Maximal Tori in Contactomorphism Groups and Extremal Metrics CHARLES BOYER University of New Mexico

- Contact Manifold
(compact). A contact 1-
form η such that

$$
\eta \wedge(d \eta)^{n} \neq 0 .
$$

defines a contact structure

$$
\eta^{\prime} \sim \eta \Longleftrightarrow \eta^{\prime}=f \eta
$$

for some $f \neq 0$, take $f>0$. or equivalently a codimension 1 subbundle $\mathcal{D}=$ Ker η of TM.
($\mathcal{D}, d \eta$) symplectic vector bundle

Unique vector field ξ, called the Reeb vector field, satisfying

$$
\xi\rfloor \eta=1, \quad \xi\rfloor d \eta=0
$$

The characteristic foliation \mathcal{F}_{ξ}

 each leaf of \mathcal{F}_{ξ} passes through any nbd U at most k times \Longleftrightarrow quasi-regular, $k=1 \leftrightarrow$ regular, otherwise irregularQuasi-regularity is strong, most contact 1-forms are irregular.

- Contactomorphism Group

$\mathfrak{C o n}(M, \mathcal{D})=$
$\left\{\phi \in \mathfrak{D i f f}(M) \mid \phi_{*} \mathcal{D} \subset \mathcal{D}\right\}$.
Alternatively,
$=\left\{\phi \in \mathfrak{D i f f}(M) \mid \phi^{*} \eta=f(\phi, \eta) \eta\right\}$
with $f(\phi, \eta)>0$ everywhere.

- $\mathfrak{C o n}(M, \mathcal{D})$ is a (regular) Fréchet Lie group (Lyčagin)

A subgroup: $\mathfrak{C o n}(M, \eta)=$
$\left\{\phi \in \mathfrak{C o n}(M, \mathcal{D}) \mid \phi^{*} \eta=\eta\right\}$

- $\mathfrak{C o n}(M, \eta)$ is a closed Fréchet Lie subgroup of $\mathfrak{C o n}(M, \mathcal{D})$. ($B-$)
-Important: Exp map is a local diffeomorphism for both groups. Recall Exp : $\mathfrak{g} \rightarrow G$.
- Maximal Torí in $\mathfrak{C o n}(M, \mathcal{D})$
- Notation: $\mathfrak{S C}_{T}(\mathcal{D})=\emptyset \cup$
\{conjugacy classes of maximal tori in $\mathfrak{C o n}(M, \mathcal{D})\}$

Decomposition:
$\mathfrak{S C}_{T}(\mathcal{D})=\sqcup_{\mathfrak{r}}^{n+1} \mathfrak{S C}_{T}(\mathcal{D}, \mathfrak{r})$
$\mathfrak{r}=$ dimension of maximal tori.
$\mathfrak{n}(\mathcal{D})=$ cardinality of $\mathfrak{S C}_{T}(\mathcal{D})$.
$\mathfrak{n}(\mathcal{D}, \mathfrak{r})=$ cardinality of $\mathfrak{S c}_{T}(\mathcal{D}, \mathfrak{r})$.

A Torus $T^{\mathfrak{r}}$ is of Reeb type if \exists a contact form η sit. $\xi \in \mathfrak{t r}_{\text {L }}$ Lie algebra. Then $T^{\mathfrak{r}} \subset \mathfrak{C o n}(M, \eta)$

Contact bundle $\mathcal{D} \rightarrow$ choose almost complex structure J extend to Φ with $\Phi \xi=0$ with a compatible metric

$$
g=d \eta \circ(\Phi \otimes 1+\eta \otimes \eta)
$$

Quadruple $\mathcal{S}=(\xi, \eta, \Phi, g)$ called contact metric structure

The pair (\mathcal{D}, J) is a strictly pseudo-

 convex almost CR structure.Definition: The structure $\mathcal{S}=$ (ξ, η, Φ, g) is K-contact if $£_{\xi} g=$ 0 (or $£_{\xi} \Phi=0$). It is Sasakian if in addition (\mathcal{D}, J) is integrable.

Note: Quasi-regular \Rightarrow K-contact, a torus of Reeb type \Rightarrow K-contact. (Rukimbira)
\mathcal{D} contact structure. $\mathcal{J}(\mathcal{D})$ space of strictly pseudoconvex CR structires on \mathcal{D}
$\mathcal{J}(\mathcal{D})$ is a contractible smooth Fréchet manifold

Define group $\mathfrak{C R}(\mathcal{D}, J) \subset \mathfrak{D i f f}(M)$
$\left\{\phi \mid \phi_{*} \mathcal{D} \subset \mathcal{D}, \phi_{*} J=J \phi_{*}\right\}$
group of CR transformations
The: $\mathfrak{C R}(\mathcal{D}, J)$ is a compact Lie group except for standard CR structore on $S^{2 n+1}$ when it is $S U(n+$
1,1). (Schoen, Lee, Webster, Frances)
Note: $\mathfrak{r}=$ rank of $\mathfrak{C R}(\mathcal{D}, J)$
$\mathfrak{C o n}(M, \mathcal{D})$ acts on $\mathcal{J}(\mathcal{D})$ with isotropy group $\mathfrak{C R}(\mathcal{D}, J)$ at $J \in \mathcal{J}(\mathcal{D})$.
Allows us to define
$\mathfrak{Q}: \mathcal{J}(\mathcal{D}) \rightarrow \mathfrak{S C}_{T}(\mathcal{D})$
by $\mathfrak{Q}(J)=$ the unique conjugacy
class of maximal torus T in $\mathfrak{C R}(\mathcal{D}, J)$, hence a unique conjugacy class of maximal torus in $\mathfrak{C o n}(M, \mathcal{D})$.
\mathfrak{Q} is far from injective, but if \mathcal{D} is K-contact type, it surjects onto classes of Reed type.

Sasaki cones

$\mathfrak{t}_{\mathfrak{r}}^{+}(\mathcal{D}, J)=\left\{\xi \in \mathfrak{t}_{\mathfrak{r}} \mid \eta^{\prime}(\xi)>0,\right\}$
s.t. $\mathcal{S}=(\xi, \eta, \Phi, g) \in(\mathcal{D}, J)$ is

Sasakian

- finite dim'l moduli of Sasakian structures within CR structure $\kappa(\mathcal{D}, J)=\mathfrak{t}_{\mathfrak{r}}^{+}(\mathcal{D}, J) / \mathcal{W}(\mathcal{D}, J)$

A given \mathcal{D} can have many Sasaki cones $\mathfrak{t}_{r}^{+}\left(\mathcal{D}, J_{k}\right)$ labelled by almost complex structures, and $\mathrm{r}=\mathrm{r}(k)$.

- Extremal Sasakian metrics
(B-,Galicki,Simanca)
$E(g)=\int_{M} s_{g}^{2} d \mu_{g}$,
- Deform CR structure

Vary $\eta \mapsto \eta+i t \partial \bar{\partial} \varphi, \varphi$ basic, gives
critical point of $E(g) \Longleftrightarrow \partial_{g}^{\#} s_{g}$ is transversely holomorphic. $s_{g}=$ scalar curvature. Only applies to tori of Reeb type.
case: constant scalar curvature Sasakian (cscS) . If $c_{1}(\mathcal{D})=0$ \Rightarrow Sasaki- η-Einstein (S ηE)
$\mathrm{Ric}_{g}=a g+b \eta \otimes \eta, a, b$ constants. Sasaki-Einstein (SE) $b=0$

Extremal Set $\mathfrak{e}(\mathcal{D}, J)$

$\mathfrak{e}(\mathcal{D}, J) \subset \mathfrak{t}_{\mathfrak{r}}^{+}(\mathcal{D}, J)$ is open in Sasaki cone B-,Galicki,Simanca

If $\mathcal{S}=\mathcal{S}_{1} \in \mathfrak{e}(\mathcal{D}, J)$ then entire ray $\mathcal{S}_{a}=\left(a^{-1} \xi, a \eta, \Phi, g_{a}\right) \in \mathfrak{e}(\mathcal{D}, J)$
When is $\mathfrak{e}(\mathcal{D}, J)=\mathfrak{t r}^{+}(\mathcal{D}, J)$?
Many ex's if $\operatorname{dim} \operatorname{tr}^{+}(\mathcal{D}, J)=1$

- If $\operatorname{dim} \kappa(\mathcal{D}, J)>1$, there are only two known cases when $\mathfrak{e}(\mathcal{D}, J)=\mathfrak{t}_{\mathfrak{r}}^{+}(\mathcal{D}, J)>1$.
(1) standard CR structure on $S^{2 n+1}$ Toric $(\operatorname{dim} \kappa(\mathcal{D}, J)=n+1$.)
$\kappa(\mathcal{D}, J)=\left\{\mathbf{w}=\left(w_{0}, \cdots, w_{n}\right) \in\right.$
$\left.\mathbb{R}^{n+1} \mid w_{0} \leq w_{1} \leq \cdots \leq w_{n}\right\}$
All \mathcal{S}_{w} have extremal representatives, but only Φ-sect. curv. $c>-3$ has (csc), and only the round sphere $(c=1)$ is SE.
(B,Galicki,Simanca)
(2) The Heisenberg group $\mathfrak{H}^{2 n+1}$ with standard CR structure (noncompact), $\operatorname{dim} \kappa(\mathcal{D}, J)=n$. (B-)

All $\mathcal{S} \in \kappa(\mathcal{D}, J)$ have extrema representatives, but there is only one with constant scalar curvalure, $\operatorname{S} \eta$ E with Φ-holomorphic curvature $=-3$. Here transverse homothety is induced by diffeomorphism.
Probably $\mathfrak{e}(\mathcal{D}, J)=\mathfrak{t}_{\mathfrak{r}}^{+}(\mathcal{D}, J)$ also holds for standard CR structure on the hyperbolic ball $B_{\mathbb{C}}^{n} \times \mathbb{R}$. Here Φ-sect. curv. $c<-3$ is (csch).
orbifold Boothby-Wang: Manifold M compact with quasi-regular contact form $\eta \Rightarrow$ quotient π : $M \rightarrow \mathcal{B}=M / \mathcal{F}_{\xi}$ symplectic orbifold (\mathcal{B}, ω) with $\pi^{*} \omega=d \eta$.
M K-contact $\Rightarrow \mathcal{B}$ almost Kähler.
Converse: $\mathcal{B}=M / \mathcal{F}_{\xi}$ almost Kähler orbifold. ω Kähler form with $[\omega] \in H_{\text {orb }}^{2}(\mathcal{B}, \mathbb{Z})$. Total space M of S^{1} orbibundle over \mathcal{B} has K-contact structure. (\mathcal{B}, ω) is projective algebraic orbifold \Longleftrightarrow (ξ, η, Φ, g) is Sasakian. (B-,Galicki)
$\mathcal{S}=(\xi, \eta, \Phi, g)$ quasi-regular K contact structure. $\equiv \approx S^{1}$ the central one-parameter subgroup generated by Reeb vector field ξ.

Thm:(B-) There is an isomorphism of Fréchet Lie groups $\mathfrak{C o n}(M, \eta)_{0} / \equiv \approx \mathfrak{H a m}(\mathcal{B}, \omega)$.
(\mathcal{B}, ω) symplectic orbifold Here $\mathfrak{H a m}(\mathcal{B}, \omega)=$ group of Hamiltonian isotopies, and $\pi^{*} \omega=d \eta$. This generalizes result of Banyaga in the regular case.

Thm:(B-) Two tori \widehat{T}_{1} and \widehat{T}_{2} in $\mathfrak{H a m}(\mathcal{B}, \omega)$ are conjugate \Longleftrightarrow lifed tori $T_{1} \times$ 三 and $T_{2} \times$ 三 are conjugate in $\mathfrak{C o n}(M, \mathcal{D})$.

This identifies conjugacy classes of maximal tori in $\mathfrak{H a m}(\mathcal{B}, \omega)$ with conjugacy classes of maximal tori of Reed type in $\mathfrak{C o n}(M, \mathcal{D})$ with Reed field ξ.
Compatible almost complex structire \widehat{J} on $(\mathcal{B}, \omega) \Rightarrow J \in \mathcal{J}(\mathcal{D})$. $\widehat{J} \mapsto$ conjugacy class of maximal tori in $\mathfrak{H a m}(\mathcal{B}, \omega) \Rightarrow \mathfrak{S C}_{T}(\mathcal{B}, \omega)$

Get a commutative diagram
$\mathcal{J}(\mathcal{D} ; \mathfrak{r}+1) \xrightarrow{\mathfrak{Q}_{\mathcal{D}, \mathfrak{r}+1}} \mathfrak{S C}_{T}(\mathcal{D} ; \mathfrak{r}+1)$ \uparrow
$\mathcal{J}(\mathcal{B}, \omega ; \mathfrak{r}) \xrightarrow{\mathfrak{Q}_{\mathcal{B}, \omega ; \mathfrak{r}}}$
$\mathfrak{S C}_{T}(\mathcal{B}, \omega ; \mathfrak{r})$
When is $\mathfrak{Q}_{\mathcal{D}, \mathfrak{r}+1}$ surjective?
It is in Tonic case: $\mathfrak{r}=n$. moment map $\mu: \mathcal{B} \rightarrow \mathfrak{t}_{n}^{*}$ whose image is a convex rat'l simple polytope Δ with integer on facets. LT-polytopes (Lerman/Tolman). Image of contact moment map $\mu: M \rightarrow \mathrm{t}_{n+1}^{*}$ is a convex rational polyhedral cone.

LT Thm: 1-1 correspondence between isomorphism classes of toric symplectic orbifolds and isomorphism classes of LT-polytopes under $G L(n, \mathbb{Z})$ transformations.

Thm: 1-1 correspondence between isomorphism classes of toric contact manifolds of Reeb type and isomorphism classes of good rational polyhedral cones under $G L(n+1, \mathbb{Z})$ transformations.

Toric symplectic structures are

 all Kähler. Toric contact structures of Reeb type are all Sasakian. (B-,Galicki)In the toric case the orbifold BoothbyWang projection
$(M, \xi, \eta, \Phi) \rightarrow(\mathcal{B}, \omega, \widehat{J})$
represented by cutting the polyhedral cone by the characteristic hyperplane given by $\eta(\xi)=1$.
Conversely, get the the polyhedral cone by constructing a cone over the LT-polytope.

Toric Examples

- $\mathcal{B}=S^{2} \times S^{2}$,
$k_{1} \geq k_{2}>0$.
$\omega=k_{1} \omega_{1}+k_{2} \omega_{2}$
(Karshon) $\mathfrak{n}\left(S^{2} \times S^{2}, \omega ; 2\right)=\left\lceil\frac{k_{1}}{k_{2}}\right\rceil$ $\lceil r\rceil$ is smallest integer $\geq r$.
(Lerman) $\mathfrak{n}_{R}\left(\mathcal{D}_{k_{1}, k_{2}} ; 3\right) \geq\left\lceil\frac{k_{1}}{k_{2}}\right\rceil$
(J. Pati) $\mathcal{D}_{k_{1}, k_{2}}$ are distinct contact structures on $S^{2} \times S^{3}$ for distinct $\left(k_{1}, k_{2}\right) . \operatorname{gcd}\left(k_{1}, k_{2}\right)=1$
$c_{1}\left(\mathcal{D}_{k_{1}, k_{2}}\right)=2\left(k_{1}-k_{2}\right)[\gamma]$
(Wang/Ziller,B-/Galicki)
complex structures \hat{J} Hirzebruch surfaces (even)

Take $k_{1}=5, k_{2}=1$. There are 5 conjugacy classes coming from transverse complex struclures $J_{k}, k=0, \ldots 4$. Arise from the Hirzebruch surfaces, $S_{2 k}$ giving rays of extremal Sasakian metmics g_{k} in $\mathcal{D}_{5,1}$ (from Calabi on $S_{2 n}$), each belonging to a differment Sasaki cone $t_{3}^{+}(k)$ lying in five 3-dim'I vector subspaces $\mathfrak{t}_{3}(k) \subset$ $\mathfrak{c o n}\left(S^{2} \times S^{3}, \mathcal{D}_{5,1}\right)$ intersect in $\{\xi\}$.
\exists open set of rays of extrema metrics in $\mathfrak{t}_{3}^{+}(k)$. Of g_{k} only g_{0} has \csc. Maybe $\operatorname{cscS} \in \mathfrak{t}_{3}^{+}(k)$.

- $\mathcal{B}=\widetilde{\mathbb{C P}}^{2}=\mathbb{C P}^{2} \# \overline{\mathbb{C P}}^{2}, l>e>0$. $\omega_{l, e}, E$ exceptional divisor, L divisor of $\mathbb{C P}^{1}$ such that symplectic area of $L(E)$ is $2 \pi l(e)$, resp.
(Karshon) $\mathfrak{n}\left(\widetilde{\mathbb{C P}}^{2}, \omega ; 2\right)=\left\lceil\frac{e}{l-e}\right\rceil$
gives $\mathfrak{n}_{R}\left(\mathcal{D}_{l, e} ; 3\right) \geq\left\lceil\frac{e}{l-e}\right\rceil$
$c_{1}\left(\mathcal{D}_{l, e}\right)=(l-2 e)[\gamma]$
complex structures \widehat{J} Hirzebruch surfaces (odd). Two cases: l even \Rightarrow manifold is $S^{2} \times S^{3}$ l odd \Rightarrow manifold is X_{∞}, the nontrivial S^{3}-bundle over S^{2}.

All have extremal Sasakian metrics by Calabi, but not csc.

- In both of the above cases Moduli space of extremal Sasakian metrics is non-Hausdorff.
- Generally, there is \mathbb{Z}^{4} 's worth of toric contact structures on $S^{2} \times S^{3}$ and X_{∞}, gcd conditions.
- Are there non-intersecting Sasaki cones in same \mathcal{D} ?
- Toric Sasakian structures on $k\left(S^{2} \times S^{3}\right)$ and $X_{\infty} \# k\left(S^{2} \times S^{3}\right)$ (B-,Galicki,Ornea)
- Polygon Spaces
$\operatorname{Pol}(\alpha)=$ quotient by $S O(3)$ of
configurations in \mathbb{R}^{3} of a polygon with m edges of length $\alpha_{1}, \ldots \alpha_{m}$ Pol (α) smooth compact symplectic manifold of $\operatorname{dim} 2(m-3)$.
Construct maximal Hamiltonian tori. Special case: 8-dim smooth symplectic manifold with 3 conjugacy classes of maximal tori all of different dimensions, 2, 3, and 4, the latter being toric. (HausmannTolman). Then consider S^{1} bundles over $\operatorname{Pol}(\alpha)$.

Toric S^{3}.

Eliashberg: up to contactomorphism $\exists 2$ contact structures
(1) contains round sphere Reeb
(Sasaki) type.
$\mathfrak{n}(\mathcal{D}, 2)=\mathfrak{n}_{R}(\mathcal{D}, 2)=1$
(2) overtwisted contact structure: non-Reeb type

$$
\begin{aligned}
\eta_{k} & \left.=\cos \left(2 k+\frac{1}{2}\right) \pi t\right) d \theta_{1} \\
& \left.+\sin \left(2 k+\frac{1}{2}\right) \pi t\right) d \theta_{2}
\end{aligned}
$$

Each k distinct toric contact structure. $\Rightarrow \mathfrak{n}(\mathcal{D}, 2)=\aleph_{0}$ (Lerman) $\mathfrak{n}_{R}(\mathcal{D})=0$

- Toric, non-Reeb type:

The unit sphere bundle in the cotangent bundle of a torus:
$S\left(T^{*} T^{n+1}\right) \approx S^{n} \times T^{n+1}$ admits contact structure (Lutz)
all are toric with (Leman)
$\mathfrak{n}(\mathcal{D}, n+1)=1, \mathfrak{n}_{R}(\mathcal{D})=0$
$n=2 \Rightarrow H^{2}\left(S^{2}, \mathbb{Z}^{3}\right)=\mathbb{Z}^{3}$ giving nontrivial T^{3}-bundles over S^{2} these are all tonic with $\mathfrak{n}(\mathcal{D}, 3)=1, \mathfrak{n}_{R}(\mathcal{D})=0$ (Leman)

- Obstructions to cscS metrics

Sasaki-Futaki invariant
(B-,Galicki,Simanca)
Gauntlett,Martelli,Sparks,Yau use old estimate of Lichnerowicz to obtain new obstruction to SE metrics. Generalize to obstruction to cscS metrics. \Rightarrow orbifold slope stability (Ross,Thomas)

Project: Correct notion of stability in Sasakian geometry.

General Reference:
C. P. Boyer and K. Galicki, Sasakian Geometry, OUP, 2008.

- Higher dimensions
- Many examples with 1 dimensional Torus in all odd dimensions admitting SE metrics. Here there is only one conjugacy class of maximal tori, and the moduli space of SE metrics is Hausdorff.

