scalar curvature Sasakian (cscS). If  $c_1(\mathcal{D})=0\Rightarrow$  Sasaki- $\eta$ -Einstein (S $\eta$ E) with Ricci curvature  $\mathrm{Ric}_g=ag+b\eta\otimes\eta,\ a,b$  constants. If b=0 get Sasaki-Einstein (SE).
- The Sasaki-Futaki invariant  $\mathfrak{F}(X)=\int_{M}X(\psi_{g})d\mu_{g}$  where X is transversely holomorphic and  $\psi_{g}$  is the Ricci potential satisfying  $\rho^{T}=\rho_{h}^{T}+i\partial\bar{\partial}\psi_{g}$  where  $\rho^{T}$  is the transverse Ricci form and  $\rho_{h}^{T}$  is its harmonic part.

#### Theorem

An extremal Sasaki metric g has constant scalar curvature if and only if  $\mathfrak{F} = 0$ .

#### Extremal Set $\mathfrak{e}(\mathfrak{D}, J)$

• For a fixed Sasaki cone  $\kappa(\mathcal{D}, J)$  consider the subset  $\mathfrak{e}(\mathcal{D}, J)$  such that there is a deformation with an extremal representative.

#### Extremal Set $\mathfrak{e}(\mathfrak{D}, J)$

- For a fixed Sasaki cone  $\kappa(\mathcal{D}, J)$  consider the subset  $\mathfrak{e}(\mathcal{D}, J)$  such that there is a deformation with an extremal representative.
- $\mathfrak{e}(\mathfrak{D},J)$  is conical in the sense that if  $S \in \mathfrak{e}(\mathfrak{D},J)$  so is  $S_a$  for all a > 0. Moreover,

#### Extremal Set $\mathfrak{e}(\mathfrak{D}, J)$

- For a fixed Sasaki cone  $\kappa(\mathcal{D}, J)$  consider the subset  $\mathfrak{e}(\mathcal{D}, J)$  such that there is a deformation with an extremal representative.
- $\mathfrak{e}(\mathfrak{D},J)$  is conical in the sense that if  $S \in \mathfrak{e}(\mathfrak{D},J)$  so is  $S_a$  for all a > 0. Moreover,

# Theorem (B-, Galicki, Simanca)

 $\mathfrak{e}(\mathfrak{D},J)$  is open in  $\kappa(\mathfrak{D},J)$ 

#### Extremal Set $\mathfrak{e}(\mathfrak{D}, J)$

- For a fixed Sasaki cone  $\kappa(\mathfrak{D},J)$  consider the subset  $\mathfrak{e}(\mathfrak{D},J)$  such that there is a deformation with an extremal representative.
- $\mathfrak{e}(\mathfrak{D},J)$  is conical in the sense that if  $S \in \mathfrak{e}(\mathfrak{D},J)$  so is  $S_a$  for all a>0. Moreover,

# Theorem (B-,Galicki,Simanca)

 $\mathfrak{e}(\mathfrak{D},J)$  is open in  $\kappa(\mathfrak{D},J)$ 

• Question: When is  $\mathfrak{e}(\mathfrak{D}, J) = \kappa(\mathfrak{D}, J)$ ?

#### Extremal Set $\mathfrak{e}(\mathfrak{D}, J)$

- For a fixed Sasaki cone  $\kappa(\mathcal{D}, J)$  consider the subset  $\mathfrak{e}(\mathcal{D}, J)$  such that there is a deformation with an extremal representative.
- $\mathfrak{e}(\mathfrak{D},J)$  is conical in the sense that if  $S \in \mathfrak{e}(\mathfrak{D},J)$  so is  $S_a$  for all a>0. Moreover,

## Theorem (B-, Galicki, Simanca)

 $\mathfrak{e}(\mathfrak{D}, J)$  is open in  $\kappa(\mathfrak{D}, J)$ 

- Question: When is  $\mathfrak{e}(\mathfrak{D}, J) = \kappa(\mathfrak{D}, J)$ ?
- There are many if  $\dim \kappa(\mathfrak{D}, J) = 1$ . Enormous number of SE metrics on certain manifolds.

#### Extremal Set $\mathfrak{e}(\mathfrak{D}, J)$

- For a fixed Sasaki cone  $\kappa(\mathfrak{D},J)$  consider the subset  $\mathfrak{e}(\mathfrak{D},J)$  such that there is a deformation with an extremal representative.
- $\mathfrak{e}(\mathfrak{D},J)$  is conical in the sense that if  $S \in \mathfrak{e}(\mathfrak{D},J)$  so is  $S_a$  for all a>0. Moreover,

# Theorem (B-,Galicki,Simanca)

 $\mathfrak{e}(\mathfrak{D},J)$  is open in  $\kappa(\mathfrak{D},J)$ 

- Question: When is  $\mathfrak{e}(\mathfrak{D}, J) = \kappa(\mathfrak{D}, J)$ ?
- There are many if  $\dim \kappa(\mathcal{D}, J) = 1$ . Enormous number of SE metrics on certain manifolds.
- Standard CR structure on  $S^{2n+1}$  which is toric  $(\dim \kappa(\mathcal{D}, J) = n+1.)$  Here  $\epsilon(\mathcal{D}, J) = \kappa(\mathcal{D}, J)$ , but only one ray has (CSC) (which also has constant  $\Phi$ -sectional curvature c > -3), and only the round sphere (c = 1) is SE.

#### Extremal Set $\mathfrak{e}(\mathfrak{D}, J)$

- For a fixed Sasaki cone  $\kappa(\mathfrak{D},J)$  consider the subset  $\mathfrak{e}(\mathfrak{D},J)$  such that there is a deformation with an extremal representative.
- $\mathfrak{e}(\mathfrak{D},J)$  is conical in the sense that if  $S \in \mathfrak{e}(\mathfrak{D},J)$  so is  $S_a$  for all a>0. Moreover,

## Theorem (B-,Galicki,Simanca)

 $\mathfrak{e}(\mathfrak{D}, J)$  is open in  $\kappa(\mathfrak{D}, J)$ 

- Question: When is  $\mathfrak{e}(\mathfrak{D}, J) = \kappa(\mathfrak{D}, J)$ ?
- There are many if  $\dim \kappa(\mathcal{D}, J) = 1$ . Enormous number of SE metrics on certain manifolds.
- Standard CR structure on  $S^{2n+1}$  which is toric (dim  $\kappa(\mathcal{D},J)=n+1$ .) Here  $\mathfrak{e}(\mathcal{D},J)=\kappa(\mathcal{D},J)$ , but only one ray has (CSC) (which also has constant  $\Phi$ -sectional curvature c>-3), and only the round sphere (c=1) is SE.
- A noncompact example with  $e(\mathcal{D}, J) = \kappa(\mathcal{D}, J)$  is the Heisenberg group.

#### Extremal Set $e(\mathcal{D}, J)$

- For a fixed Sasaki cone  $\kappa(\mathfrak{D},J)$  consider the subset  $\mathfrak{e}(\mathfrak{D},J)$  such that there is a deformation with an extremal representative.
- $\mathfrak{e}(\mathfrak{D},J)$  is conical in the sense that if  $S \in \mathfrak{e}(\mathfrak{D},J)$  so is  $S_a$  for all a>0. Moreover,

# Theorem (B-,Galicki,Simanca)

 $\mathfrak{e}(\mathfrak{D}, J)$  is open in  $\kappa(\mathfrak{D}, J)$ 

- Question: When is  $\mathfrak{e}(\mathfrak{D}, J) = \kappa(\mathfrak{D}, J)$ ?
- There are many if  $\dim \kappa(\mathcal{D}, J) = 1$ . Enormous number of SE metrics on certain manifolds.
- Standard CR structure on  $S^{2n+1}$  which is toric  $(\dim \kappa(\mathcal{D}, J) = n+1.)$  Here  $\mathfrak{e}(\mathcal{D}, J) = \kappa(\mathcal{D}, J)$ , but only one ray has (CSC) (which also has constant  $\Phi$ -sectional curvature c > -3), and only the round sphere (c = 1) is SE.
- A noncompact example with  $e(\mathcal{D}, J) = \kappa(\mathcal{D}, J)$  is the Heisenberg group.
- Interesting case toric Sasakian structures

#### Also interested in extremal bouquets

#### Extremal Set $\mathfrak{e}(\mathfrak{D}, J)$

- For a fixed Sasaki cone  $\kappa(\mathcal{D}, J)$  consider the subset  $\mathfrak{e}(\mathcal{D}, J)$  such that there is a deformation with an extremal representative.
- $\mathfrak{e}(\mathfrak{D},J)$  is conical in the sense that if  $S \in \mathfrak{e}(\mathfrak{D},J)$  so is  $S_a$  for all a > 0. Moreover,

# Theorem (B-,Galicki,Simanca)

 $\mathfrak{e}(\mathfrak{D}, J)$  is open in  $\kappa(\mathfrak{D}, J)$ 

- Question: When is  $\mathfrak{e}(\mathfrak{D}, J) = \kappa(\mathfrak{D}, J)$ ?
- There are many if  $\dim \kappa(\mathfrak{D},J)=1$ . Enormous number of SE metrics on certain manifolds.
- Standard CR structure on  $S^{2n+1}$  which is toric  $(\dim \kappa(\mathcal{D}, J) = n + 1.)$  Here  $\mathfrak{e}(\mathcal{D}, J) = \kappa(\mathcal{D}, J)$ , but only one ray has (CSC) (which also has constant  $\Phi$ -sectional curvature c > -3), and only the round sphere (c = 1) is SE.
- A noncompact example with  $e(\mathcal{D}, J) = \kappa(\mathcal{D}, J)$  is the Heisenberg group.
- Interesting case toric Sasakian structures

# Theorem (Futaki,Ono,Wang,Cho)

Every toric contact structure of Reeb type with  $c_1(\mathfrak{D})=0$  admits a unique Sasaki-Einstein metric

Also interested in extremal bouquets

# Sasakian Geometry on $S^3$ -bundles over Riemann Surfaces $\Sigma_g$

• Sasakian structures on  $S^3$ -bundles over a Riemann surface  $\Sigma_g$  of genus g.

# Sasakian Geometry on $S^3$ -bundles over Riemann Surfaces $\Sigma_g$

- Sasakian structures on  $S^3$ -bundles over a Riemann surface  $\Sigma_q$  of genus g.
- Exactly two  $S^3$ -bundles over  $\Sigma_g$  determined by the Stiefel-Whitney class  $w_2(M^5) \equiv c_1(\mathbb{D}) \mod 2$ : the trivial bundle  $M^5 = \Sigma_g \times S^3$  if  $c_1(\mathbb{D})$  is even, and the nontrivial  $\Sigma_g \tilde{\times} S^3$  if  $c_1(\mathbb{D})$  is odd.

# Sasakian Geometry on $S^3$ -bundles over Riemann Surfaces $\Sigma_g$

- Sasakian structures on  $S^3$ -bundles over a Riemann surface  $\Sigma_g$  of genus g.
- Exactly two  $S^3$ -bundles over  $\Sigma_g$  determined by the Stiefel-Whitney class  $w_2(M^5) \equiv c_1(\mathcal{D}) \mod 2$ : the trivial bundle  $M^5 = \Sigma_g \times S^3$  if  $c_1(\mathcal{D})$  is even, and the nontrivial  $\Sigma_g \tilde{\times} S^3$  if  $c_1(\mathcal{D})$  is odd.
- Special Case: Toric Sasakian structures on S<sup>3</sup>-bundles over S<sup>2</sup>.

### $S^3$ -bundles over $S^2$ (B-;B-Pati;Legendre)

• All toric contact structures on  $S^3$ -bundles over  $S^2$  are determined through Sasakian reduction by 4 positive integers  $\mathbf{p}=(p_1,p_2,p_3,p_4)$  with  $\gcd(p_i,p_j)=1$  for i=1,2 and j=3,4. Moreover, they all admit compatible Sasakian structures. In fact, they all admit extremal Sasakian structures.

### $S^3$ -bundles over $S^2$ (B-;B-Pati;Legendre)

- All toric contact structures on  $S^3$ -bundles over  $S^2$  are determined through Sasakian reduction by 4 positive integers  $\mathbf{p}=(p_1,p_2,p_3,p_4)$  with  $\gcd(p_i,p_j)=1$  for i=1,2 and j=3,4. Moreover, they all admit compatible Sasakian structures. In fact, they all admit extremal Sasakian structures.
- $c_1(\mathcal{D}_{\mathbf{p}}) = (p_1 + p_2 p_3 p_4)\gamma$  where  $\gamma$  is a generator of  $H^2(M^5, \mathbb{Z})$ .

### $S^3$ -bundles over $S^2$ (B-;B-Pati;Legendre)

- All toric contact structures on  $S^3$ -bundles over  $S^2$  are determined through Sasakian reduction by 4 positive integers  $\mathbf{p}=(p_1,p_2,p_3,p_4)$  with  $\gcd(p_i,p_j)=1$  for i=1,2 and j=3,4. Moreover, they all admit compatible Sasakian structures. In fact, they all admit extremal Sasakian structures.
- $c_1(\mathcal{D}_{\mathbf{p}}) = (p_1 + p_2 p_3 p_4)\gamma$  where  $\gamma$  is a generator of  $H^2(M^5, \mathbb{Z})$ .
- $M^5$  is  $S^2 \times S^3$  if  $(p_1 + p_2 p_3 p_4)$  is even, and  $S^2 \tilde{\times} S^3$  if  $(p_1 + p_2 p_3 p_4)$  is odd.

### $S^3$ -bundles over $S^2$ (B-;B-Pati;Legendre)

- All toric contact structures on  $S^3$ -bundles over  $S^2$  are determined through Sasakian reduction by 4 positive integers  $\mathbf{p}=(p_1,p_2,p_3,p_4)$  with  $\gcd(p_i,p_j)=1$  for i=1,2 and j=3,4. Moreover, they all admit compatible Sasakian structures. In fact, they all admit extremal Sasakian structures.
- $c_1(\mathcal{D}_p) = (p_1 + p_2 p_3 p_4)\gamma$  where  $\gamma$  is a generator of  $H^2(M^5, \mathbb{Z})$ .
- $M^5$  is  $S^2 \times S^3$  if  $(p_1 + p_2 p_3 p_4)$  is even, and  $S^2 \tilde{\times} S^3$  if  $(p_1 + p_2 p_3 p_4)$  is odd.
- When do distinct toric contact structures belong to isomorphic contact structures?

### $S^3$ -bundles over $S^2$ (B-;B-Pati;Legendre)

- All toric contact structures on  $S^3$ -bundles over  $S^2$  are determined through Sasakian reduction by 4 positive integers  $\mathbf{p}=(p_1,p_2,p_3,p_4)$  with  $\gcd(p_i,p_j)=1$  for i=1,2 and j=3,4. Moreover, they all admit compatible Sasakian structures. In fact, they all admit extremal Sasakian structures.
- $c_1(\mathcal{D}_{\mathbf{p}}) = (p_1 + p_2 p_3 p_4)\gamma$  where  $\gamma$  is a generator of  $H^2(M^5, \mathbb{Z})$ .
- $M^5$  is  $S^2 \times S^3$  if  $(p_1 + p_2 p_3 p_4)$  is even, and  $S^2 \tilde{\times} S^3$  if  $(p_1 + p_2 p_3 p_4)$  is odd.
- When do distinct toric contact structures belong to isomorphic contact structures?

## Theorem (B-Pati)

Given two contact structures  $\mathfrak{D}_{\mathbf{p}}$  and  $\mathfrak{D}_{\mathbf{p}'}$ , if  $c_1(\mathfrak{D}_{\mathbf{p}}) \neq c_1(\mathfrak{D}_{\mathbf{p}'})$  or if  $c_1(\mathfrak{D}_{\mathbf{p}}) = c_1(\mathfrak{D}_{\mathbf{p}'})$  but  $p_1' + p_2' \neq p_1 + p_2$  then  $\mathfrak{D}_{\mathbf{p}}$  and  $\mathfrak{D}_{\mathbf{p}'}$  are not isomorphic.

## $S^3$ -bundles over $S^2$ (B-;B-Pati;Legendre)

- All toric contact structures on  $S^3$ -bundles over  $S^2$  are determined through Sasakian reduction by 4 positive integers  $\mathbf{p}=(p_1,p_2,p_3,p_4)$  with  $\gcd(p_i,p_j)=1$  for i=1,2 and j=3,4. Moreover, they all admit compatible Sasakian structures. In fact, they all admit extremal Sasakian structures.
- $c_1(\mathcal{D}_{\mathbf{p}}) = (p_1 + p_2 p_3 p_4)\gamma$  where  $\gamma$  is a generator of  $H^2(M^5, \mathbb{Z})$ .
- $M^5$  is  $S^2 \times S^3$  if  $(p_1 + p_2 p_3 p_4)$  is even, and  $S^2 \tilde{\times} S^3$  if  $(p_1 + p_2 p_3 p_4)$  is odd.
- When do distinct toric contact structures belong to isomorphic contact structures?

## Theorem (B-Pati)

Given two contact structures  $\mathfrak{D}_{\mathbf{p}}$  and  $\mathfrak{D}_{\mathbf{p}'}$ , if  $c_1(\mathfrak{D}_{\mathbf{p}}) \neq c_1(\mathfrak{D}_{\mathbf{p}'})$  or if  $c_1(\mathfrak{D}_{\mathbf{p}}) = c_1(\mathfrak{D}_{\mathbf{p}'})$  but  $p_1' + p_2' \neq p_1 + p_2$  then  $\mathfrak{D}_{\mathbf{p}}$  and  $\mathfrak{D}_{\mathbf{p}'}$  are not isomorphic.

Method of proof: contact homology of Eliashberg, Givental, Hofer.

## $S^3$ -bundles over $S^2$ (B-;B-Pati;Legendre)

- All toric contact structures on  $S^3$ -bundles over  $S^2$  are determined through Sasakian reduction by 4 positive integers  $\mathbf{p}=(p_1,p_2,p_3,p_4)$  with  $\gcd(p_i,p_j)=1$  for i=1,2 and j=3,4. Moreover, they all admit compatible Sasakian structures. In fact, they all admit extremal Sasakian structures.
- $c_1(\mathcal{D}_{\mathbf{p}}) = (p_1 + p_2 p_3 p_4)\gamma$  where  $\gamma$  is a generator of  $H^2(M^5, \mathbb{Z})$ .
- $M^5$  is  $S^2 \times S^3$  if  $(p_1 + p_2 p_3 p_4)$  is even, and  $S^2 \tilde{\times} S^3$  if  $(p_1 + p_2 p_3 p_4)$  is odd.
- When do distinct toric contact structures belong to isomorphic contact structures?

## Theorem (B-Pati)

Given two contact structures  $\mathfrak{D}_{\mathbf{p}}$  and  $\mathfrak{D}_{\mathbf{p}'}$ , if  $c_1(\mathfrak{D}_{\mathbf{p}}) \neq c_1(\mathfrak{D}_{\mathbf{p}'})$  or if  $c_1(\mathfrak{D}_{\mathbf{p}}) = c_1(\mathfrak{D}_{\mathbf{p}'})$  but  $p_1' + p_2' \neq p_1 + p_2$  then  $\mathfrak{D}_{\mathbf{p}}$  and  $\mathfrak{D}_{\mathbf{p}'}$  are not isomorphic.

- Method of proof: contact homology of Eliashberg, Givental, Hofer.
- The equivalence problem is unknown in the general case. Here I consider only a special case:

### $S^3$ -bundles over $S^2$ (B-;B-Pati;Legendre)

- All toric contact structures on  $S^3$ -bundles over  $S^2$  are determined through Sasakian reduction by 4 positive integers  $\mathbf{p}=(p_1,p_2,p_3,p_4)$  with  $\gcd(p_i,p_j)=1$  for i=1,2 and j=3,4. Moreover, they all admit compatible Sasakian structures. In fact, they all admit extremal Sasakian structures.
- $c_1(\mathcal{D}_{\mathbf{p}}) = (p_1 + p_2 p_3 p_4)\gamma$  where  $\gamma$  is a generator of  $H^2(M^5, \mathbb{Z})$ .
- $M^5$  is  $S^2 \times S^3$  if  $(p_1 + p_2 p_3 p_4)$  is even, and  $S^2 \tilde{\times} S^3$  if  $(p_1 + p_2 p_3 p_4)$  is odd.
- When do distinct toric contact structures belong to isomorphic contact structures?

## Theorem (B-Pati)

Given two contact structures  $\mathfrak{D}_{\mathbf{p}}$  and  $\mathfrak{D}_{\mathbf{p}'}$ , if  $c_1(\mathfrak{D}_{\mathbf{p}}) \neq c_1(\mathfrak{D}_{\mathbf{p}'})$  or if  $c_1(\mathfrak{D}_{\mathbf{p}}) = c_1(\mathfrak{D}_{\mathbf{p}'})$  but  $p_1' + p_2' \neq p_1 + p_2$  then  $\mathfrak{D}_{\mathbf{p}}$  and  $\mathfrak{D}_{\mathbf{p}'}$  are not isomorphic.

- Method of proof: contact homology of Eliashberg, Givental, Hofer.
- The equivalence problem is unknown in the general case. Here I consider only a special case:
- The toric contact structures  $Y^{p,q}$  constructed by Gauntlett,Martelli,Sparks,Waldram given in our notation by  $\mathcal{D}_{p-q,p+q,p,p}$ . Here  $\gcd(p,q)=1$  and  $1\leq q< p$ . Note also  $c_1(\mathcal{D}_{p-q,p+q,p,p})=0$ . We have

### $S^3$ -bundles over $S^2$ (B-;B-Pati;Legendre)

- All toric contact structures on  $S^3$ -bundles over  $S^2$  are determined through Sasakian reduction by 4 positive integers  $\mathbf{p}=(p_1,p_2,p_3,p_4)$  with  $\gcd(p_i,p_j)=1$  for i=1,2 and j=3,4. Moreover, they all admit compatible Sasakian structures. In fact, they all admit extremal Sasakian structures.
- $c_1(\mathcal{D}_p) = (p_1 + p_2 p_3 p_4)\gamma$  where  $\gamma$  is a generator of  $H^2(M^5, \mathbb{Z})$ .
- $M^5$  is  $S^2 \times S^3$  if  $(p_1 + p_2 p_3 p_4)$  is even, and  $S^2 \tilde{\times} S^3$  if  $(p_1 + p_2 p_3 p_4)$  is odd.
- When do distinct toric contact structures belong to isomorphic contact structures?

## Theorem (B-Pati)

Given two contact structures  $\mathfrak{D}_{\mathbf{p}}$  and  $\mathfrak{D}_{\mathbf{p}'}$ , if  $c_1(\mathfrak{D}_{\mathbf{p}}) \neq c_1(\mathfrak{D}_{\mathbf{p}'})$  or if  $c_1(\mathfrak{D}_{\mathbf{p}}) = c_1(\mathfrak{D}_{\mathbf{p}'})$  but  $p_1' + p_2' \neq p_1 + p_2$  then  $\mathfrak{D}_{\mathbf{p}}$  and  $\mathfrak{D}_{\mathbf{p}'}$  are not isomorphic.

- Method of proof: contact homology of Eliashberg, Givental, Hofer.
- The equivalence problem is unknown in the general case. Here I consider only a special case:
- The toric contact structures  $Y^{p,q}$  constructed by Gauntlett,Martelli,Sparks,Waldram given in our notation by  $\mathcal{D}_{p-q,p+q,p,p}$ . Here  $\gcd(p,q)=1$  and  $1\leq q< p$ . Note also  $c_1(\mathcal{D}_{p-q,p+q,p,p})=0$ . We have

## Theorem (B-Pati)

 $Y^{p',q'}$  is isomorphic to  $Y^{p,q}$  if and only if p'=p. So there is a  $\phi(p)$ -bouquet of Sasaki cones on  $Y^{p,q}$  and there are  $\phi(p)$  Sasaki-Einstein metrics where  $\phi(p)$  is the Euler phi function.

• Non-toric case  $g \ge 1$ : maximal torus has dimension 2.

- Non-toric case  $g \ge 1$ : maximal torus has dimension 2.
- Join Construction: Given quasi-regular Sasakian manifolds  $\pi_i: M_i \longrightarrow \mathcal{Z}_i$  for i = 1, 2.

- Non-toric case  $g \ge 1$ : maximal torus has dimension 2.
- Join Construction: Given quasi-regular Sasakian manifolds  $\pi_i: M_i \longrightarrow \mathcal{Z}_i$  for i = 1, 2.
- Form  $(l_1, l_2)$ -join  $\pi: M_1 \star_{l_1, l_2} M_2 \longrightarrow \mathcal{Z}_1 \times \mathcal{Z}_2$  (B-,Galicki,Ornea)

- Non-toric case  $g \ge 1$ : maximal torus has dimension 2.
- Join Construction: Given quasi-regular Sasakian manifolds  $\pi_i: M_i \longrightarrow \mathcal{Z}_i$  for i = 1, 2.
- Form  $(I_1, I_2)$ -join  $\pi: M_1 \star_{I_1, I_2} M_2 \longrightarrow \mathcal{Z}_1 \times \mathcal{Z}_2$  (B-,Galicki,Ornea)
- $M_1 \star_{l_1, l_2} M_2$  has a natural Sasakian structures for all relatively prime positive integers  $l_1, l_2$ . Fixing  $l_1, l_2$  fixes the contact orbifold. It is a smooth manifold iff  $gcd(v_1l_2, v_2l_1) = 1$  where  $v_i$  is the order of orbifold  $\mathcal{Z}_i$ .

- Non-toric case g > 1: maximal torus has dimension 2.
- Join Construction: Given quasi-regular Sasakian manifolds  $\pi_i: M_i \longrightarrow \mathcal{Z}_i$  for i = 1, 2.
- Form  $(l_1, l_2)$ -join  $\pi: M_1 \star_{l_1, l_2} M_2 \longrightarrow \mathcal{Z}_1 \times \mathcal{Z}_2$  (B-,Galicki,Ornea)
- $M_1 \star_{l_1, l_2} M_2$  has a natural Sasakian structures for all relatively prime positive integers  $l_1, l_2$ . Fixing  $l_1, l_2$  fixes the contact orbifold. It is a smooth manifold iff  $\gcd(v_1 l_2, v_2 l_1) = 1$  where  $v_i$  is the order of orbifold  $z_i$ .
- In our case the  $M_1$  is a circle bundle  $M_g^3$  over the Riemann surface  $\mathcal{Z}_1 = \Sigma_g$ , and  $M_2$  is  $S^3$  with a weighted contact form  $\eta_{\mathbf{W}}$  with  $\mathbf{W} = (w_1, w_2)$ , and  $S_{\mathbf{W}}^3 = S^3$  is an orbibundle over the weighted projective space  $\mathcal{Z}_2 = \mathbb{CP}(w_1, w_2)$ . We have  $v_1 = 1$  and we also put  $l_2 = 1$ .

- Non-toric case  $g \ge 1$ : maximal torus has dimension 2.
- Join Construction: Given quasi-regular Sasakian manifolds  $\pi_i: M_i \longrightarrow \mathcal{Z}_i$  for i = 1, 2.
- Form  $(l_1, l_2)$ -join  $\pi: M_1 \star_{l_1, l_2} M_2 \longrightarrow \mathcal{Z}_1 \times \mathcal{Z}_2$  (B-,Galicki,Ornea)
- $M_1 \star_{l_1, l_2} M_2$  has a natural Sasakian structures for all relatively prime positive integers  $l_1, l_2$ . Fixing  $l_1, l_2$  fixes the contact orbifold. It is a smooth manifold iff  $\gcd(v_1 l_2, v_2 l_1) = 1$  where  $v_i$  is the order of orbifold  $\mathcal{Z}_i$ .
- In our case the  $M_1$  is a circle bundle  $M_g^3$  over the Riemann surface  $\mathcal{Z}_1 = \Sigma_g$ , and  $M_2$  is  $S^3$  with a weighted contact form  $\eta_{\mathbf{W}}$  with  $\mathbf{W} = (w_1, w_2)$ , and  $S_{\mathbf{W}}^3 = S^3$  is an orbibundle over the weighted projective space  $\mathcal{Z}_2 = \mathbb{CP}(w_1, w_2)$ . We have  $v_1 = 1$  and we also put  $I_2 = 1$ .

## Theorem (B-,Tønnesen-Friedman)

For each  $l \in \mathbb{Z}^+$  the 5-manifold  $M_g^3 \star_{l,1} S_{\mathbf{w}}^3$  is diffeomorphic to  $\Sigma_g \times S^3$  if  $l|\mathbf{w}|$  is even and to  $\Sigma_g \tilde{\times} S^3$  if  $l|\mathbf{w}|$  is odd. The contact structures  $\mathfrak{D}_{l,\mathbf{w}}$  are inequivalent for different  $l|\mathbf{w}|$ . So there are a countable infinity of inequivalent contact structures of Sasaki type on both  $\Sigma_g \times S^3$  and  $\Sigma_g \tilde{\times} S^3$ .

# $S^3$ -bundles over $\Sigma_g$ (B-,Tønnesen-Friedman)

- Non-toric case  $g \ge 1$ : maximal torus has dimension 2.
- Join Construction: Given quasi-regular Sasakian manifolds  $\pi_i: M_i \longrightarrow \mathcal{Z}_i$  for i = 1, 2.
- Form  $(l_1, l_2)$ -join  $\pi: M_1 \star_{l_1, l_2} M_2 \longrightarrow \mathcal{Z}_1 \times \mathcal{Z}_2$  (B-,Galicki,Ornea)
- $M_1 \star_{l_1, l_2} M_2$  has a natural Sasakian structures for all relatively prime positive integers  $l_1, l_2$ . Fixing  $l_1, l_2$  fixes the contact orbifold. It is a smooth manifold iff  $\gcd(v_1 l_2, v_2 l_1) = 1$  where  $v_i$  is the order of orbifold  $\mathcal{Z}_i$ .
- In our case the  $M_1$  is a circle bundle  $M_g^3$  over the Riemann surface  $\mathcal{Z}_1 = \Sigma_g$ , and  $M_2$  is  $S^3$  with a weighted contact form  $\eta_{\mathbf{W}}$  with  $\mathbf{W} = (w_1, w_2)$ , and  $S_{\mathbf{W}}^3 = S^3$  is an orbibundle over the weighted projective space  $\mathcal{Z}_2 = \mathbb{CP}(w_1, w_2)$ . We have  $v_1 = 1$  and we also put  $l_2 = 1$ .

### Theorem (B-,Tønnesen-Friedman)

For each  $l \in \mathbb{Z}^+$  the 5-manifold  $M_g^3 \star_{l,1} S_{\mathbf{w}}^3$  is diffeomorphic to  $\Sigma_g \times S^3$  if  $l|\mathbf{w}|$  is even and to  $\Sigma_g \tilde{\times} S^3$  if  $l|\mathbf{w}|$  is odd. The contact structures  $\mathfrak{D}_{l,\mathbf{w}}$  are inequivalent for different  $l|\mathbf{w}|$ . So there are a countable infinity of inequivalent contact structures of Sasaki type on both  $\Sigma_g \times S^3$  and  $\Sigma_g \tilde{\times} S^3$ .

• The proof uses a recent topological rigidity argument of Kreck, Lück.

• The contact structures  $\mathcal{D}_{l,\mathbf{w}}$  each have a two-dimensional Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}},\mathcal{J}_{\mathbf{w}})$ .

- The contact structures  $\mathcal{D}_{l,\mathbf{w}}$  each have a two-dimensional Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}},\mathcal{J}_{\mathbf{w}})$ .
- Each Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}}, \mathcal{J}_{\mathbf{w}})$  admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface  $\mathcal{S}_n$ , that is, a ruled surface of genus  $g \geq 1$ .

- The contact structures  $\mathcal{D}_{l,\mathbf{w}}$  each have a two-dimensional Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}},\mathcal{J}_{\mathbf{w}})$ .
- Each Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}}, \mathcal{J}_{\mathbf{w}})$  admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface  $\mathcal{S}_n$ , that is, a ruled surface of genus  $g \geq 1$ .
- $S_n$  can be represented by the projectivization  $\mathbb{P}(L_n+1)$  where  $L_n$  is a line bundle of degree  $n=l(w_2-w_1)$ .

- The contact structures  $\mathcal{D}_{l,\mathbf{w}}$  each have a two-dimensional Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}},\mathcal{J}_{\mathbf{w}})$ .
- Each Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}}, \mathcal{J}_{\mathbf{w}})$  admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface  $\mathcal{S}_{l}$ , that is, a ruled surface of genus  $g \geq 1$ .
- $S_n$  can be represented by the projectivization  $\mathbb{P}(L_n+1)$  where  $L_n$  is a line bundle of degree  $n=l(w_2-w_1)$ .
- We consider the case n = 2m in which case our 5-manifold is  $\Sigma_q \times S^3$ .

- The contact structures  $\mathcal{D}_{l,\mathbf{w}}$  each have a two-dimensional Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}},\mathcal{J}_{\mathbf{w}})$ .
- Each Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}},\mathcal{J}_{\mathbf{w}})$  admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface  $\mathcal{S}_n$ , that is, a ruled surface of genus  $g \geq 1$ .
- $S_n$  can be represented by the projectivization  $\mathbb{P}(L_n+1)$  where  $L_n$  is a line bundle of degree  $n=l(w_2-w_1)$ .
- We consider the case n = 2m in which case our 5-manifold is  $\Sigma_g \times S^3$ .

## Theorem (B-,Tønnesen-Friedman)

- The contact structures  $\mathcal{D}_{l,\mathbf{w}}$  each have a two-dimensional Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}},\mathcal{J}_{\mathbf{w}})$ .
- Each Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}},\mathcal{J}_{\mathbf{w}})$  admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface  $S_n$ , that is, a ruled surface of genus  $g \ge 1$ .
- $S_n$  can be represented by the projectivization  $\mathbb{P}(L_n+1)$  where  $L_n$  is a line bundle of degree  $n = l(w_2 - w_1).$
- We consider the case n = 2m in which case our 5-manifold is  $\Sigma_q \times S^3$ .

## Theorem (B-,Tønnesen-Friedman)

• For any genus  $g \ge 1$  and for each positive integer k, the contact manifold  $(\Sigma_g \times S^3, \mathcal{D}_k)$  has a 2-dimensional Sasaki cone  $\kappa(\mathfrak{D}_k, J_0)$  with a unique regular ray of CSC Sasakian structures.

- The contact structures  $\mathcal{D}_{l,\mathbf{w}}$  each have a two-dimensional Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}},\mathcal{J}_{\mathbf{w}})$ .
- Each Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}},\mathcal{J}_{\mathbf{w}})$  admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface  $\mathcal{S}_n$ , that is, a ruled surface of genus  $g \geq 1$ .
- $S_n$  can be represented by the projectivization  $\mathbb{P}(L_n+1)$  where  $L_n$  is a line bundle of degree  $n=l(w_2-w_1)$ .
- We consider the case n = 2m in which case our 5-manifold is  $\Sigma_q \times S^3$ .

## Theorem (B-,Tønnesen-Friedman)

- For any genus  $g \ge 1$  and for each positive integer k, the contact manifold  $(\Sigma_g \times S^3, \mathcal{D}_k)$  has a 2-dimensional Sasaki cone  $\kappa(\mathcal{D}_k, J_0)$  with a unique regular ray of CSC Sasakian structures.
- For any genus 1 ≤ g ≤ 19 and any k ≥ 2, the contact manifold (Σ<sub>g</sub> × S³, D<sub>k</sub>) has 2-dimensional Sasaki cones κ(D<sub>k</sub>, J<sub>2m</sub>) with m = 1, · · · k − 1 with regular rays of extremal non-CSC Sasakian structures.

- The contact structures  $\mathcal{D}_{l,\mathbf{w}}$  each have a two-dimensional Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}},\mathcal{J}_{\mathbf{w}})$ .
- Each Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}},\mathcal{J}_{\mathbf{w}})$  admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface  $\mathcal{S}_n$ , that is, a ruled surface of genus  $g \geq 1$ .
- $S_n$  can be represented by the projectivization  $\mathbb{P}(L_n+1)$  where  $L_n$  is a line bundle of degree  $n=l(w_2-w_1)$ .
- We consider the case n = 2m in which case our 5-manifold is  $\Sigma_q \times S^3$ .

## Theorem (B-,Tønnesen-Friedman)

- For any genus  $g \ge 1$  and for each positive integer k, the contact manifold  $(\Sigma_g \times S^3, \mathcal{D}_k)$  has a 2-dimensional Sasaki cone  $\kappa(\mathcal{D}_k, J_0)$  with a unique regular ray of CSC Sasakian structures.
- For any genus  $1 \le g \le 19$  and any  $k \ge 2$ , the contact manifold  $(\Sigma_g \times S^3, \mathcal{D}_k)$  has 2-dimensional Sasaki cones  $\kappa(\mathcal{D}_k, J_{2m})$  with  $m = 1, \dots k-1$  with regular rays of extremal non-CSC Sasakian structures.
- These form a k-bouquet

$$\mathfrak{B}_k = \bigcup_{m=0}^{k-1} \kappa(\mathfrak{D}_k, J_{2m})$$

of 2-dimensional Sasaki cones.

## Sasaki Cones on S³-bundles over Riemann Surfaces

- The contact structures  $\mathcal{D}_{l,\mathbf{w}}$  each have a two-dimensional Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}},\mathcal{J}_{\mathbf{w}})$ .
- Each Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}},\mathcal{J}_{\mathbf{w}})$  admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface  $\mathcal{S}_{l}$ , that is, a ruled surface of genus  $g \geq 1$ .
- $S_n$  can be represented by the projectivization  $\mathbb{P}(L_n+1)$  where  $L_n$  is a line bundle of degree  $n=l(w_2-w_1)$ .
- We consider the case n = 2m in which case our 5-manifold is  $\Sigma_q \times S^3$ .

## Theorem (B-,Tønnesen-Friedman)

- For any genus  $g \ge 1$  and for each positive integer k, the contact manifold  $(\Sigma_g \times S^3, \mathcal{D}_k)$  has a 2-dimensional Sasaki cone  $\kappa(\mathcal{D}_k, J_0)$  with a unique regular ray of CSC Sasakian structures.
- For any genus  $1 \le g \le 19$  and any  $k \ge 2$ , the contact manifold  $(\Sigma_g \times S^3, \mathcal{D}_k)$  has 2-dimensional Sasaki cones  $\kappa(\mathcal{D}_k, J_{2m})$  with  $m = 1, \dots k-1$  with regular rays of extremal non-CSC Sasakian structures.
- These form a k-bouquet

$$\mathfrak{B}_k = \bigcup_{m=0}^{k-1} \kappa(\mathfrak{D}_k, J_{2m})$$

of 2-dimensional Sasaki cones.

• For any choice of genus g=20,21,... there exists a  $k_g\in\{2,3,4...\}$  such that for any choice of  $k=k_g,k_g+1,...$ , and any choice of transverse complex structures  $J_{2m}$  with m=1,...,k-1 on  $(\Sigma_g\times S^3,\mathfrak{D}_k)$ , the regular ray in the Sasaki cone  $\kappa(\mathfrak{D}_{k,1},J_{2m})$  admits an extremal representative with non-constant scalar curvature.

## Sasaki Cones on S³-bundles over Riemann Surfaces

- The contact structures  $\mathcal{D}_{l,\mathbf{w}}$  each have a two-dimensional Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}},\mathcal{J}_{\mathbf{w}})$ .
- Each Sasaki cone  $\kappa(\mathcal{D}_{l,\mathbf{w}},\mathcal{J}_{\mathbf{w}})$  admits a regular Sasakian structure whose base space is a pseudo-Hirzebruch surface  $\mathcal{S}_n$ , that is, a ruled surface of genus  $g \geq 1$ .
- $S_n$  can be represented by the projectivization  $\mathbb{P}(L_n+1)$  where  $L_n$  is a line bundle of degree  $n=l(w_2-w_1)$ .
- We consider the case n = 2m in which case our 5-manifold is  $\Sigma_a \times S^3$ .

## Theorem (B-,Tønnesen-Friedman)

- For any genus  $g \ge 1$  and for each positive integer k, the contact manifold  $(\Sigma_g \times S^3, \mathcal{D}_k)$  has a 2-dimensional Sasaki cone  $\kappa(\mathcal{D}_k, J_0)$  with a unique regular ray of CSC Sasakian structures.
- For any genus  $1 \le g \le 19$  and any  $k \ge 2$ , the contact manifold  $(\Sigma_g \times S^3, \mathcal{D}_k)$  has 2-dimensional Sasaki cones  $\kappa(\mathcal{D}_k, J_{2m})$  with  $m = 1, \dots k-1$  with regular rays of extremal non-CSC Sasakian structures.
- These form a k-bouquet

$$\mathfrak{B}_k = \bigcup_{m=0}^{k-1} \kappa(\mathfrak{D}_k, J_{2m})$$

of 2-dimensional Sasaki cones.

- For any choice of genus g=20,21,... there exists a  $k_g\in\{2,3,4...\}$  such that for any choice of  $k=k_g,k_g+1,...$ , and any choice of transverse complex structures  $J_{2m}$  with m=1,...,k-1 on  $(\Sigma_g\times S^3,\mathfrak{D}_k)$ , the regular ray in the Sasaki cone  $\kappa(\mathfrak{D}_{k,1},J_{2m})$  admits an extremal representative with non-constant scalar curvature.
- For any choice of genus  $g=20,21,\ldots$  there exist at least one pair (k,m) with  $1\leq m\leq k-1$  such that the regular ray in the Sasaki cone  $\kappa(\mathcal{D}_{k,1},J_{2m})$  admits no extremal representative.

• Up to isotopy the contact structures  $\mathcal{D}_{l,\mathbf{w}}$  only depend on k.

- Up to isotopy the contact structures  $\mathcal{D}_{l,\mathbf{w}}$  only depend on k.
- The quotient space of the  $S^1$ -action generated by the regular Reeb vector field  $\xi_m$  is a pseudoHirzebruch surface  $S_{2m}$ .

- Up to isotopy the contact structures  $\mathcal{D}_{l,\mathbf{w}}$  only depend on k.
- The quotient space of the  $S^1$ -action generated by the regular Reeb vector field  $\xi_m$  is a pseudoHirzebruch surface  $S_{2m}$ .
- By B-,Galicki,Simanca extremal (CSC) Sasakian structures on  $\Sigma_g \times S^3$  correspond to extremal (CSC) Kähler structures on  $S_{2m}$ .

- Up to isotopy the contact structures  $\mathcal{D}_{l,\mathbf{w}}$  only depend on k.
- The quotient space of the  $S^1$ -action generated by the regular Reeb vector field  $\xi_m$  is a pseudoHirzebruch surface  $S_{2m}$ .
- By B-,Galicki,Simanca extremal (CSC) Sasakian structures on  $\Sigma_g \times S^3$  correspond to extremal (CSC) Kähler structures on  $S_{2m}$ .
- Easy for the local product structures m = 0 case.

- Up to isotopy the contact structures  $\mathcal{D}_{l,\mathbf{w}}$  only depend on k.
- The quotient space of the  $S^1$ -action generated by the regular Reeb vector field  $\xi_m$  is a pseudoHirzebruch surface  $S_{2m}$ .
- By B-,Galicki,Simanca extremal (CSC) Sasakian structures on Σ<sub>g</sub> × S<sup>3</sup> correspond to extremal (CSC) Kähler structures on S<sub>2m</sub>.
- Easy for the local product structures m = 0 case.
- For m>0, the work of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman on Hamiltonian 2-forms shows that extremality boils down to: the transverse Kähler structure is  $g_{\mathbb{D}} = \frac{1+r_3}{r}g_{\Sigma_g} + \frac{d_3^2}{\Theta(3)} + \Theta(\mathfrak{z})\theta^2 \text{ where } \theta \text{ is a connection 1-form, } d\theta = \omega_{\Sigma_g} \text{ the standard area form, } 0 < r < 1, \Theta(\mathfrak{z}) > 0 \text{ and } -1 < \mathfrak{z} < 1, \Theta(\pm 1) = 0, \Theta'(-1) = 2, \Theta'(1) = -2. \text{ When } \Theta(\mathfrak{z})(1+r_\mathfrak{z}) \text{ is a 4th order polynomial we get extremal Kähler transverse metrics; hence, extremal Sasaki metrics. In this case it is never CSC.}$

- Up to isotopy the contact structures  $\mathcal{D}_{l,\mathbf{w}}$  only depend on k.
- The quotient space of the  $S^1$ -action generated by the regular Reeb vector field  $\xi_m$  is a pseudoHirzebruch surface  $S_{2m}$ .
- By B-,Galicki,Simanca extremal (CSC) Sasakian structures on Σ<sub>g</sub> × S<sup>3</sup> correspond to extremal (CSC) Kähler structures on S<sub>2m</sub>.
- Easy for the local product structures m = 0 case.
- For m>0, the work of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman on Hamiltonian 2-forms shows that extremality boils down to: the transverse Kähler structure is  $g_{\mathbb{D}} = \frac{1+r_{3}}{r}g_{\Sigma_{g}} + \frac{d_{3}^{2}}{\Theta(3)} + \Theta(\mathfrak{z})\theta^{2} \text{ where } \theta \text{ is a connection 1-form, } d\theta = \omega_{\Sigma_{g}} \text{ the standard area form, } 0 < r < 1, \Theta(\mathfrak{z}) > 0 \text{ and } -1 < \mathfrak{z} < 1, \Theta(\pm 1) = 0, \Theta'(-1) = 2, \Theta'(1) = -2. \text{ When } \Theta(\mathfrak{z})(1+r_{\mathfrak{z}}) \text{ is a 4th order polynomial we get extremal Kähler transverse metrics; hence, extremal Sasaki metrics. In this case it is never CSC.}$
- The distinct Sasaki cones in the bouquet  $\mathfrak{B}_k$  correspond to distinct conjugacy classes of maximal tori in  $\mathfrak{Con}(\mathcal{D}_k)$ . The classes corresponding to  $m=0,\cdots,k-1$  are shown to be distinct using the work of Buşe on equivariant Gromov-Witten invariants.

- Up to isotopy the contact structures  $\mathcal{D}_{l,\mathbf{w}}$  only depend on k.
- The quotient space of the  $S^1$ -action generated by the regular Reeb vector field  $\xi_m$  is a pseudoHirzebruch surface  $S_{2m}$ .
- By B-,Galicki,Simanca extremal (CSC) Sasakian structures on Σ<sub>g</sub> × S<sup>3</sup> correspond to extremal (CSC) Kähler structures on S<sub>2m</sub>.
- Easy for the local product structures m = 0 case.
- For m>0, the work of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman on Hamiltonian 2-forms shows that extremality boils down to: the transverse Kähler structure is  $g_{\mathbb{D}} = \frac{1+r_{3}}{r}g_{\Sigma_{g}} + \frac{d_{3}^{2}}{\Theta(\mathfrak{z})} + \Theta(\mathfrak{z})\theta^{2} \text{ where } \theta \text{ is a connection 1-form, } d\theta = \omega_{\Sigma_{g}} \text{ the standard area form, } 0 < r < 1, \Theta(\mathfrak{z}) > 0 \text{ and } -1 < \mathfrak{z} < 1, \Theta(\pm 1) = 0, \Theta'(-1) = 2, \Theta'(1) = -2. \text{ When } \Theta(\mathfrak{z})(1+r_{\mathfrak{z}}) \text{ is a 4th order polynomial we get extremal Kähler transverse metrics; hence, extremal Sasaki metrics. In this case it is never CSC.}$
- The distinct Sasaki cones in the bouquet  $\mathfrak{B}_k$  correspond to distinct conjugacy classes of maximal tori in  $\mathfrak{Con}(\mathfrak{D}_k)$ . The classes corresponding to  $m = 0, \dots, k-1$  are shown to be distinct using the work of Buse on equivariant Gromov-Witten invariants.
- [

• There are non-regular extremal Sasaki metrics (Openness Theorem).

- There are non-regular extremal Sasaki metrics (Openness Theorem).
- For m > 0 quasi-regular Sasakian structures are treated by replacing the conditions above on  $\Theta'(\pm 1)$  by  $\Theta'(-1) = \frac{2}{a}$ ,  $\Theta'(1) = -\frac{2}{a}$ .

- There are non-regular extremal Sasaki metrics (Openness Theorem).
- For m > 0 quasi-regular Sasakian structures are treated by replacing the conditions above on  $\Theta'(\pm 1)$  by  $\Theta'(-1) = \frac{2}{g}$ ,  $\Theta'(1) = -\frac{2}{g}$ .
- This gives quasi-regular CSC Sasaki metrics in the Sasaki cones with m > 0.

- There are non-regular extremal Sasaki metrics (Openness Theorem).
- For m > 0 quasi-regular Sasakian structures are treated by replacing the conditions above on  $\Theta'(\pm 1)$  by  $\Theta'(-1) = \frac{2}{a}$ ,  $\Theta'(1) = -\frac{2}{a}$ .
- This gives quasi-regular CSC Sasaki metrics in the Sasaki cones with m > 0.
- There are 1-dimensional Sasaki cones with no extremal Sasaki metrics.

- There are non-regular extremal Sasaki metrics (Openness Theorem).
- For m > 0 quasi-regular Sasakian structures are treated by replacing the conditions above on  $\Theta'(\pm 1)$  by  $\Theta'(-1) = \frac{2}{a}$ ,  $\Theta'(1) = -\frac{2}{a}$ .
- This gives quasi-regular CSC Sasaki metrics in the Sasaki cones with m > 0.
- There are 1-dimensional Sasaki cones with no extremal Sasaki metrics.
- In the case the genus g=1 the Sasaki cones  $\kappa(\mathcal{D}_k,J_{2m})$  are exhausted by extremal Sasaki metrics.

- There are non-regular extremal Sasaki metrics (Openness Theorem).
- For m > 0 quasi-regular Sasakian structures are treated by replacing the conditions above on  $\Theta'(\pm 1)$  by  $\Theta'(-1) = \frac{2}{a}$ ,  $\Theta'(1) = -\frac{2}{a}$ .
- This gives quasi-regular CSC Sasaki metrics in the Sasaki cones with m > 0.
- There are 1-dimensional Sasaki cones with no extremal Sasaki metrics.
- In the case the genus g=1 the Sasaki cones  $\kappa(\mathcal{D}_k,J_{2m})$  are exhausted by extremal Sasaki metrics.
- The moduli space of extremal Sasaki metrics is generally non-Hausdorff.

- There are non-regular extremal Sasaki metrics (Openness Theorem).
- For m > 0 quasi-regular Sasakian structures are treated by replacing the conditions above on  $\Theta'(\pm 1)$  by  $\Theta'(-1) = \frac{2}{6}$ ,  $\Theta'(1) = -\frac{2}{6}$ .
- This gives quasi-regular CSC Sasaki metrics in the Sasaki cones with m > 0.
- There are 1-dimensional Sasaki cones with no extremal Sasaki metrics.
- In the case the genus g=1 the Sasaki cones  $\kappa(\mathfrak{D}_k,J_{2m})$  are exhausted by extremal Sasaki metrics.
- The moduli space of extremal Sasaki metrics is generally non-Hausdorff.
- We can twist our construction with representations of the fundamental group into PSU(2).
   The irreducible representations give 1-dimensional Sasaki cones; whereas, the reducible representations give 2-dimensional Sasaki cones. In particular, there are local product structures with CSC Sasaki metrics.

- There are non-regular extremal Sasaki metrics (Openness Theorem).
- For m > 0 quasi-regular Sasakian structures are treated by replacing the conditions above on  $\Theta'(\pm 1)$  by  $\Theta'(-1) = \frac{2}{a}$ ,  $\Theta'(1) = -\frac{2}{a}$ .
- This gives quasi-regular CSC Sasaki metrics in the Sasaki cones with m > 0.
- There are 1-dimensional Sasaki cones with no extremal Sasaki metrics.
- In the case the genus g=1 the Sasaki cones  $\kappa(\mathfrak{D}_k,J_{2m})$  are exhausted by extremal Sasaki metrics.
- The moduli space of extremal Sasaki metrics is generally non-Hausdorff.
- We can twist our construction with representations of the fundamental group into PSU(2).
   The irreducible representations give 1-dimensional Sasaki cones; whereas, the reducible representations give 2-dimensional Sasaki cones. In particular, there are local product structures with CSC Sasaki metrics.
- Similar results hold for the non-trivial  $S^3$ -bundle over  $\Sigma_g$  (still in progress).

### References

#### References

- 1. Extremal Sasakian Metrics on S³-bundles over S², Math. Res. Lett. 18 (2011), no. 01, 181-189.
- 2. Maximal Tori in Contactomorphism Groups (submitted for publication) Math arXiv:1003.1903. 3. Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on  $S^2 \times S^3$ ,
- SIGMA Symmetry Integrability Geom. Methods Appl 7 (2011),058, 22.

  4. (with J. Pati) On the Equivalence Problem for Toric Contact Structures on S<sup>3</sup>-bundles over S<sup>2</sup>
- (submitted for publication) Math arXiv:1204.2209. 5. (with C. Tønnesen-Friedman) Extremal Sasakian Geometry on  $T^2 \times S^3$  and Cyclic Quotients
- 5. (with C. Tønnesen-Friedman) Extremal Sasakian Geometry on  $7^2 \times 5^3$  and Cyclic Quotients (submitted for publication) Math arXiv:1108.2005.
- 6. (with C. Tønnesen-Friedman) Extremal Sasakian Geometry on  $S^3$ -bundles over Riemann Surfaces (In preparation)

General Reference: C.P. B- and K. Galicki, Sasakian Geometry, Oxford University Press, 2008.