Sasakian Geometry: Recent Work of Kris Galicki

CHARLES BOYER

University of New Mexico

Sasaki-Kähler Sandwich

Cone Sasakian transverse

Motivation: Einstein Metrics

- 1. Are Einstein manifolds scarce or numerous?
- 2. On a given manifold are there many or few Einstein metrics?

Sketch Proof: of existence of many positive Einstein metrics on many 2n + 1-dim'l manifolds (n > 1).

Main ingredients:

- 1. Contact geometry
- 2. Algebraic geometry

Main Reference: C.P.B. and K. Galicki, Sasakian Geometry, Oxford UP, 2008.

The metric g is **Einstein** if $Ric_g = \lambda g$, λ constant Three cases $\lambda > 0$, $\lambda < 0$, $\lambda = 0$. Here positive only $\lambda > 0$.

Contact Manifold(compact)

A contact 1-form η such that

$$\eta \wedge (d\eta)^n \neq 0.$$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some $f \neq 0$, take f > 0. or equivalently a codimension 1 subbundle $\mathcal{D} = \text{Ker } \eta$ of TM. $(\mathcal{D}, d\eta)$ symplectic vector bundle

Unique vector field ξ , called the Reeb vector field, satisfying

$$\xi \rfloor \eta = 1, \qquad \xi \rfloor d\eta = 0.$$

The characteristic foliation \mathcal{F}_{ξ} each leaf of \mathcal{F}_{ξ} passes through any nbd U at most k times \iff quasi-regular, $k = 1 \iff$ regular, otherwise irregular

Quasi-regularity is strong, most contact 1-forms are irregular.

Contact bundle $\mathcal{D} \to choose$ almost complex structure J extend to Φ with $\Phi \xi = 0$

Get a compatible metric

$$g = d\eta \circ (\Phi \otimes \mathbb{1}) + \eta \otimes \eta$$

Quadruple $S = (\xi, \eta, \Phi, g)$ called contact metric structure

The pair (\mathcal{D}, J) is a strictly pseudoconvex almost CR structure. **Question**: Which contact metrics are Einstein?

Definition: The structure $S = (\xi, \eta, \Phi, g)$ is **K-contact** if $\pounds_{\xi}g = 0$ (or $\pounds_{\xi}\Phi = 0$). It is **Sasakian** if in addition (\mathcal{D}, J) is integrable. Note: Quasi-regular \Rightarrow K-contact.

Thm: (B-, Galicki) K-contact +Einstein \Rightarrow Sasaki-Einstein with $\lambda > 0$.

Remark: The only known contact metric that is Einstein and not Sasakian is the flat metric on 3-D torus T^3 (or quotient thereof). Blair: this is the only flat contact metric.

orbifold Boothby-Wang: Manifold M compact with (ξ, η, Φ, g) quasi-regular \Rightarrow quotient $\mathcal{Z} = M/\mathcal{F}_{\xi}$ almost Kähler orbifold

Converse: $\mathcal{Z} = M/\mathcal{F}_{\xi}$ almost Kähler orbifold. ω Kähler form with $[\omega] \in H^2_{orb}(\mathcal{Z}, \mathbb{Z})$. Total space M of S^1 orbibundle over \mathcal{Z} has K-contact structure. (\mathcal{Z}, ω) is projective algebraic orbifold \iff (ξ, η, Φ, g) is Sasakian.

 (\mathcal{Z},ω) Kähler-Einstein (KE) with $\lambda > 0 \iff (\xi,\eta,\Phi,g)$ is Sasaki-Einstein (SE), $\mathrm{Ric}_q = 2ng$.

Question: When do we have SE or KE metrics?

1.
$$c_1^{orb}(Z) > 0$$
 (easy)

2. solve Monge-Ampère equation (hard, continuity method)

$$\frac{\det(g_{i\bar{j}} + \frac{\partial^2 \phi}{\partial z_i \partial \bar{z}_j})}{\det(g_{i\bar{j}})} = e^{f - t\phi}.$$

Tian: uniform boundedness

$$\int_{\mathcal{Z}} e^{-\gamma t \phi_{t_0}} \omega_0^n < +\infty$$

Many people Yau, Tian, Siu, Nadel, and most recently by Demailly and Kollár in orbifold category.

alebraic geometry of orbifolds:

local unif covers, ram index: m_i

branch divisor: Q-divisor

$$\Delta := \sum (1 - \frac{1}{m_j}) D_j$$

canonical orbibundle

$$K_{\mathcal{Z}}^{orb} = K_{\mathcal{Z}} + \sum (1 - \frac{1}{m_j})[D_j],$$

Kawamata log terminal (klt): For every $s \geq 1$ and holomorphic section $\tau_s \in H^0(\mathcal{Z}, \mathcal{O}((K_{\mathcal{Z}}^{orb})^{-s}))$ there is $\gamma > \frac{n}{n+1}$ such that $|\tau_s|^{-\gamma/s} \in L^2(\mathcal{Z})$.

Theorem 2: $c_1^{orb}(\mathcal{Z}) > 0$, klt \Rightarrow Sasaki-Einstein metric.

How to find them:

 Links of weighted homogeneous polynomials. C.B., Galicki, Kollár, Nakamaye

Sasakian Geometry of Links

$$\mathbb{C}^{n+1}$$
 coordinates $\mathbf{z}=(z_0,\ldots,z_n)$ weighted \mathbb{C}^* -action

$$(z_0,\ldots,z_n)\mapsto (\lambda^{w_0}z_0,\ldots,\lambda^{w_n}z_n),$$

weight vector $\mathbf{w} = (w_1, \cdots, w_n)$ with $w_j \in \mathbb{Z}^+$ and

$$\gcd(w_0,\ldots,w_n)=1.$$

f weighted homogeneous polynomial

$$f(\lambda^{w_0}z_0,\ldots,\lambda^{w_n}z_n)=\lambda^d f(z_0,\ldots,z_n)$$

 $d\in\mathbb{Z}^+$ is degree of f .

 $0 \in \mathbb{C}^{n+1}$ isolated singularity.

link L_f defined by

$$L_f = f^{-1}(0) \cap S^{2n+1},$$

 S^{2n+1} unit sphere in \mathbb{C}^{n+1}

Special Case: Brieskorn-Pham poly. (BP)

$$f(z_0,\ldots,z_n) = z_0^{a_0} + \cdots + z_n^{a_n}$$

Fact: L_f has natural Sasakian structure with commutative diagram: Sasaki, Abe, Takahashi, C.B, Galicki

$$egin{array}{lll} L_f &
ightarrow & S_{\mathbf{w}}^{2n+1} \ \downarrow \pi & \downarrow \ & \mathcal{Z}_f &
ightarrow & \mathbb{P}_{\mathbb{C}}(\mathbf{w}), \end{array}$$

horizontal arrows: Sasakian and Kählerian embeddings.

vertical arrows: orbifold Riemannian submersions.

 $S_{\mathbf{w}}^{2n+1}$ weighted sphere $\mathbb{P}_{\mathbb{C}}(\mathbf{w})$ weighted projective space

Topology of Links

Milnor Fibration Theorem $\Rightarrow L_f$ is (n-2)-connected. So topology is determined by $H_{n-1}(L_f,\mathbb{Z})$. **monodromy** map h_* induced by $S_{\mathbf{w}}^{\perp}$ action \Rightarrow Alexander polyno- $\operatorname{mial} \Delta(t) = \det(t\mathbb{I} - h_*) \to b_{n-1}(L_f)$ = # of factors of (1-t) in $\Delta(t)$ Torsion: Orlik conjecture: Holds for BP's, and generally for dimensions 3 and 5.

BP: spheres— Brieskorn Graph Thm.

Sasaki-Einstein metrics

Positivity $\Rightarrow I = (\sum w_i - d) > 0$

klt estimates for L_f

$$d(\sum w_i - d) < \frac{n}{n-1} \mathsf{min}_{i,j} w_i w_j.$$

BP polyn: (better)

$$1 < \sum_{i=0}^{n} \frac{1}{a_i} < 1 + \frac{n}{n-1} \min_{i} \{ \frac{1}{a_i}, \frac{1}{b_i b_j} \}.$$

 a_i BP exponents and

$$b_i = \gcd(a_i, \operatorname{lcm}(a_j \mid j \neq i))$$

 \exists other estimates. Positivity plus a klt estimate \Rightarrow SE metric

SE Moduli: infinitesimal deformations

Thm L_f a link with index I>0 satisfying any klt estimate. Then L_f admits a μ_{SE} -dimensional family of SE metrics where μ_{SE} equals

$$2[h^0(\mathbb{CP}(\mathbf{w}),\mathcal{O}(d))-\sum_i h^0(\mathbb{CP}(\mathbf{w}),\mathcal{O}(w_i))$$

$$+\dim \mathfrak{Aut}(\mathcal{Z}_f)]$$

 $N_{SE} = \#$ of deformation classes SE metrics.

Obstructions

Only known topological obstructions to Einstein metrics occur in dimension 4. Hitchin-Thorpe and more LeBrun There are obstructions to SE metrics: Gauntlett, Martelli, Sparks, Yau Estimate of Lichnerowicz \Rightarrow if I>n min_i w_i then \nexists SE metrics. Only applies to **KE** orbifolds! Cases when estimate is sharp: (Ghigi-Kollár) ∃ SE metric ⇔ $I < n \min_{i} w_{i}$ only homotopy spheres.

The Results

Homotopy Spheres: Kervaire, Milnor

 $bP_{2n}=$ group of homotopy spheres S^{2n-1} that bound a parallelizable manifold. $bP_8=\mathbb{Z}_{28},\ bP_{12}=\mathbb{Z}_{992},\ bP_{16}=\mathbb{Z}_{8128},\ bP_{4n+2}=0$ or $\mathbb{Z}_2;\ bP_6=bP_{14}=bP_{30}=0.$ (B,Galicki,Kollár)

• Each 28 diffeo types of S^7 admits hundreds of SE metrics. Largest $\mu_{SE}=82$, standard S^7 .

- All 992 diffeo types in bP_{12} and all 8128 diffeo types in bP_{16} admit SE metrics.
- All elements of bP_{4n+2} admit SE metrics.
- Conjecture: All elements of bP_{2n} admit SE metrics.
- Both N_{SE} and μ_{SE} grow double exponentially with dimension. Reason for growth: Sylvester's sequence determined by $c_{k+1} = 1 + c_0 \cdots c_k$ begins as 2, 3, 7, 43, 1807, 3263443, 10650056950807, ...

Sequences $\mathbf{a}=(a_0=c_0,\ldots,a_{n-1}=c_{n-1},a_n)$ with $c_{n-1}< a_n< c_0\cdots c_{n-1}$ give SE metrics

Examples:

(1)
$$N_{SE}(S^{13}) > 10^9$$
 and $\mu_{SE}(S^{13}) = 21300113901610$

(2)
$$N_{SE}(S^{29}) > 5 \times 10^{1666}$$
 and $\mu_{SE}(S^{29}) > 2 \times 10^{1667}$

Conjecture: Both $N_{SE}(S^{2n-1})$ and $\mu_{SE}(S^{2n-1})$ are finite.

Sasaki Geometry Dimension 5

Smale-Barden classification: 5-manifolds M^5 with $\pi_1(M^5)$ trivial. Assume spin \Rightarrow Smale

BUILDING BLOCKS

$$M_{\infty} = S^2 \times S^3, \ M_1 = S^5$$
 $M_j, \ H_2(M_j, \mathbb{Z}) = \mathbb{Z}_j \oplus \mathbb{Z}_j$
 $M^5 = M_{k_1} \# \cdots \# M_{k_s},$

 k_i divides k_{i+1} or $k_{i+1} = \infty$.

Which M^5 admit Sasakian structures?

Not known generally. However, Kollár: write (p prime)

$$H_2(M^5,\mathbb{Z}) = \mathbb{Z}^k \oplus \bigoplus_{p,i} (\mathbb{Z}_{p^i})^{c(p^i)}$$

Sasakian ⇒

$$\#\{i \mid c(p^i) > 0\} \le k+1$$

Example: $M_p^5 \# M_{p^2}^5$ is **not** Sasakian, but both M_p^5 and $M_{p^2}^5$ are.

 M^5 Sasakian \Rightarrow $H_2(M^5,\mathbb{Z}) = \mathbb{Z}^k \oplus \Sigma_i(\mathbb{Z}_{m_i})^{2g(D_i)}$ where D_i branch divisor = Riemann surface genus $g(D_i)$ Kollár

Assume positive Sasakian: Kollár: $H_2(M^5,\mathbb{Z})_{\text{tor}}$ must be \mathbb{Z}_m^2 , \mathbb{Z}_2^{2n} , \mathbb{Z}_3^4 , \mathbb{Z}_3^6 , \mathbb{Z}_3^8 , \mathbb{Z}_4^4 , \mathbb{Z}_5^4 Note $m=1 \Rightarrow$ no torsion. All such groups occur, but not all rat'l homology spheres. $M_\infty\#M_{30k}$ admits SE metric, but M_{30k} does not! All the others do.

(B-,Galicki,Nakamaye; Kollár): nM_{∞} all admit SE metrics $N_{SE}(nM_{\infty}) = \infty \ \forall \ n > 0.$

Rational homology spheres (π_1 trivial) (B-, Galicki; Kollár) with $c_1^{orb} > 0 \iff$ $nM_2, n > 0, M_m, m \neq 30k,$ $2M_3, 3M_3, 4M_3, 2M_4, 2M_5$ all known to admit SE except nM_2 with $n \ge 8$ or n = 4. $N_{SE}(2M_5) = N_{SE}(4M_3) = 1$ $\mu_{SE}(2M_5) = 6$, $\mu_{SE}(4M_3) = 14$ $N_{SE}(2M_4) = 2$ (Kollár)

Mixed types: $kM_{\infty}\#N, k>0, m>$ 1; N = a rat'l homology sphere as above, but now we can have m = 30l. $m > 12 \Rightarrow k \leq 8$ BGK $kM_{\infty}\#M_m$ where $1 \leq k \leq 8$ and m>12 have SE metrics, and $N_{SE}(M_{\infty} \# M_m) = 4;$ $N_{SE}(2M_{\infty}\#M_{m})=3;$ $N_{SE}(kM_{\infty}\#M_m)=2, k=3,4;$ $N_{SE}(kM_{\infty}\#M_m)=1, k=5,\ldots,8.$ $N = 4M_3, \ 2M_5 \Rightarrow k = 0.$ $N=2M_4 \Rightarrow k=0,1.$ (Kollár)

- $M_{\infty} \# M_m$ has SE metrics for $m = 2, \dots, 7$.
- $M_{\infty} \# n M_3$ has SE metrics for n=2,3.
- $2M_{\infty} \# M_m$ has SE metrics for $m = 2, \dots, 5$.
- $3M_{\infty} \# M_m$ has SE metrics for m = 2, 3, 4, 7, 9, 10.
- $4M_{\infty} \# M_m$ has SE metrics for $4 \neq m \geq 2$.
- $4M_{\infty} \# 2M_2$ has SE metrics.
- $5M_{\infty} \# M_m$ has SE metrics for m = 2. (B-,Nakamaye)

- $5M_{\infty}$ #2 M_2 has SE metrics
- $6M_{\infty} \# M_m$ has SE metrics for m > 2.
- $7M_{\infty} \# M_m$ has SE metrics for m > 3.
- $8M_{\infty} \# M_m$ has SE metrics for $m \geq 5$. (B-,Galicki)

SE unknown for $kM_{\infty}\#M_m$ with k>8 and $2\leq m<12$.

Problem: Completeness of SE moduli. Relate to Einstein moduli (Koiso).

Higher Dimension

- Sasakian with pos Ricci curv on $2k(S^{2n-1} \times S^{2n})$ for different diffeo types. E.g. on all 28 diffeo classes for $2(S^3 \times S^4)$. SE for $222(S^3 \times S^4)$ and $480(S^3 \times S^4)$ (C.B., Galicki)
- SE metrics on $S^2 \times S^5$ (C.B., Galicki, Ornea)
- Many others with torsion