On Toric Contact Geometry

CHARLES BOYER

University of New Mexico

• Contact Manifold M (compact). A contact 1-form η such that

$$\eta \wedge (d\eta)^n \neq 0.$$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some $f \neq 0$, take f > 0. or equivalently a codimension 1 subbundle $\mathcal{D} = \text{Ker } \eta$ of TM with a conformal symplectic structure.

Unique vector field ξ , called the Reeb vector field, satisfying

$$\xi \rfloor \eta = 1, \qquad \xi \rfloor d\eta = 0.$$

The characteristic foliation \mathcal{F}_{ξ} each leaf of \mathcal{F}_{ξ} passes through any nbd U at most k times \iff quasi-regular, $k = 1 \iff$ regular, otherwise irregular

Quasi-regularity is strong, most contact 1-forms are irregular.

Contact bundle $\mathcal{D} \to choose$ almost complex structure J extend to Φ with $\Phi \xi = 0$ with a compatible metric

$$g = d\eta \circ (\Phi \otimes \mathbb{1}) + \eta \otimes \eta$$

Quadruple $S = (\xi, \eta, \Phi, g)$ called contact metric structure

The pair (\mathcal{D}, J) is a strictly pseudoconvex almost CR structure. **Definition**: The structure $S = (\xi, \eta, \Phi, g)$ is K-contact if $\pounds_{\xi}g = 0$ (or $\pounds_{\xi}\Phi = 0$). It is Sasakian if in addition (\mathcal{D}, J) is integrable. **Transverse Metric** $g_{\mathcal{D}}$ is Kähler

Cone (Symplectization)

$$C(M) = M \times \mathbb{R}^+$$

symplectic form $d(r^2\eta), r \in \mathbb{R}^+$.
Cone Metric $g_C = dr^2 + r^2g$

 $ullet \ g_C$ is Kähler $\iff g$ is Sasaki $\iff g_{\mathcal{D}}$ is Kähler.

Sasaki-Kähler Sandwich

Toric Contact Manifold

 (M^{2n+1}, \mathcal{D}) , effective action of torus T^{n+1} leaving \mathcal{D} invariant.

Completely Int. Ham. system

Toric Symplectic Cone

 $(M^{2n+1} \times \mathbb{R}^+, d(r^2\eta))$ effective action of torus T^{n+1} leaving $d(r^2\eta)$ invariant, commuting with $r\frac{\partial}{\partial r}$.

(1): Reeb Type Reeb field ξ lies in t_{n+1} , Lie algebra of T^{n+1} .

(2): $\xi \notin \mathfrak{t}_{n+1}$. (less interesting) Reeb type are Sasakian. B-/Galicki.

Other References: Banyaga/Molino, Lerman, Falcao de Moraes/Tomei. Complete classification: Lerman.

Toric contact manifolds of Reeb type are classified by certain convex polyhedral cones in \mathfrak{t}_{n+1}^* up to T^{n+1} -equivariant equivalence. (Lerman).

Simply connected 5-manifolds

Barden-Smale classification $H_2(M^5, \mathbb{Z})$ torsionfree

$$S^{5}, S^{2} \times S^{3}, X_{\infty}, k \# (S^{2} \times S^{3}),$$

 $X_{\infty} \# k \# (S^{2} \times S^{3}).$

All admit toric contact structures of Reeb type. (B-/Galicki,Ornea) All but S^5 admit infinitely many. All can be obtained by **Symmetry Reduction**.

 S^1 reduction of S^7 (B-/Pati). S^1_{p} -action $(z_1, z_2, z_3, z_4) \mapsto$

 $(e^{ip_1\theta}z_1, e^{ip_2\theta}z_2, e^{-ip_3\theta}z_3, e^{-ip_4\theta}z_4)$ where $p_i \in \mathbb{Z}^+$, $gcd(p_i, p_j) = 1$ for i = 1, 2, j = 2, 3. moment map $\mu: S^7 \to \mathbb{R}$ is $\mu(\mathbf{z})$ $= p_1|z_1|^2 + p_2|z_2|^2 - p_3|z_3|^2 - p_4|z_4|^2$. $\mu^{-1}(0)/S_{\rm p}^{1} = M^{5}$ compact simply connected, $H_2(M^5, \mathbb{Z}) = \mathbb{Z}$, induced contact structure $\mathcal{D}_{\mathbf{p}}$. $M^5 = S^2 \times S^3$ or X_{∞} . Which? $w_2(M^5) \equiv c_1(\mathcal{D}_{\mathbf{D}}) \mod 2. \Rightarrow$ $M^5 = S^2 \times S^3(X_{\infty})$ if $p_1 + p_2$ $p_3 - p_4$ is even (odd).

Special Case:
$$\mathcal{D}_{\mathbf{p}} = \mathcal{D}_{j,2k-j,l,l}$$

 $c_1(\mathcal{D}_{\mathbf{p}}) = 2(k-l)\gamma \Rightarrow S^2 \times S^3$.

Choose a Reeb vector field get

$$S_{\phi}^{1}$$
-action $(z_{1}, z_{2}, z_{3}, z_{4}) \mapsto$
 $(e^{i(2k-j)\phi}z_{1}, e^{ij\phi}z_{2}, e^{il\phi}z_{3}, e^{il\phi}z_{4})$

The quotient M^5/S_ϕ^1 is an orbifold Hirzebruch surface.

Special case of our special case:

 $Y^{p,q} \approx S^2 \times S^3$. Physicists:

Gauntlett, Martelli, Sparks, Waldram.

Infinitely many toric contact structures admit Sasaki-Einstein metrics. In our notation $\mathcal{D}_{p-q,p+q,p,p}$

with gcd(p,q) = 1 and $1 \le q < p$. $c_1(\mathcal{D}_{p-q,p+q,p,p}) = 0$. $\Leftarrow SE$ $Y^{p,q}$ and $Y^{p',q'}$ are toric contact equivalent $\iff (p',q') = (p,q)$. **Theorem**: $Y^{p,q}$ and $Y^{p',q'}$ are contact equivalent $\iff p' = p$.

Outline of Proof:

Equivalence when p' = p: Amounts to proving that the 3-tori corresponding to $Y^{p,q}$ and $Y^{p,q'}$ belong to distinct conjugacy classes of maximal tori in the contactomorphism group $\mathfrak{Con}(\mathcal{D}_{p-q,p+q,p,p})$. Simplicity take p odd. The quotient $Y^{p,q}/S_{\phi}^1$ is orbifold Hirzebruch surface (S_{2q}, Δ_p)

 $S_{2q} \approx S^2 \times S^2$, but with a twisted complex structure. Represent as $S_{2q} = \mathbb{P}(H^{2q} \oplus \mathbb{C})$, H is the hyperplane bundle over \mathbb{P}^1 , \mathbb{C} is the trivial line bundle.

Get commutative diagram

$$(S_{2q}, \Delta_p)$$
 $\xrightarrow{K_p}$ $(S_{2q'}, \Delta_p)$
$$\downarrow \mathbb{1}$$

$$\downarrow \mathbb{1}^{-1}$$

$$(S_{2q}, \emptyset)$$
 \xrightarrow{K}
$$(S_{2q'}, \emptyset)$$

 K_p is an orbifold symplectomorphism. Neither K nor K_p are T^2 -equivariant symplectomorphisms. Their toric structures belong to distinct conjugacy classes of maximal tori in $\mathfrak{Ham}(S_{2g},\omega)$.

These toric symplectic structures on $S^2 \times S^2$ lift to toric contact structures

 $\mathcal{D}_{p-q,p+q,p,p}$ and $\mathcal{D}_{p-q',p+q',p,p}$ on $S^2 \times S^3$ that are contactomorphic, but not T^3 -equivariantly contactomorphic.

Non-equivalence if $p' \neq p$:

Contact homology

(Eliashberg, Givental, Hofer)

Morse theory on loop space L(M).

 $\mathcal{A}(\gamma) = \int_{\gamma} \eta$. Critical points are closed Reeb orbits.

Perturb $\eta \Rightarrow 4$ isolated critical points = critical points of norm of T^2 moment map μ_2 on space of Reeb orbits. Do for each period T including multiplicity k. S_T = Reeb orbits of period T. Chain complex C_* differential graded algebra generated closed Reeb orbits, coefficient $\in H_2(M,\mathbb{Z}) = \mathbb{Z}$. contact homology = $H(C_*)$. grading: determined by Conley-Zehnder (Robbin-Salamon) index differential: moduli space of genus zero J-holomorphic curves in C(M).

Theorem: If $p'_1 + p'_2 \not\equiv (p_1 + p_2) \mod (p_1 + p_2 - p_3 - p_4)$ then $\mathcal{D}_{\mathbf{p}}$ and $\mathcal{D}_{\mathbf{p}'}$ are not contactomorphic.

Corollary: The contact structures $Y^{p,q}$ and $Y^{p',q'}$ are not contactomorphic if $p' \neq p$.

(B-,Pati) and contact homology also (Abreu, Macarini)

Extremal Sasakian metrics

(B-, Galicki, Simanca)

$$E(g) = \int_M s_g^2 d\mu_g,$$

Deform CR structure

Vary $\eta \mapsto \eta + td^c \varphi$, φ basic, gives critical point of $E(g) \iff \partial_g^\# s_g$ is transversely holomorphic. $s_g =$ scalar curvature. Only applies to tori of Reeb type.

case: constant scalar curvature Sasakian (cscS) . If $c_1(\mathcal{D}) = 0$ \Rightarrow Sasaki- η -Einstein (S η E) Ric $_g = ag + b\eta \otimes \eta$, a,b constants.

Sasaki-Einstein (SE) b = 0

Theorem: Every toric contact structure of Reeb type with $c_1(\mathcal{D}) = 0$ admits a unique Sasaki-Einstein metric (Futaki,Ono,Wang,Cho)

 In this case the obstructions to deforming the Monge-Ampère equation vanish.

General Reference: C. P. B- and K. Galicki, Sasakian Geometry, Oxford University Press, 2008.

Sasaki cones

 $\mathfrak{t}_{3}^{+}(\mathcal{D},J) = \{ \xi' \in \mathfrak{t}_{3} \mid \eta(\xi') > 0, \}$ s.t. $\mathcal{S} = (\xi', \eta, \Phi, g) \in (\mathcal{D}, J)$ is Sasakian Contact structure \mathcal{D} can have many Sasaki cones $\mathfrak{t}_3^+(\mathcal{D},J_k)$ labelled by almost complex structures J_k . These form a bouquet $\bigcup \mathfrak{t}_3^+(\mathcal{D}, J_k)$ cones intersect in 2-dim subspace. For $Y^{p,q}$ each cone contains extremal rays and SE metric. Number of cones in bouquet is Euler phi function $\phi(p)$.

Questions:

- 1. For which toric varieties V are there completely integrable Hamiltonian systems on $T^{*}V$?
- 2. For which toric varieties V^{2n} is there a separation of variables with n ignorable coordinates for the Hamilton-Jacobi equation on T^*V ? for the Laplace-Beltrami equation?