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Problems

Problems:

Given a contact structure or isotopy class of contact structures:

Determine the space of compatible Sasakian structures.

Determine the (pre)-moduli space of extremal Sasakian structures

Determine those of constant scalar curvature (cscS).

Given a manifold determine how many contact structures of Sasaki type there are.
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Contact manifold

• Compact Contact Manifold M.

A contact 1-form η such that
η ∧ (dη)n 6= 0.

defines a contact structure
η′ ∼ η ⇐⇒ η′ = fη

for some f 6= 0, take f > 0. or equivalently a codimension 1 subbundle D = Ker η of TM with
a conformal symplectic structure.
A contact invariant: the first Chern class c1(D)

Unique vector field ξ, called the Reeb vector field, satisfying

ξcη = 1, ξcdη = 0.

The characteristic foliation Fξ: It is called quasi-regular if each leaf of Fξ passes through
any nbd U at most k times. It is regular if k = 1; otherwise, it is irregular.
Quasi-regularity is strong, most contact 1-forms are irregular.
Contact bundle D→ choose almost complex structure J extend to an endomorphism Φ
with Φξ = 0 with a compatible metric

g = dη ◦ (Φ⊗ 1l) + η ⊗ η

Quadruple S = (ξ, η,Φ, g) called contact metric structure
The pair (D, J) is a strictly pseudo-convex almost CR structure (sψCR structure).
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Sasakian manifold

Definition
The contact metric structure S = (ξ, η,Φ, g) is K-contact if Lξg = 0 (or LξΦ = 0). It is Sasakian
if in addition (D, J) is integrable and the Transverse Metric gD is Kähler.

Cone (Symplectization): C(M) = M × R+ with symplectic form d(r2η), r ∈ R+.

Cone Metric gC = dr2 + r2g

gC is Kähler ⇐⇒ g is Sasaki ⇐⇒ gD is Kähler.

Nested structures: Sasakian ⊂ sψCR ⊂ Contact
Sasakian structure gives pseudo convex CR structure (D, J) and a transverse holomorphic
structure (ξ, J̄). The former fixes the contact structure while the latter fixes the characteristic
foliation.
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Symmetries

Symmetries
Contactomorphism Group

Con(M,D) = {φ ∈ Diff(M) | φ∗D ⊂ D}.

Strict Contactomorphism Group

Con(M, η) = {φ ∈ Diff(M) | φ∗η = η} ⊂ Con(M,D).

CR transformation group

CR(D, J) = {φ ∈ Con(M,D) | φ∗J = Jφ∗}

Sasakian automorphism group

Aut(S) = {φ ∈ CR(D, J) | φ∗ξ = ξ, φ∗g = g}.

maximal torus with 0 ≤ k ≤ n + 1

CR(D, J)
↗ ↘

T k ⊂ Aut(S) Con(M,D)
↘ ↗

Con(M, η)

.
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Sasaki cones and bouquets

Sasaki cones and bouquets (B-Galicki-Simanca,B-)

Given a contact structure D of Sasaki type

space of compatible CR structures J(D)

a map Q : J(D)→ {conjugacy classes of maximal tori in Con(M,D)}
Sasaki cone: t+

k (D, J) = {ξ′ ∈ tk | η(ξ′) > 0, } s.t. S = (ξ, η,Φ, g) ∈ (D, J) is Sasakian.

Note that when (D, J) is fixed, a choice of ξ′ ∈ t+
k determines the Sasakian structure S

uniquely.

finite dim’l moduli of Sasakian structures within CR structure κ(D, J) = t+
k (D, J)/W(D, J)

where W is the Weyl group of CR(D, J).

A given D can have many Sasaki cones t+
k (D, Jα) labelled by complex structures, and

k = k(α). Get bouquet
[
α

t+
k(α)

(D, Jα) of Sasaki cones.

A bouquet consisting of N Sasaki cones is called an N-bouquet, denoted by BN . The Sasaki
cones in an N-bouquet can have different dimension.

The Sasaki cones t+
k(α)

’s correspond to the conjugacy classes of maximal tori in Con(M,D).
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Extremal Sasakian metrics

Extremal Sasakian metrics (B-Galicki-Simanca)

Sasakian structure S = (ξ, η,Φ, g) with scalar curvature sg .

Calabi-Sasaki Energy functional E(g) =

Z
M

s2
gdµg ,

Deform contact structure η 7→ η + tdcϕ within its isotopy class where ϕ is basic.

This gives critical point of E(g) ⇐⇒ ∂#
g sg is transversely holomorphic.

We say that g is extremal if it is critical point of E .
g is extremal Sasaki metric ⇐⇒ the transverse metric gD is extremal Kähler metric.
Important special case: constant scalar curvature Sasakian (cscS).
g is cscS ⇐⇒ the transverse metric gD is csc Kähler metric.
If S = (ξ, η,Φ, g) is extremal (or cscS) then so is Sa = (a−1ξ, aη,Φ, ga) for any a > 0. So
(extremal (or cscS) Sasaki metrics occur in rays)
Calabi: Critical points have maximal symmetry.

The Sasaki-Futaki invariant F(X) =

Z
M

X(ψg)dµg where X is transversely holomorphic and

ψg is the Ricci potential satisfying ρT = ρT
h + i∂∂̄ψg where ρT is the transverse Ricci form

and ρT
h is its harmonic part.

Theorem
An extremal Sasaki metric g has constant scalar curvature if and only if F = 0.
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Extremal Sasakian metrics

Extremal Set e(D, J)

For a fixed Sasaki cone t+
k (D, J) consider the subset e(D, J) such that there is a deformation

with an extremal representative.

e(D, J) is conical in the sense that if S ∈ e(D, J) so is Sa for all a > 0. Moreover,

Theorem (B-,Galicki,Simanca)

e(D, J) is open in t+
k (D, J)

Question: When is e(D, J) = t+
k (D, J)?

There are many if dim t+
k (D, J) = 1. Enormous number of SE metrics on certain manifolds.

Standard CR structure on S2n+1 which is toric (dim t+
k (D, J) = n + 1.) Here

e(D, J) = t+
n=1(D, J), but only one ray has (cscS) (which also has constant Φ-sectional

curvature c > −3), and only the round sphere (c = 1) is SE.
A noncompact example with e(D, J) = t+

k (D, J) is the Heisenberg group.
Interesting case toric Sasakian structures

Theorem (Futaki,Ono,Wang,Cho)
Every toric contact structure of Reeb type with c1(D) = 0 admits a unique Sasaki-Einstein metric

Also interested in extremal bouquets
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e(D, J) is conical in the sense that if S ∈ e(D, J) so is Sa for all a > 0. Moreover,

Theorem (B-,Galicki,Simanca)

e(D, J) is open in t+
k (D, J)

Question: When is e(D, J) = t+
k (D, J)?

There are many if dim t+
k (D, J) = 1. Enormous number of SE metrics on certain manifolds.

Standard CR structure on S2n+1 which is toric (dim t+
k (D, J) = n + 1.) Here

e(D, J) = t+
n=1(D, J), but only one ray has (cscS) (which also has constant Φ-sectional

curvature c > −3), and only the round sphere (c = 1) is SE.
A noncompact example with e(D, J) = t+

k (D, J) is the Heisenberg group.
Interesting case toric Sasakian structures

Theorem (Futaki,Ono,Wang,Cho)
Every toric contact structure of Reeb type with c1(D) = 0 admits a unique Sasaki-Einstein metric
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Extremal Sasakian Geometry in dimension five

Extremal Sasakian Geometry in dimension five
We consider the following:

Toric Sasakian structures on S3-bundles over S2.

Sasakian structures on the product Σg × S3 where Σg is a Riemann surface of genus g.

Non-trivial lens space bundles over T 2.

5-manifolds with perfect fundamental group and the homology of S2 × S3.
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S3-bundles over S2

S3-bundles over S2 (B-;B-Pati;Legendre)
Exactly two S3-bundles over S2 determined by Stiefel-Whitney class
w2(M5) ≡ c1(Dp) mod 2: the trivial bundle M5 = S2 × S3 if c1(Dp) is even, and the
nontrivial X∞ if c1(Dp) is odd.

All toric contact structures on S3-bundles over S2 are determined by 4 positive integers
p = (p1, p2, p3, p4) with gcd(pi , pj ) = 1 for i = 1, 2 and j = 3, 4. Moreover, they all admit
compatible Sasakian structures. In fact, they all admit extremal Sasakian structures.
c1(Dp) = (p1 + p2 − p3 − p4)γ where γ is a generator of H2(M5,Z).
When do distinct toric contact structures belong to isomorphic contact structures?

Theorem (B-Pati)
Given two contact structures Dp and Dp′ , if c1(Dp) 6= c1(Dp′ ) or if c1(Dp) = c1(Dp′ ) but
p′1 + p′2 6= p1 + p2 then Dp and Dp′ are not isomorphic.

Method of proof: contact homology of Eliashberg,Givental,Hofer.
The equivalence problem is unknown in the general case. Here I consider only a special case:
The toric contact structures Y p,q constructed by Gauntlett,Martelli,Sparks,Waldram given in
our notation by Dp−q,p+q,p,p . Here gcd(p, q) = 1 and 1 ≤ q < p. Note also
c1(Dp−q,p+q,p,p) = 0. We have

Theorem (B-Pati)

Y p′,q′
is isomorphic to Y p,q if and only if p′ = p. So there is a φ(p)-bouquet of Sasaki cones on

Y p,q and there are φ(p) Sasaki-Einstein metrics where φ(p) is the Euler phi function.
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S3-bundles over S2 continued

The proof that Y p,q and Y p,q′
are isomorphic as contact structures involves Hirzebruch

surfaces with orbifold branch divisors. One shows that distinct Hirzebruch surfaces with the
same orbifold branch divisors are symplectomorphic. The 3-tori belong to distinct conjugacy
classes in the contactomorphism group.

There are more general results as well as similar results when c1 6= 0.

The fact the Y p,q has a Sasaki-Einstein metric for each admissible pair (p, q) is due to
Gauntlett,Martelli,Sparks,Waldram.

That Y p′,1 and Y p,1 are not isomorphic was first proven by Abreu,Macarini.

For the general toric contact structures Dp, there are at least 1 and at most 7 rays of cscS
metrics in each Sasaki cone (E. Legendre).

The contact structure Dk,k,l,l has 2 rays of cscS metrics when k > 5l (E. Legendre).

Generally, we don’t know how much of the Sasaki cones is represented by extremal Sasakian
structures.

Charles Boyer (University of New Mexico) Extremal Sasakian Metrics 11 / 16
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The product of a Riemann sphere and the 3-sphere: Σg × S3

Σg × S3 (B-,Tønnesen-Friedman)

Join Construction: Given quasi-regular Sasakian manifolds πi : Mi−−−→ Zi for i = 1, 2.

Form (k , l)-join π : M1 ?k,l M2−−→ Z1 × Z2 (B-,Galicki,Ornea)
M1 ?k,l M2 has a natural Sasakian structures for all positive integers k , l . Fixing k , l fixes the
contact orbifold. It is a smooth manifold iff gcd(υ1l, υ2k) = 1 where υi is the order of orbifold
Zi .
In our case the M1 is a circle bundle M3

g over the Riemann surface Z1 = Σg , and M2 is S3

which is the standard Hopf circle bundle over Z2 = CP1. Both are regular, so υi = 1.

Theorem (B-,Tønnesen-Friedman)

The manifold M3
g ?k,1 S3 is diffeomorphic to Σg × S3 for each k ∈ Z+ and the contact structures

Dk are all inequivalent. Moreover, there is a k-bouquet Bk of Sasakian structures and at least k
conjugacy classes of maximal tori (circles) in Con(Σg × S3,Dk ).

The proof of the first statement uses a recent topological rigidity argument of Kreck,Lück. The
proof of the second statement uses a recent result of Buşe which distinguishes certain
Hamiltonian circle actions using Gromov-Witten invariants.
When l > 1 the situation is more complicated. We do know that for the genus one case when
l > 1 the 5-manifold M3

1 ?k,l S3 is a non-trivial lens space L(l, 1)-bundle over T 2.

Note that M3
1 is the quotient (nilmanifold) of the 3-d Heisenberg group by its integer lattice.

The genus g > 1 case is still in progress, so we focus on the genus one case.
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Extremal Sasakian metrics in genus one case: T 2 × S3

The genus one case:T 2 × S3 (B-,Tønnesen-Friedman)

In this case we have a good understanding.

Theorem (B-,Tønnesen-Friedman)

On T 2 × S3 there is a countable infinity of inequivalent contact structures (M3
1 ?k,1 S3,Dk ) each

with a k-bouquet of Sasaki cones of dimension two and each cone is exhausted by extremal
Sasaki metrics. Moreover, each of these Sasaki cones has exactly one ray of constant scalar
curvature metrics. Furthermore, there is a one dimensional cone (ray) of Sasakian structures that
admits no extremal Sasaki metric. These structures all occur with moduli.

The proof of this theorem uses the previous theorem together with the recent work of
Apostolov,Calderbank,Gauduchon,Tønnesen-Friedman on extremal Kähler metrics on ruled
surfaces.
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Extremal Sasakian metrics on T 2 × S3 continued

One represents complex ruled surfaces as a projectivized rank two complex vector bundle
P(1l⊕ L2n) over T 2 where 1l is the trivial line bundle and L2n is the line bundle of degree 2n.

Note that a degree 0 bundle is not necessarily trivial. There are many and they are given by
representations ρ : π1(T 2)→ SO(3).

In the quasi-regular case with cyclic orbifold singularities Zp,Zq , the transverse Kähler

structure is gD = 1+rz
r gT 2 + dz2

Θ(z)
+ Θ(z)θ2 where θ is a connection 1-form, dθ = ωT 2 the

standard area form, 0 < r < 1, Θ(z) > 0 and
−1 < z < 1,Θ(±1) = 0,Θ′(−1) = 2

p ,Θ
′(1) = − 2

q .

When Θ(z)(1 + rz) is a 4th order polynomial we get extremal Kähler transverse metrics;
hence, extremal Sasaki metrics. When it is 3rd order we get constant scalar curvature
metrics.

The generic irregular Sasakian structure is handled by applying the openness theorem for
extremal Sasaki metrics since quasi-regular Sasaki structures are dense in the Sasaki cone.

The moduli space of extremal Sasakian structures is inherited from the moduli space of
complex structures on the base ruled (orbifold) surfaces and they are typically non-Hausdorff.
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Note that a degree 0 bundle is not necessarily trivial. There are many and they are given by
representations ρ : π1(T 2)→ SO(3).

In the quasi-regular case with cyclic orbifold singularities Zp,Zq , the transverse Kähler

structure is gD = 1+rz
r gT 2 + dz2

Θ(z)
+ Θ(z)θ2 where θ is a connection 1-form, dθ = ωT 2 the

standard area form, 0 < r < 1, Θ(z) > 0 and
−1 < z < 1,Θ(±1) = 0,Θ′(−1) = 2

p ,Θ
′(1) = − 2

q .

When Θ(z)(1 + rz) is a 4th order polynomial we get extremal Kähler transverse metrics;
hence, extremal Sasaki metrics. When it is 3rd order we get constant scalar curvature
metrics.

The generic irregular Sasakian structure is handled by applying the openness theorem for
extremal Sasaki metrics since quasi-regular Sasaki structures are dense in the Sasaki cone.

The moduli space of extremal Sasakian structures is inherited from the moduli space of
complex structures on the base ruled (orbifold) surfaces and they are typically non-Hausdorff.
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Work in Progress with C. Tønnesen-Friedman

In the higher genus case g > 1 we do get extremal Sasaki metrics, but they do not generally
exhaust the Sasaki cones.

5-manifolds with perfect fundamental group and the homology of S2 × S3

Represent a 3-homology sphere M3 as the link of a complete intersection L(a0, · · · , an) with
ai > 1 and pairwise relatively prime.

Then consider the join M3 ?1,l S3. If L(a0, · · · , an) 6= L(2, 3, 5) then M3 ?1,l S3 has a perfect
and infinite fundamental group and the homology of S2 × S3.

Moreover, these 5-manifolds M3 ?1,l S3 have natural Sasakian structures.
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