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The Foundations of Sasakian Geometry

1 A Closed Manifold M of dimension 2n + 1, i.e. compact without boundary.

2 A contact 1-form η such that
η ∧ (dη)n 6= 0.

3 defines a contact structure
η′ ∼ η ⇐⇒ η′ = fη

for some f 6= 0, take f > 0, or equivalently a codimension 1 subbundle D = Ker η of TM with
a conformal symplectic structure. So {oriented contact 1-forms in D} ≈ C∞(M)+

4 The pair (M,D) is called a contact manifold.
5 If we choose a contact 1-form η, there is a unique vector field ξ, called the Reeb vector field,

satisfying
η(ξ) = 1, ξcdη = 0.

6 The characteristic foliation Fξ is the 1-dim’l foliation defined by ξ: It is called quasi-regular
if each leaf of Fξ passes through any nbd U at most k times. It is regular if k = 1; otherwise,
it is irregular. We also say that the contact form η is quasi-regular, regular, irregular.

7 Most contact forms in a contact structure D are irregular
8 We can choose a compatible almost complex structure J on D, that is one that satisfies

the two conditions
dη(JX , JY ) = dη(X ,Y ) dη(JX ,Y ) > 0

for any sections X ,Y of D.
9 The almost complex structure J extends to an endomorphism Φ of TM satisfying Φξ = 0.
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Sasakian Geometry, continued

There is a ‘canonical’ compatible metric g = dη ◦ (Φ⊗ 1l) + η⊗ η. Quadruple S = (ξ, η,Φ, g)
called contact metric structure. Contact metric manifold (M,S).

gD = dη ◦ (Φ⊗ 1l) defines a metric in D called the transverse metric and ωT = dη is a
transverse symplectic form in D.
The pair (D, J) defines an almost CR structure on D with Φ|D = J.
dη is called the Levi form of D and the condition dη(JX ,Y ) > 0 says that (D, J) is strictly
pseudo-convex abbreviated as sψCR.
We are mainly interested in the case that the almost CR structure is integrable, that is, that
(D, J) defines a CR structure.

Definition
The contact metric structure S = (ξ, η,Φ, g) is K-contact if Lξg = 0 (or LξΦ = 0). It is Sasakian
if in addition (D, J) is integrable and the transverse metric gD is Kähler (transverse holonomy
U(n)). In the latter case we say that the contact structure D is of Sasaki type.

(M,S) is Sasaki ⇐⇒ the metric cone (C(M) = M × R+, dr2 + r2g) is Kähler.
Some properties of a Sasaki manifold (M,S) of dimension 2n + 1:

1 Any Sasaki structure S has at least an S1 symmetry.
2 The characteristic foliation Fξ is Riemannian, that is, a Riemannian flow.
3 If S is irregular, then the closure F̄ξ is a torus T k of dimension 1 ≤ k ≤ n + 1.
4 The metric g is bundle-like and the leaves of Fξ (orbits of ξ) are totally geodesic.
5 In the quasi-regular case (M,S) is an S1 orbibundle over a projective algebraic variety with an

additional orbifold structure.
6 The Ricci curvature of g satisfies Ricg(X , ξ) = 2nη(X) for any vector field X .
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The Sasaki Cone and the Affine cone

On a compact Sasaki manifold (M2n+1,S) the Sasaki automophism group Aut(S) contains a
torus T k of dimension 1 ≤ k ≤ n + 1. The case k = n + 1 is a toric Sasakian structure.

Sasaki cone

1 tk the Lie algebra of T k

2 Sasaki cone (unreduced): t+
k (D, J) = {ξ′ ∈ tk | η(ξ′) > 0, } s.t. S = (ξ, η,Φ, g) ∈ (D, J) is

Sasakian.
3 Sasaki cone (reduced): κ(D, J) = t+

k (D, J)/W where W is the Weyl group of CR(D, J)
4 We think of κ(D, J) = t+

k (D, J)/W as the moduli space of Sasakian structures whose underlying
CR structure is (D, J).

5 1 ≤ dimκ(D, J) ≤ n + 1 and if dimκ(D, J) = n + 1, M is toric Sasakian.

The Affine Cone

1 Consider the cone C(M) = M × R+ with metric ḡ = dr2 + r2g and or better the singular space
Y = C(M) ∪ {0}

2 Lift the Reeb field ξ to Y and extend the CR structure J to a complex structure I on Y by ξ = IΨ
where Ψ = r ∂∂r and Ψ = −Iξ.

3 This makes Y a normal affine cone polarized by ξ such that ḡ is a T k invariant Kähler metric.
4 On Y the ring of global functions H has a weight space decomposition H =

⊕
α∈W Hα where

W ⊂ t∗k is the set of weights,
5 and the Sasaki cone t+

k takes the form (Collins-Székelyhidi)

t
+
k = {ξ ∈ t | ∀ α ∈W, α 6= 0 we have α(ξ) > 0}.
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t
+
k = {ξ ∈ t | ∀ α ∈W, α 6= 0 we have α(ξ) > 0}.

Charles Boyer (University of New Mexico) Obstructions for Extremal Sasaki Metrics
January 5, 2017FIU Winter Conference on Geometry, Topology and ApplicationsMiami, Florida 5

/ 13



The Sasaki Cone and the Affine cone

On a compact Sasaki manifold (M2n+1,S) the Sasaki automophism group Aut(S) contains a
torus T k of dimension 1 ≤ k ≤ n + 1. The case k = n + 1 is a toric Sasakian structure.
Sasaki cone

1 tk the Lie algebra of T k

2 Sasaki cone (unreduced): t+
k (D, J) = {ξ′ ∈ tk | η(ξ′) > 0, } s.t. S = (ξ, η,Φ, g) ∈ (D, J) is

Sasakian.
3 Sasaki cone (reduced): κ(D, J) = t+

k (D, J)/W where W is the Weyl group of CR(D, J)
4 We think of κ(D, J) = t+

k (D, J)/W as the moduli space of Sasakian structures whose underlying
CR structure is (D, J).

5 1 ≤ dimκ(D, J) ≤ n + 1 and if dimκ(D, J) = n + 1, M is toric Sasakian.

The Affine Cone
1 Consider the cone C(M) = M × R+ with metric ḡ = dr2 + r2g and or better the singular space
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4 On Y the ring of global functions H has a weight space decomposition H =

⊕
α∈W Hα where

W ⊂ t∗k is the set of weights,
5 and the Sasaki cone t+

k takes the form (Collins-Székelyhidi)
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Test Configurations

the T invariant index character as a Hilbert series for ξ ∈ t+, viz.

F (ξ, t) :=
∑
α∈W

e−tα(ξ) dimHα.

(Collins-Székelyhidi) F (ξ, t) converges and has a meromorphic extension

F (ξ, t) =
a0(ξ)n!

tn+1
+

a1(ξ)(n − 1)!

tn
+ O(t1−n)

with a0(ξ) > 0.

A T - equivariant test configuration is a flat family of affine schemes Y = Y1 ⊂ Υ
$−→ C

such that $ is C∗-equivariant and T acts on the fibers including central fiber Y0.
The Donaldson-Futaki invariant of the test configuration is (Dζ is directional derivative)

Fut(Y0, ξ, ζ) =
1
n

Dζa1(ξ)−
1

n + 1
a1(ξ)

a0(ξ)
Dζa0.

the Donaldson-Futaki invariant relative to T of a test configuration

Futχ(Y0, ξ, ζ) = Fut(Y0, ξ, ζ)− 〈ζ, χ〉

where χ is the transverse Futaki-Mabuchi extremal vector field and 〈·, ·〉 is their inner product.
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Relative K-stability

The Kähler case of relative stability is due to Székelyhidi.

Definition
A polarized affine variety (Y , ξ) with a unique singular point is K-semistable relative to T if for
every T -equivariant test configuration

Futχ(Y0, ξ, ζ) ≥ 0.

The Calabi functional Cal
ξ,J (g) =

(∫
M (Sg − Sg)2 dµg

)1/2
where Sg is the scalar

curvature and Sg is the average scalar curvature.
The variation is over space of Sasakian structures S(ξ, J) with Reeb vector field ξ and
transverse holomorphic structure J. Critical points are the extremal Sasaki metrics.
This is equivalent to the (1, 0) gradient of Sg being transversely holomorphic which (up to a
constant) is the vector field χ.

Theorem (B-, van Coevering (BvC))

If there is an extremal Sasaki structure in S(ξ, J), then (Y , ξ) is K-semistable relative to a
maximal torus T .

(van Coevering) Extremal Sasaki metrics are unique up to transverse holomorphic
autmorphisms.
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The Sasaki-Einstein Problem

A Sasakian structure S = (ξ, η,Φ, g) is Sasaki-Einstein (SE) if the metric g is Einstein, that
is, if Ricg = 2ng.

(M, g) is Sasaki-Einstein if and only if (C(M), ḡ) is Ricci flat Kähler.
Deform the transverse Kähler form ωT 7→ ωT + i∂∂̄ϕ which deforms S in S(ξ, J).
Try to solve the transverse Monge-Ampère equation:

det(ωT
i j̄

+ i∂i ∂̄j̄φ)

det(ωT
i j̄

)
= e−tφ+F , ωT

i j̄ + ∂i ∂̄j̄φ > 0

for t ∈ [0, 1] by the continuity method Aubin, Yau, Siu, Tian, Nadel for Kähler manifolds,
Demailly-Kollár, for Kähler orbifolds, El Kacimi-Alaoui for transverse to foliations.
As in Kähler geometry there are obstructions to the existence of Sasaki-Einstein metrics.

The Lichnerowicz obstruction

1 (Lichnerowicz) (Mn, g) compact Riemannian with Ricci curvature Ricg ≥ n − 1 then the first
eigenvalue of Laplacian satisfies λ1 ≥ n [(Obata): equality if and only if (Mn, g) is standard sphere].

2 In particular, if (M2n+1, g) is Sasaki-Einstein then λ1 ≥ 2n + 1.
3 The cohomological Einstein condition c1(Fξ) = (n + 1)[dη]B is equivalent to the existence of a

nonvanishing (n + 1, 0) form Ω such that LξΩ = i(n + 1)Ω.
4 (Gauntlett,Martelli,Sparks,Yau(GMSY)) Applied this to Sasaki manifold (M2n+1, g) or better (Y , ξ)

with a Q-Gorenstein singularity to give

Theorem (Gauntlett,Martelli,Sparks,Yau (GMSY))
Suppose f is a holomorphic function on Y of charge 0 < λ < 1, i.e. Lξ f =

√
−1λf then (Y , ξ) admits no

Ricci-flat Kähler cone metric with Reeb vector field ξ.

5 From Obata λ = 1 can only occur for the SE metric on the standard sphere S2n+1
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The Modified Lichnerowicz Obstruction

First define the slice Σ = {ξ ∈ t+ | LξΩ =
√
−1(n + 1)Ω} in t+.

Theorem (Collins-Székelyhidi (CS))
Let (Y , ξ) be an isolated Gorenstein singularity with ξ ∈ Σ. If (Y , ξ) admits a holomorphic
function f satisfying the hypothesis of the GMSY Theorem, then (Y , ξ) is K-unstable, i.e.
Fut(Y0, ξ, ζ) < 0.

Let f ∈ H0(Y ,O) with weight α ∈ t∗.

Consider deformations to the normal cone V = {f = 0} ⊂ Y .

If χ is tangent to Σ we have

Futχ(Y0, ξ, ζ) = Fut(Y0, ξ, ζ)−
2

(n + 2)(n + 1)2

‖χ‖2

α(ξ)
−

1
(n + 2)(n + 1)

a0(ξ)α(χ)

α(ξ)2
.

This together with the CS Theorem gives

Theorem (B-,van Coevering)
If f is a homogeneous holomorphic function with weight α ∈ t∗ satisfying the GMSY Theorem
and α|T Σ = 0, then the entire Sasaki cone is obstructed from admitting extremal Sasaki metrics.
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Application to Links of Isolated Weighted Hypersurface Singularitites

Let f be a weighted homogeneous polynomial in Cn+1 of degree d with weight vector
w = (w0, . . . ,wn), i.e. f (λw0 z0, . . . , λ

wn zn) = λd f (z0, . . . , zn) where λ ∈ C∗.

Its link Lf = {f = 0} ∩ S2n+1 has a natural Sasakian structure Sw = (ξw, ηw,Φw, gw).

(B-,Galicki,Kollár) If for all but at most one i = 0, . . . , n we have 2wi < d then the Sasaki
automorphism group has dimension one as does the Sasaki cone t+.

So we assume f (z0, . . . , zn) = f1(z0, . . . , zk ) + z2
k+1 + · · ·+ z2

n with n− k ≥ 2 and all weights
wi with i = 0, . . . , k satisfy 2wi < d1, the degree of f1.

The connected component of the Sasaki automorphism group is U(1)× SO(n − k) whose
maximal torus T has dimension r + 1 where r = b n−k

2 c.
Denote by ζj the infinitesimal generator of the maximal torus T r of SO(n − k).

The variables uj = zk+j + izk+j+1 and vj = zk+j − izk+j+1 for j = 1, . . . , r have weight 1 and
−1 with respect to ζj for which all other variables have weight 0.

So if α is the weight of f , then α(ζj ) = 0.

Sasaki cone t+ of the link Lf is t+ = {b0ξw +
∑r

j=1 bjζj ∈ t | b0 > 0, − db0
4 < bj <

db0
4 }.

So α|T Σ = 0 and we have

Theorem (B-,van Coevering)

If the inequality
∑k

i=0 wi − w0n + d
2 (n − k − 2) ≥ 0 holds, then there are no extremal Sasaki

metrics in the entire Sasaki cone of the link Lf .
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w = (w0, . . . ,wn), i.e. f (λw0 z0, . . . , λ

wn zn) = λd f (z0, . . . , zn) where λ ∈ C∗.
Its link Lf = {f = 0} ∩ S2n+1 has a natural Sasakian structure Sw = (ξw, ηw,Φw, gw).

(B-,Galicki,Kollár) If for all but at most one i = 0, . . . , n we have 2wi < d then the Sasaki
automorphism group has dimension one as does the Sasaki cone t+.

So we assume f (z0, . . . , zn) = f1(z0, . . . , zk ) + z2
k+1 + · · ·+ z2

n with n− k ≥ 2 and all weights
wi with i = 0, . . . , k satisfy 2wi < d1, the degree of f1.

The connected component of the Sasaki automorphism group is U(1)× SO(n − k) whose
maximal torus T has dimension r + 1 where r = b n−k

2 c.
Denote by ζj the infinitesimal generator of the maximal torus T r of SO(n − k).

The variables uj = zk+j + izk+j+1 and vj = zk+j − izk+j+1 for j = 1, . . . , r have weight 1 and
−1 with respect to ζj for which all other variables have weight 0.

So if α is the weight of f , then α(ζj ) = 0.

Sasaki cone t+ of the link Lf is t+ = {b0ξw +
∑r

j=1 bjζj ∈ t | b0 > 0, − db0
4 < bj <

db0
4 }.

So α|T Σ = 0 and we have

Theorem (B-,van Coevering)

If the inequality
∑k

i=0 wi − w0n + d
2 (n − k − 2) ≥ 0 holds, then there are no extremal Sasaki

metrics in the entire Sasaki cone of the link Lf .
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The Moduli Space of Positive Sasakian Classes Mc
+,0(M)

Our results give statements about the moduli space Mc
+,0 of classes of positive Sasakian

structures with c1(Fξ) = 0.

We let e denote the subset of t+ that admits an extremal representative.

Theorem (B-,van Coevering)
Let M be one of the smooth manifolds listed in the first five entries or the last entry of the Table
below. Then the moduli space Mc

+,0(M) of positive Sasaki classes with c1(D) = 0 has a
countably infinite number of components of dimension greater than one and which contain no
extremal Sasaki metrics, i.e. e = ∅. Moreover, these different components correspond to
isomorphic transverse holomorphic structures.

The components of Mc
+,0(M) are distinguished by their mean Euler characteristic

(B-,Macarini,van Koert),

Some of these manifolds also have an infinite number of components of Sasakian
structures that admit Sasaki-Einstein metrics.

Define the complexity C(S) of a Sasaki manifold (M2n+1,S) as
C(S) = dim M+1

2 − dim t+ = n + 1− dim t+.

We have 0 ≤ C(S) ≤ n.

In the toric case C(S) = 0 and e is a nonempty open subset of t+ (Futaki-Ono-Wang).

If C(S) = n = dim M−1
2 then either e = t+ or e = ∅. Here dim t+ = 1.
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Table of Manifolds having Sasaki Cones with no Extremal Metrics

Diffeo-(homeo)-morphism Type f C(S)

S2n × S2n+1 z8l
0 + z2

1 + · · ·+ z2
2n+1, n, l ≥ 1 n

S2n × S2n+1#Σ4n+1
1 z8l+4

0 + z2
1 + · · ·+ z2

2n+1 = 0, n ≥ 1, l ≥ 0 n
Unit tangent bundle of S2n+1 z4l+2

0 + z2
1 + · · ·+ z2

2n+1, n > 1, l ≥ 1 n
Homotopy sphere Σ4n+1

k z2k+1
0 + z2

1 + · · ·+ z2
2n+1, n > 1, k ≥ 1 n

Homotopy sphere Σ4n−1
k z6k−1

0 + z3
1 + z2

2 + · · ·+ z2
2n, n ≥ 2, k ≥ 1 n

Rat. homology sphere H2n ≈ Z3 zk
0 + z3

1 + · · ·+ z2
2n, n, k > 1 n

2k(S2n+1 × S2n+2), Dn+1(k) z2(2k+1)
0 + z2k+1

1 + z2
2 + · · ·+ z2

2n+2, n, k ≥ 1 n + 1
#m(S2 × S3),m = gcd(p, , q)− 1 zp

0 + zq
1 + z2

2 + z2
3 , p ≥ 2q or q ≥ 2p 1

Σ4n+1
1 is the Kervaire sphere which is exotic when 4n + 2 6= 2i − 2.

Σ4n−1
1 is the Milnor generator with Σ4n−1

k = kΣ4n−1
1 for k ∈ Z|bP4n|.

In 6th entry there are two oriented homeomorphism types each with |bP4n| oriented
diffeomorphism types.
Dn+1(k) gives a formula for the diffeomorphism types that occur.
In the last entry m = 0 denotes S5.
Theorem (Collins-Székelyhidi): If 2p > q and 2q > p then link has infinitely many SE
metrics including S5.
Question: In this CS case, does the entire Sasaki cone admit extremal Sasaki metrics?
Question: Are these all complexity one Sasakian structures on simply connected M5?
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Theorem (Collins-Székelyhidi): If 2p > q and 2q > p then link has infinitely many SE
metrics including S5.

Question: In this CS case, does the entire Sasaki cone admit extremal Sasaki metrics?
Question: Are these all complexity one Sasakian structures on simply connected M5?

Charles Boyer (University of New Mexico) Obstructions for Extremal Sasaki Metrics
January 5, 2017FIU Winter Conference on Geometry, Topology and ApplicationsMiami, Florida 12

/ 13



Table of Manifolds having Sasaki Cones with no Extremal Metrics

Diffeo-(homeo)-morphism Type f C(S)

S2n × S2n+1 z8l
0 + z2

1 + · · ·+ z2
2n+1, n, l ≥ 1 n

S2n × S2n+1#Σ4n+1
1 z8l+4

0 + z2
1 + · · ·+ z2

2n+1 = 0, n ≥ 1, l ≥ 0 n
Unit tangent bundle of S2n+1 z4l+2

0 + z2
1 + · · ·+ z2

2n+1, n > 1, l ≥ 1 n
Homotopy sphere Σ4n+1

k z2k+1
0 + z2

1 + · · ·+ z2
2n+1, n > 1, k ≥ 1 n

Homotopy sphere Σ4n−1
k z6k−1

0 + z3
1 + z2

2 + · · ·+ z2
2n, n ≥ 2, k ≥ 1 n

Rat. homology sphere H2n ≈ Z3 zk
0 + z3

1 + · · ·+ z2
2n, n, k > 1 n

2k(S2n+1 × S2n+2), Dn+1(k) z2(2k+1)
0 + z2k+1

1 + z2
2 + · · ·+ z2

2n+2, n, k ≥ 1 n + 1
#m(S2 × S3),m = gcd(p, , q)− 1 zp

0 + zq
1 + z2

2 + z2
3 , p ≥ 2q or q ≥ 2p 1

Σ4n+1
1 is the Kervaire sphere which is exotic when 4n + 2 6= 2i − 2.

Σ4n−1
1 is the Milnor generator with Σ4n−1

k = kΣ4n−1
1 for k ∈ Z|bP4n|.

In 6th entry there are two oriented homeomorphism types each with |bP4n| oriented
diffeomorphism types.
Dn+1(k) gives a formula for the diffeomorphism types that occur.
In the last entry m = 0 denotes S5.
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Thank You

THANK YOU FOR YOUR ATTENTION
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