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LECTURE 1: Fundamentals of Sasakian Geometry

IMPORTANT ANALOGIES
:

Even Dimension←→ Odd Dimension

Symplectic Geometry←→ Contact Geometry

Kähler Geometry←→ Sasakian Geometry
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Some Fundamental Problems

I begin by giving some problems to keep in mind during the lectures. We can give only partial
answers to these problems and usually only for particular cases. The idea is to use these as a
guiding principle.

PROBLEMS

1 Given a manifold determine how many contact structures of Sasaki type there are.

2 Given a contact structure or isotopy class of contact structures:

Determine the space of compatible Sasakian structures.
Determine the (pre)-moduli space of extremal Sasakian structures.
Determine those with constant scalar curvature metrics (cscS). How many?
Determine those with Sasaki-Einstein metrics (SE). How many?
Determine the (pre)-moduli space of Sasakian structures with the same underlying CR structure.
Determine those having distinct underlying CR structures.
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Contact Geometry

1 A Closed Manifold M of dimension 2n + 1, i.e. compact without boundary.

2 A contact 1-form η such that
η ∧ (dη)n 6= 0.

3 defines a contact structure
η′ ∼ η ⇐⇒ η′ = fη

for some f 6= 0, take f > 0, or equivalently a codimension 1 subbundle D = Ker η of TM with
a conformal symplectic structure. So {oriented contact 1-forms in D} ≈ C∞(M)+

4 The pair (M,D) is called a contact manifold.
5 If we choose a contact 1-form η, there is a unique vector field ξ, called the Reeb vector field,

satisfying
η(ξ) = 1, ξcdη = 0.

6 The characteristic foliation Fξ is the 1-dim’l foliation defined by ξ: It is called quasi-regular
if each leaf of Fξ passes through any nbd U at most k times. It is regular if k = 1; otherwise,
it is irregular. We also say that the contact form η is quasi-regular, regular, irregular.

7 Most contact forms in a contact structure D are irregular
8 We can choose a compatible almost complex structure J on D, that is one that satisfies

the two conditions
dη(JX , JY ) = dη(X ,Y ) dη(JX ,Y ) > 0

for any sections X ,Y of D.
9 The almost complex structure J extends to an endomorphism Φ of TM satisfying Φξ = 0.
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Sasakian Geometry

There is a ‘canonical’ compatible metric g = dη ◦ (Φ⊗ 1l) + η⊗ η. Quadruple S = (ξ, η,Φ, g)
called contact metric structure.

gD = dη ◦ (Φ⊗ 1l) defines a metric in D called the transverse metric and ωT = dη is a
transverse symplectic form in D.
The pair (D, J) defines an almost CR structure on D.
dη is called the Levi form of D and the condition dη(JX ,Y ) > 0 says that (D, J) is strictly
pseudo-convex abbreviated as sψCR.
We are mainly interested in the case that the almost CR structure is integrable, that is, that
(D, J) defines a CR structure.

Definition
The contact metric structure S = (ξ, η,Φ, g) is K-contact if Lξg = 0 (or LξΦ = 0). It is Sasakian
if in addition (D, J) is integrable and the transverse metric gD is Kähler (transverse holonomy
U(n)). In the latter case we say that the contact structure D is of Sasaki type.

Nested structures on M: Sasakian ⊂ strictly pseudo-convex CR ⊂ Contact;
(ξ, η,Φ, g) ⊂ (D, J) ⊂ D, with Φ|D = J.
Some properties of a Sasaki manifold (M,S) of dimension 2n + 1:

1 Any Sasaki structure S has at least an S1 symmetry.
2 The characteristic foliation Fξ is Riemannian, that is, a Riemannian flow.
3 If S is irregular, then the closure F̄ξ is a torus T k of dimension 1 ≤ k ≤ n + 1.
4 The metric g is bundle-like.
5 The leaves of Fξ (orbits of ξ) are totally geodesic.
6 The Ricci curvature of g satisfies Ricg(X , ξ) = 2nη(X) for any vector field X .
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Cone (Symplectization)

Cone (Symplectization): C(M) = M × R+ with symplectic form ω = d(r2η), r ∈ R+.

Cone Metric gC = dr2 + r2g.

C(M) as a dilatation operator Ψ = r∂r such that LΨω = 2ω.

The (almost) complex structure I on C(M) is defined by I|D = J, Iξ = Ψ, IΨ = −ξ.
gC is Kähler ⇐⇒ g is Sasaki ⇐⇒ gD is Kähler.

Nested structures: Sasakian ⊂ sψCR ⊂ Contact
Sasakian structure gives pseudo convex CR structure (D, J) and a transverse holomorphic
structure (ξ, J̄). The former fixes the contact structure while the latter fixes the characteristic
foliation.

Transverse homothety: If S = (ξ, η,Φ, g) is a Sasakian structure, so is
Sa = (a−1ξ, aη,Φ, ga) for every a ∈ R+ with ga = ag + (a2 − a)η ⊗ η. So Sasakian
structures come in rays.

The subset W o = M × (0, 1] ⊂ C(M) is an open symplectic filling of (M,D).

When (M,D) is of Sasaki type one can perform a resolution of singularity at the cone point
to obtain an honest filling W which is Kähler (holomorphic).
But generally Ψ only exists locally near the boundary ∂W = M.

However, when we can smooth the singularity at the cone point, Ψ will be globally defined
and we have a Liouville filling for which the Kähler form ω is exact. This is the case for
Brieskorn manifolds.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 8

/ 40



Cone (Symplectization)

Cone (Symplectization): C(M) = M × R+ with symplectic form ω = d(r2η), r ∈ R+.

Cone Metric gC = dr2 + r2g.

C(M) as a dilatation operator Ψ = r∂r such that LΨω = 2ω.

The (almost) complex structure I on C(M) is defined by I|D = J, Iξ = Ψ, IΨ = −ξ.
gC is Kähler ⇐⇒ g is Sasaki ⇐⇒ gD is Kähler.

Nested structures: Sasakian ⊂ sψCR ⊂ Contact
Sasakian structure gives pseudo convex CR structure (D, J) and a transverse holomorphic
structure (ξ, J̄). The former fixes the contact structure while the latter fixes the characteristic
foliation.

Transverse homothety: If S = (ξ, η,Φ, g) is a Sasakian structure, so is
Sa = (a−1ξ, aη,Φ, ga) for every a ∈ R+ with ga = ag + (a2 − a)η ⊗ η. So Sasakian
structures come in rays.

The subset W o = M × (0, 1] ⊂ C(M) is an open symplectic filling of (M,D).

When (M,D) is of Sasaki type one can perform a resolution of singularity at the cone point
to obtain an honest filling W which is Kähler (holomorphic).
But generally Ψ only exists locally near the boundary ∂W = M.

However, when we can smooth the singularity at the cone point, Ψ will be globally defined
and we have a Liouville filling for which the Kähler form ω is exact. This is the case for
Brieskorn manifolds.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 8

/ 40



Cone (Symplectization)

Cone (Symplectization): C(M) = M × R+ with symplectic form ω = d(r2η), r ∈ R+.

Cone Metric gC = dr2 + r2g.

C(M) as a dilatation operator Ψ = r∂r such that LΨω = 2ω.

The (almost) complex structure I on C(M) is defined by I|D = J, Iξ = Ψ, IΨ = −ξ.
gC is Kähler ⇐⇒ g is Sasaki ⇐⇒ gD is Kähler.

Nested structures: Sasakian ⊂ sψCR ⊂ Contact
Sasakian structure gives pseudo convex CR structure (D, J) and a transverse holomorphic
structure (ξ, J̄). The former fixes the contact structure while the latter fixes the characteristic
foliation.

Transverse homothety: If S = (ξ, η,Φ, g) is a Sasakian structure, so is
Sa = (a−1ξ, aη,Φ, ga) for every a ∈ R+ with ga = ag + (a2 − a)η ⊗ η. So Sasakian
structures come in rays.

The subset W o = M × (0, 1] ⊂ C(M) is an open symplectic filling of (M,D).

When (M,D) is of Sasaki type one can perform a resolution of singularity at the cone point
to obtain an honest filling W which is Kähler (holomorphic).
But generally Ψ only exists locally near the boundary ∂W = M.

However, when we can smooth the singularity at the cone point, Ψ will be globally defined
and we have a Liouville filling for which the Kähler form ω is exact. This is the case for
Brieskorn manifolds.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 8

/ 40



Cone (Symplectization)

Cone (Symplectization): C(M) = M × R+ with symplectic form ω = d(r2η), r ∈ R+.

Cone Metric gC = dr2 + r2g.

C(M) as a dilatation operator Ψ = r∂r such that LΨω = 2ω.

The (almost) complex structure I on C(M) is defined by I|D = J, Iξ = Ψ, IΨ = −ξ.

gC is Kähler ⇐⇒ g is Sasaki ⇐⇒ gD is Kähler.

Nested structures: Sasakian ⊂ sψCR ⊂ Contact
Sasakian structure gives pseudo convex CR structure (D, J) and a transverse holomorphic
structure (ξ, J̄). The former fixes the contact structure while the latter fixes the characteristic
foliation.

Transverse homothety: If S = (ξ, η,Φ, g) is a Sasakian structure, so is
Sa = (a−1ξ, aη,Φ, ga) for every a ∈ R+ with ga = ag + (a2 − a)η ⊗ η. So Sasakian
structures come in rays.

The subset W o = M × (0, 1] ⊂ C(M) is an open symplectic filling of (M,D).

When (M,D) is of Sasaki type one can perform a resolution of singularity at the cone point
to obtain an honest filling W which is Kähler (holomorphic).
But generally Ψ only exists locally near the boundary ∂W = M.

However, when we can smooth the singularity at the cone point, Ψ will be globally defined
and we have a Liouville filling for which the Kähler form ω is exact. This is the case for
Brieskorn manifolds.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 8

/ 40



Cone (Symplectization)

Cone (Symplectization): C(M) = M × R+ with symplectic form ω = d(r2η), r ∈ R+.

Cone Metric gC = dr2 + r2g.

C(M) as a dilatation operator Ψ = r∂r such that LΨω = 2ω.

The (almost) complex structure I on C(M) is defined by I|D = J, Iξ = Ψ, IΨ = −ξ.
gC is Kähler ⇐⇒ g is Sasaki ⇐⇒ gD is Kähler.

Nested structures: Sasakian ⊂ sψCR ⊂ Contact
Sasakian structure gives pseudo convex CR structure (D, J) and a transverse holomorphic
structure (ξ, J̄). The former fixes the contact structure while the latter fixes the characteristic
foliation.

Transverse homothety: If S = (ξ, η,Φ, g) is a Sasakian structure, so is
Sa = (a−1ξ, aη,Φ, ga) for every a ∈ R+ with ga = ag + (a2 − a)η ⊗ η. So Sasakian
structures come in rays.

The subset W o = M × (0, 1] ⊂ C(M) is an open symplectic filling of (M,D).

When (M,D) is of Sasaki type one can perform a resolution of singularity at the cone point
to obtain an honest filling W which is Kähler (holomorphic).
But generally Ψ only exists locally near the boundary ∂W = M.

However, when we can smooth the singularity at the cone point, Ψ will be globally defined
and we have a Liouville filling for which the Kähler form ω is exact. This is the case for
Brieskorn manifolds.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 8

/ 40



Cone (Symplectization)

Cone (Symplectization): C(M) = M × R+ with symplectic form ω = d(r2η), r ∈ R+.

Cone Metric gC = dr2 + r2g.

C(M) as a dilatation operator Ψ = r∂r such that LΨω = 2ω.

The (almost) complex structure I on C(M) is defined by I|D = J, Iξ = Ψ, IΨ = −ξ.
gC is Kähler ⇐⇒ g is Sasaki ⇐⇒ gD is Kähler.

Nested structures: Sasakian ⊂ sψCR ⊂ Contact

Sasakian structure gives pseudo convex CR structure (D, J) and a transverse holomorphic
structure (ξ, J̄). The former fixes the contact structure while the latter fixes the characteristic
foliation.

Transverse homothety: If S = (ξ, η,Φ, g) is a Sasakian structure, so is
Sa = (a−1ξ, aη,Φ, ga) for every a ∈ R+ with ga = ag + (a2 − a)η ⊗ η. So Sasakian
structures come in rays.

The subset W o = M × (0, 1] ⊂ C(M) is an open symplectic filling of (M,D).

When (M,D) is of Sasaki type one can perform a resolution of singularity at the cone point
to obtain an honest filling W which is Kähler (holomorphic).
But generally Ψ only exists locally near the boundary ∂W = M.

However, when we can smooth the singularity at the cone point, Ψ will be globally defined
and we have a Liouville filling for which the Kähler form ω is exact. This is the case for
Brieskorn manifolds.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 8

/ 40



Cone (Symplectization)

Cone (Symplectization): C(M) = M × R+ with symplectic form ω = d(r2η), r ∈ R+.

Cone Metric gC = dr2 + r2g.

C(M) as a dilatation operator Ψ = r∂r such that LΨω = 2ω.

The (almost) complex structure I on C(M) is defined by I|D = J, Iξ = Ψ, IΨ = −ξ.
gC is Kähler ⇐⇒ g is Sasaki ⇐⇒ gD is Kähler.

Nested structures: Sasakian ⊂ sψCR ⊂ Contact
Sasakian structure gives pseudo convex CR structure (D, J) and a transverse holomorphic
structure (ξ, J̄). The former fixes the contact structure while the latter fixes the characteristic
foliation.

Transverse homothety: If S = (ξ, η,Φ, g) is a Sasakian structure, so is
Sa = (a−1ξ, aη,Φ, ga) for every a ∈ R+ with ga = ag + (a2 − a)η ⊗ η. So Sasakian
structures come in rays.

The subset W o = M × (0, 1] ⊂ C(M) is an open symplectic filling of (M,D).

When (M,D) is of Sasaki type one can perform a resolution of singularity at the cone point
to obtain an honest filling W which is Kähler (holomorphic).
But generally Ψ only exists locally near the boundary ∂W = M.

However, when we can smooth the singularity at the cone point, Ψ will be globally defined
and we have a Liouville filling for which the Kähler form ω is exact. This is the case for
Brieskorn manifolds.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 8

/ 40



Cone (Symplectization)

Cone (Symplectization): C(M) = M × R+ with symplectic form ω = d(r2η), r ∈ R+.

Cone Metric gC = dr2 + r2g.

C(M) as a dilatation operator Ψ = r∂r such that LΨω = 2ω.

The (almost) complex structure I on C(M) is defined by I|D = J, Iξ = Ψ, IΨ = −ξ.
gC is Kähler ⇐⇒ g is Sasaki ⇐⇒ gD is Kähler.

Nested structures: Sasakian ⊂ sψCR ⊂ Contact
Sasakian structure gives pseudo convex CR structure (D, J) and a transverse holomorphic
structure (ξ, J̄). The former fixes the contact structure while the latter fixes the characteristic
foliation.

Transverse homothety: If S = (ξ, η,Φ, g) is a Sasakian structure, so is
Sa = (a−1ξ, aη,Φ, ga) for every a ∈ R+ with ga = ag + (a2 − a)η ⊗ η. So Sasakian
structures come in rays.

The subset W o = M × (0, 1] ⊂ C(M) is an open symplectic filling of (M,D).

When (M,D) is of Sasaki type one can perform a resolution of singularity at the cone point
to obtain an honest filling W which is Kähler (holomorphic).
But generally Ψ only exists locally near the boundary ∂W = M.

However, when we can smooth the singularity at the cone point, Ψ will be globally defined
and we have a Liouville filling for which the Kähler form ω is exact. This is the case for
Brieskorn manifolds.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 8

/ 40



Cone (Symplectization)

Cone (Symplectization): C(M) = M × R+ with symplectic form ω = d(r2η), r ∈ R+.

Cone Metric gC = dr2 + r2g.

C(M) as a dilatation operator Ψ = r∂r such that LΨω = 2ω.

The (almost) complex structure I on C(M) is defined by I|D = J, Iξ = Ψ, IΨ = −ξ.
gC is Kähler ⇐⇒ g is Sasaki ⇐⇒ gD is Kähler.

Nested structures: Sasakian ⊂ sψCR ⊂ Contact
Sasakian structure gives pseudo convex CR structure (D, J) and a transverse holomorphic
structure (ξ, J̄). The former fixes the contact structure while the latter fixes the characteristic
foliation.

Transverse homothety: If S = (ξ, η,Φ, g) is a Sasakian structure, so is
Sa = (a−1ξ, aη,Φ, ga) for every a ∈ R+ with ga = ag + (a2 − a)η ⊗ η. So Sasakian
structures come in rays.

The subset W o = M × (0, 1] ⊂ C(M) is an open symplectic filling of (M,D).

When (M,D) is of Sasaki type one can perform a resolution of singularity at the cone point
to obtain an honest filling W which is Kähler (holomorphic).
But generally Ψ only exists locally near the boundary ∂W = M.

However, when we can smooth the singularity at the cone point, Ψ will be globally defined
and we have a Liouville filling for which the Kähler form ω is exact. This is the case for
Brieskorn manifolds.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 8

/ 40



Cone (Symplectization)

Cone (Symplectization): C(M) = M × R+ with symplectic form ω = d(r2η), r ∈ R+.

Cone Metric gC = dr2 + r2g.

C(M) as a dilatation operator Ψ = r∂r such that LΨω = 2ω.

The (almost) complex structure I on C(M) is defined by I|D = J, Iξ = Ψ, IΨ = −ξ.
gC is Kähler ⇐⇒ g is Sasaki ⇐⇒ gD is Kähler.

Nested structures: Sasakian ⊂ sψCR ⊂ Contact
Sasakian structure gives pseudo convex CR structure (D, J) and a transverse holomorphic
structure (ξ, J̄). The former fixes the contact structure while the latter fixes the characteristic
foliation.

Transverse homothety: If S = (ξ, η,Φ, g) is a Sasakian structure, so is
Sa = (a−1ξ, aη,Φ, ga) for every a ∈ R+ with ga = ag + (a2 − a)η ⊗ η. So Sasakian
structures come in rays.

The subset W o = M × (0, 1] ⊂ C(M) is an open symplectic filling of (M,D).

When (M,D) is of Sasaki type one can perform a resolution of singularity at the cone point
to obtain an honest filling W which is Kähler (holomorphic).

But generally Ψ only exists locally near the boundary ∂W = M.

However, when we can smooth the singularity at the cone point, Ψ will be globally defined
and we have a Liouville filling for which the Kähler form ω is exact. This is the case for
Brieskorn manifolds.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 8

/ 40



Cone (Symplectization)

Cone (Symplectization): C(M) = M × R+ with symplectic form ω = d(r2η), r ∈ R+.

Cone Metric gC = dr2 + r2g.

C(M) as a dilatation operator Ψ = r∂r such that LΨω = 2ω.

The (almost) complex structure I on C(M) is defined by I|D = J, Iξ = Ψ, IΨ = −ξ.
gC is Kähler ⇐⇒ g is Sasaki ⇐⇒ gD is Kähler.

Nested structures: Sasakian ⊂ sψCR ⊂ Contact
Sasakian structure gives pseudo convex CR structure (D, J) and a transverse holomorphic
structure (ξ, J̄). The former fixes the contact structure while the latter fixes the characteristic
foliation.

Transverse homothety: If S = (ξ, η,Φ, g) is a Sasakian structure, so is
Sa = (a−1ξ, aη,Φ, ga) for every a ∈ R+ with ga = ag + (a2 − a)η ⊗ η. So Sasakian
structures come in rays.

The subset W o = M × (0, 1] ⊂ C(M) is an open symplectic filling of (M,D).

When (M,D) is of Sasaki type one can perform a resolution of singularity at the cone point
to obtain an honest filling W which is Kähler (holomorphic).
But generally Ψ only exists locally near the boundary ∂W = M.

However, when we can smooth the singularity at the cone point, Ψ will be globally defined
and we have a Liouville filling for which the Kähler form ω is exact. This is the case for
Brieskorn manifolds.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 8

/ 40



Cone (Symplectization)

Cone (Symplectization): C(M) = M × R+ with symplectic form ω = d(r2η), r ∈ R+.

Cone Metric gC = dr2 + r2g.

C(M) as a dilatation operator Ψ = r∂r such that LΨω = 2ω.

The (almost) complex structure I on C(M) is defined by I|D = J, Iξ = Ψ, IΨ = −ξ.
gC is Kähler ⇐⇒ g is Sasaki ⇐⇒ gD is Kähler.

Nested structures: Sasakian ⊂ sψCR ⊂ Contact
Sasakian structure gives pseudo convex CR structure (D, J) and a transverse holomorphic
structure (ξ, J̄). The former fixes the contact structure while the latter fixes the characteristic
foliation.

Transverse homothety: If S = (ξ, η,Φ, g) is a Sasakian structure, so is
Sa = (a−1ξ, aη,Φ, ga) for every a ∈ R+ with ga = ag + (a2 − a)η ⊗ η. So Sasakian
structures come in rays.

The subset W o = M × (0, 1] ⊂ C(M) is an open symplectic filling of (M,D).

When (M,D) is of Sasaki type one can perform a resolution of singularity at the cone point
to obtain an honest filling W which is Kähler (holomorphic).
But generally Ψ only exists locally near the boundary ∂W = M.

However, when we can smooth the singularity at the cone point, Ψ will be globally defined
and we have a Liouville filling for which the Kähler form ω is exact. This is the case for
Brieskorn manifolds.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 8

/ 40



Contact Topology and Fillings

• Contact Invariants −→ components of Sasaki moduli space.

Gray Stability Theorem: On a closed contact manifold all deformations are trivial.

An important classical invariant: The first Chern class c1(D) of the contact bundle.
contact homology: has serious transversality problems, so we work with fillings.
S1-equivariant symplectic homology of the filling is a Floer homology introduced by
Viterbo and developed further by Bourgeois-Oancea.
We need a Liouville filling which we extend to a full cone after smoothing W̄ = W ∪M × R+.
Obtain an S1-equivariant theory on the free loop space ΛW̄ of W̄ which gives equivariant
“Morse-Floer” type homology groups SH+,S1

(W ). The +⇒ truncate action functional at 0.

Morally, SH+,S1
(W ) is generated by periodic Reeb orbits on the boundary M.

Under the right assumptions SH+,S1
(W ) is a contact invariant.

Define the symplectic Betti numbers by sbi := rank SH+,S1

i (W ) and the mean Euler
characteristic is defined by

χm(W ) =
1
2

0@lim inf
N→∞

1
N

NX
i=−N

(−1)i sbi (W ) + lim sup
N→∞

1
N

NX
i=−N

(−1)i sbi (W )

1A
if this number exists. [van Koert]
Under various technical assumptions, χm(W ) exists and is a contact invariant independent
of the Liouville filling which allows us to distinguish components of the Sasaki moduli space.
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Contact Topology and Fillings

• Contact Invariants −→ components of Sasaki moduli space.

Gray Stability Theorem: On a closed contact manifold all deformations are trivial.
An important classical invariant: The first Chern class c1(D) of the contact bundle.
contact homology: has serious transversality problems, so we work with fillings.
S1-equivariant symplectic homology of the filling is a Floer homology introduced by
Viterbo and developed further by Bourgeois-Oancea.
We need a Liouville filling which we extend to a full cone after smoothing W̄ = W ∪M × R+.
Obtain an S1-equivariant theory on the free loop space ΛW̄ of W̄ which gives equivariant
“Morse-Floer” type homology groups SH+,S1

(W ). The +⇒ truncate action functional at 0.

Morally, SH+,S1
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Symmetries of Sasaki Manifolds

Contactomorphism Group Con(M,D) = {φ ∈ Diff(M) | φ∗D ⊂ D}.

Strict Contactomorphism Group Con(M, η) = {φ ∈ Diff(M) | φ∗η = η} ⊂ Con(M,D).

CR transformation group CR(D, J) = {φ ∈ Con(M,D) | φ∗J = Jφ∗}.
Sasakian automorphism group Aut(S) = {φ ∈ CR(D, J) | φ∗ξ = ξ, φ∗g = g}.
The group Con(M,D) is Frechet Lie group and Con(M, η) ⊂ Con(M,D) a Frechet Lie
subgroup; whereas, the groups CR(D, J) and Aut(S) are ordinary Lie groups.

When M is compact Aut(S) is a compact Lie group, and CR(D, J) is compact except for
the standard CR structure on S2n+1.

maximal torus T k with 1 ≤ k ≤ n + 1

CR(D, J)
↗ ↘

T k ⊂ Aut(S) Con(M,D)
↘ ↗

Con(M, η)

.

Except for the standard CR structure on S2n+1, there is a Sasakian structure S such that
Aut(S) = CR(D, J).

Conjugacy classes of maximal tori in Con(M,D) distinguish distinct (almost) CR structures
in the same contact structure (M,D).
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Sasaki cones and bouquets

Distinct Sasakian structures in the same underlying CR structure −→ Sasaki cone,
Distinct Sasaki cones in the same underlying contact structure −→ Sasaki bouquet.

Sasaki cones

1 tk the Lie algebra of T k

2 Sasaki cone (unreduced): t+
k (D, J) = {ξ′ ∈ tk | η(ξ′) > 0, } s.t. S = (ξ, η,Φ, g) ∈ (D, J) is

Sasakian.
3 Sasaki cone (reduced): κ(D, J) = t+

k (D, J)/W where W is the Weyl group of CR(D, J)
4 κ(D, J) is finite dim’l moduli of Sasakian structures with underlying CR structure (D, J).
5 1 ≤ dimκ(D, J) ≤ n + 1 and if dimκ(D, J) = n + 1, M is toric Sasakian.

Sasaki bouquets

1 a contact structure D of Sasaki type with a space of compatible CR (complex) structures J(D).
2 The space J(D) is contractible and c1(D) is independent of the choice of J ∈ J(D).
3 a map Q : J(D)→ { conjugacy classes of tori in the contactomorphism group Con(M,D)}
4 Get bouquet [

α

κ(D, Jα)

of Sasaki cones, Jα ∈ J(D), α ranges over distinct conjugacy classes.
5 A bouquet consisting of N Sasaki cones is called an N-bouquet, denoted by BN . The Sasaki cones

in an N-bouquet can have different dimension. The pre-moduli space is typically non-Hausdorff.
6 the Sasaki cones κ(D, Jα) can be distinguished by equivariant Gromov-Witten invariants
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Deformations of Sasakian Structures

Three Types of Deformations of Sasakian Structures

First type: Fix CR structure (D, J), deform characteristic foliation F. This gives rise to Sasaki
cones.

1 Generically after this type of deformation the transverse holonomy becomes irreducible.

Second type: Fix contact structure D, deform transverse complex structure (CR) J. This
gives rise to Sasaki bouquets.

1 Here Sasaki cones in bouquets are related to conjugacy classes of tori in the contactomorphism
group Con(M,D).

Third type: Fix characteristic foliation F, deform contact structure D. This is used to obtain
extremal Sasaki metrics.

1 This type of deformation η 7→ η′ = η + dcζ, where ζ is basic and dc = i(∂̄ − ∂), does not change
the isotopy class of contact structure.

2 This leads to basic cohomology.
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Basic Cohomology

Characteristic foliation Fξ of a Sasaki manifold is a Riemannian foliation ⇐⇒ bundle-like

Characteristic foliation Fξ ⇒ basic cohomology groups Hp
B(Fξ)

Transverse holomorphic⇒ basic (p,q)-forms Ωp,q
B ⇒ basic Dolbeault cohomology groups

Hp,q
B (Fξ).

Riemannian foliation⇒ transverse Hodge theory holds.

Space F(ξ) of Sasakian structures S′ = (ξ, η′,Φ′, g′) with Reeb vector field ξ such that
η 7→ η′ = η + dcζ, ζ is basic. The basic cohomology class [dη]B ∈ H1,1

B (Fξ) is fixed.

An exact sequence

0→ R
δ
→ H2

B(Fξ)
ι∗
−→ H2(M,R) −→

where δ(a) = a[dη]B ∈ H1,1
B (Fξ) depends only on space F(ξ).

M compact⇒ [dη]B 6= 0.

First basic Chern class c1(Fξ) ∈ H2
B(Fξ) represented by the transverse Ricci form ρT .

ι∗c1(Fξ) = c1(D) mod torsion and ι∗[dη]B = 0.

c1(Fξ) = a[dη]B , a = with constant ⇐⇒ c1(D) is a torsion class. This is the case for
Sasaki-Einstein metrics.

A Sasakian structure S = (ξ, η,Φ, g) is positive (negative) if c1(Fξ) > 0 (c1(Fξ) < 0) or
null Sasakian if c1(Fξ) = 0. Otherwise S is indefinite.
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Transverse Geometry and Transverse Holomorphic Transformations

Let Lξ be the real line bundle generated by ξ and consider the short exact sequence of
vector bundles 0−−−→Lξ−−−→TM−−−→ν(Fξ)−−−→0. A choice of Sasakian structure S ∈ F(ξ)
splits this sequence as TM = Lξ ⊕D with D = ker η.

The transverse geometry is described on the quotient bundle ν(Fξ). The endomorphism Φ

induces a complex structure J̄ on ν(Fξ).

If S ∈ F(ξ) the volume VS = Vξ =
R

M η ∧ (dη)n and the total scalar curvature
SS = Sξ =

R
M sg η ∧ (dη)n depend only on the class [dη]B .

Let Fol(M,Fξ) be the subgroup of Diff(M) that leaves the characteristic foliation Fξ invariant.
An element φ ∈ Fol(M,Fξ) induces a map φ̄∗ : ν(Fξ)−−−→ν(Fξ).

Define the group of transverse holomorphic transformations by

HT (ξ, J̄) = {φ ∈ Fol(M,Fξ) | φ̄∗ ◦ J̄ = J̄ ◦ φ̄∗}.

The group HT (ξ, J̄) is infinite dimensional, but the quotient HT
0 (ξ, J̄) = HT (ξ, J̄)/Γ(Lξ) is a

finite dimensional Lie group.

The group HT
0 (ξ, J̄) does not preserve the contact structure D, but it does preserve its

isotopy class.

We denote by hT
0 (ξ, J̄) the Lie algebra of HT

0 (ξ, J̄).
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Extremal Sasakian metrics (B-Galicki-Simanca)

Sasakian structure S = (ξ, η,Φ, g) with scalar curvature sg .

Calabi-Sasaki Energy functional E(g) =

Z
M

s2
gdµg ,
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Einstein-Hilbert Functional (B-,Huang,Legendre,Tønnesen-Friedman)

Sasakian structure S = (ξ, η,Φ, g) with scalar curvature sg .

The total scalar curvature as a functional restricted to the Sasaki cone: Sξ =
R

M sg

Want invariance under transverse homothety so we define the Einstein-Hilbert Functional

H(ξ) =
Sn+1
ξ

Vn
ξ

where V is the total volume.

Variation gives

dHξ =
n(n + 1)Sn

ξ

Vn
ξ

SFξ ◦ Φ.

So critical points of H(ξ) are the zeros of the total scalar curvature Sξ and the zeros of the
Sasaki-Futaki invariant SFξ.

This gives constant scalar curvature Sasaki metrics (cscS) are critical points of H(ξ).

Sasaki version of the Donaldson-Tian-Yau conjecture: cscS ⇐⇒ cone is K-polystable.
More later.
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Constructions of Sasaki Manifolds

Every quasi-regular Sasaki manifold is the total space M of an S1-orbibundle over a
projective algebraic orbifold Z. In the context of contact-symplectic geometry it is known as
the orbifold Boothby-Wang construction. We also refer to it as a Sasaki-Seifert structure.

Seifert bundle constructions, especially in dimension 5 (Kollár).

Any irregular Sasaki manifold can be approximated by quasi-regular ones.
Convenient constructions are:

1 Sasakian manifold with many symmetries, e.g. homogeneous Sasaki manifolds or more generally
toric contact structures of Reeb type.

2 Links of weighted homogeneous polynomials, e.g. Brieskorn manifolds.
3 Sasaki join construction.

Constructions (2) and (3) are complementary. Links are highly connected, i.e. in dimension
2n + 1 they are n − 1-connected; whereas, the join construction always adds to H2(M,Q).

They can intersect in dimension five, but otherwise are complementary.

On a highly connected manifold of dimension greater than five, any contact structure D
satisfies c1(D) = 0.

On a simply connected rational homology sphere, c1(D) = 0.
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Sasakian Geometry of Links

Consider the affine space Cn+1 and a weight vector w = (w0,w1, · · · ,wn) together with a
weighted C∗-action given by (z0, . . . , zn) 7→ (λw0 z0, . . . , λ

wn zn), where the weights wj are
positive integers that satisfy gcd(w0, . . . ,wn) = 1 and λ ∈ C∗.

Let fw be a weighted homogeneous polynomial, that is fw ∈ C[z0, . . . , zn] and satisfies

fw(λw0 z0, . . . , λ
wn zn) = λd fw(z0, . . . , zn),

where d ∈ Z+ is the degree of fw.
We shall assume that the origin in Cn+1 is an isolated singularity.
We are interested in the link Lfw defined by

Lfw = {fw = 0} ∩ S2n+1,

where

S2n+1 = {(z0, . . . , zn) ∈ Cn+1|
nX

j=0

|zj |2 = 1}

is the unit sphere in Cn+1. This gives λ ∈ S1 ⇒ a weighted S1 action on S2n+1.
Of particular interest are the Brieskorn-Pham polynomials (BP) of the form

f (z0, . . . , zn) = za0
0 + · · ·+ zan

n with wi ai = d ′

The link Lf is endowed with a natural quasi-regular Sasakian structure inherited as a
Sasakian submanifold of the sphere S2n+1 with its “weighted” Sasakian structure
Sw = (ξw, ηw,Φw, gw).
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The Milnor Fibration Theorem

There is a fibration of (S2n+1 − Lf )−−→S1 whose fiber F is an open manifold that is homotopy
equivalent to a bouquet of n-spheres Sn ∨ · · · ∨ Sn.

The number of spheres in the bouquet, called the Milnor number, is an invariant of the link
which can be calculated explicitly in terms of the degree d and weights w by the formula
µ = µ(Lf ) =

Qn
i=0
` d

wi
− 1
´
.

The closure F̄ of F has the same homotopy type as F and is a compact manifold with
boundary precisely the link Lf .

There is an exact sequence

0→Hn(Lf ,Z)→ Hn(F ,Z)
I−h∗
−−−→Hn(F ,Z)→ Hn−1(Lf ,Z)→ 0

where h∗ is the monodromy map (or characteristic map) induced by the S1
w action.

Hn(Lf ,Z) = ker(I− h∗) is a free Abelian group, and Hn−1(Lf ,Z) = Coker(I− h∗) which in
general has torsion, but whose free part equals ker(I− h∗).
Milnor and Orlik [1970] commutes Hn(Lf ,Z) in terms of the Alexander polynomial
∆(t) = det(tI− h∗). The Betti number bn(Lf ) = bn−1(Lf ) equals the number of factors of
(t − 1) in ∆(t).
Orlik [1978] proposed an algorithmic way of computing torsion of any Lf . He made a
conjecture that his algorithm always produces correct answer. The conjecture was later
proved by Randell [1980] for special links such as Brieskorn-Pham links. In full generality
the conjecture is still open. However, it is known to hold for dimension 3 and it follows from
the recent work of Kollár that it holds in dimension 5 B-,Galicki,Simanca.
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It’s all about that Base

Generally the S1-orbibundle construction π : M−−−→Z is a Seifert bundle. This approach
works particularly well in dimension 5, since the base is a algebraic surface (possibly
singular) where much is known. It was developed by Kollár.

The quotient of S2n+1 by the “weighted S1-action” generated by the vector field ξw is the
weighted projective space Pn

C(w) = (Cn+1 − {0})/C∗w.

The quotient of Lf by the “weighted S1-action” generated by the vector field ξw is the
projective algebraic orbifold Zf called the base.

There is a commutative diagram:

Lf −−−−−→ S2n+1
w?????yπ
????y

Zf −−−−−→ PC(w),

where the horizontal arrows are Sasakian and orbifold Kählerian embeddings, respectively,
and the vertical arrows are orbifold Riemannian submersions.

Lf is positive (negative) Sasakian structure if and only if
P

wi − d > 0(
P

wi − d < 0),
respectively. positive (negative) Sasakian ⇐⇒ Zf is Fano (canonical).
Lf is null Sasakian if and only if

P
wi − d = 0.
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The quotient of S2n+1 by the “weighted S1-action” generated by the vector field ξw is the
weighted projective space Pn

C(w) = (Cn+1 − {0})/C∗w.

The quotient of Lf by the “weighted S1-action” generated by the vector field ξw is the
projective algebraic orbifold Zf called the base.

There is a commutative diagram:

Lf −−−−−→ S2n+1
w?????yπ
????y

Zf −−−−−→ PC(w),

where the horizontal arrows are Sasakian and orbifold Kählerian embeddings, respectively,
and the vertical arrows are orbifold Riemannian submersions.

Lf is positive (negative) Sasakian structure if and only if
P

wi − d > 0(
P

wi − d < 0),
respectively. positive (negative) Sasakian ⇐⇒ Zf is Fano (canonical).
Lf is null Sasakian if and only if

P
wi − d = 0.
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The Join Construction

Join Construction: Given quasi-regular Sasakian manifolds πi : Mi−−−→ Zi with Dim Mi = ni
for i = 1, 2.

Form (l1, l2)-join π : M1 ?l1,l2 M2−−→ Z1 ×Z2 as an S1-orbibundle (B-,Galicki,Ornea).
M1 ?l1,l2 M2 has a natural quasi-regular Sasakian structure Sl1,l2 for all relatively prime
positive integers l1, l2. Fixing l1, l2 fixes the contact orbifold. It is a smooth manifold iff
gcd(υ1l2, υ2l1) = 1 where υi is the order of orbifold Zi .
The dimension of M1 ?l1,l2 M2 is n1 + n2 − 1.
The join M1 ?l1,l2 M2 has reducible transverse holonomy a subgroup of U(n1)× U(n2).
The cohomology ring of M1 ?l1,l2 M2 can often be computed from the commutative
diagram of fibrations:

M1 ×M2 −−−−−→ M1 ?l1,l2,w M2 −−−−−→ BS1?????y=

????y
??????yψ

M1 ×M2 −−−−−→ BZ1 × BZ2 −−−−−→ BS1 × BS1

where BG is the classifying space of a group G or Haefliger’s classifying space of an orbifold
if G is an orbifold. Note that the lower fibration is a product of fibrations.
Given the differentials in the spectral sequence of the fibrations Mi−−−→BZi−−−→BS1, use
the commutative diagram to compute the cohomology ring of the contact manifold
M1 ?l1,l2,w M2. Examples later.
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The Sasaki-Einstein Semi-group

We can apply the join construction to obtain a semi-group structure on the space of
Sasaki-Einstein manifolds.

Since a quasi-regular SE manifold M2n+1 is an S1-orbibundle over positive KE orbifold with
scalar curvature 4n(n + 1), we need to adjust scales on the base to obtain an SE metric on
the join.

This is done by constructing relative Fano indices on the product base Z1 ×Z2.

If IZi is the Fano index of Zi for i = 1, 2, we define the relative index

li =
IZi

gcd(IZ1 , IZ2 )

Theorem

For each i = 1, 2 let M2ni +1
i be a quasi-regular SE manifold whose base Zi has Fano index IZi

and let li be their relative Fano indices. Assume also that gcd(υ1l2, υ2l1) = 1. Then the join
M1 ?l1,l2 M2 is an SE manifold of dimension 2(n1 + n2) + 1.

We will see later how to deform in the Sasaki cone to obtain Sasaki-Einstein metrics when
only one of the Mi has an SE metric.
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The Sasaki-Einstein Problem

Deform the transverse Kähler form ωT 7→ ωT + i∂∂̄ϕ.

As in Kähler geometry there are obstructions to the existence of Sasaki-Einstein metrics.

Solve the transverse Monge-Ampère equation:

det(ωT
i j̄

+ i∂i ∂̄j̄φ)

det(ωT
i j̄

)
= e−tφ+F , ωT

i j̄ + ∂i ∂̄j̄φ > 0

for t ∈ [0, 1] by the continuity method Aubin, Yau, Siu, Tian, Nadel for Kähler manifolds,
Demailly-Kollár, for Kähler orbifolds, El Kacimi-Alaoui for transverse to foliations.

Prove interval where solutions exist is both open and closed. Inverse Function Thm⇒ open.

Closedness: for any γ ∈ ( n
n+1 , 1) (Tian) want uniform boundedness of

R
Z e−γtφtωn

0 .

Orbifold case (remember ‘It’s all about that base’: multiplier ideal sheaf
(Nadel,Demailly-Kollár) J(γφ) = OZ for all γ ∈ ( n

n+1 , 1).

For every Q-divisor D numerically equivalent to −K orb
Z there exists a resolution of singularities

µ : Y−−→Z of D such that for some γ ∈ ( n
n+1 , 1) the multiplier ideal sheaf

J(γD) = µ∗OY (KY − µ∗K orb
Z − bµ

∗γDc) is the full structure sheaf OZ , where b·c denotes the
round-down and K orb

X = KX +
P

(1− 1
mi

)Di where ∆ =
P

(1− 1
mi

)Di with a Di a branch
divisor with ramification index mi . This condition is known as Kawamata log terminal or
klt for short, and guarentees a Kähler-Einstein orbifold metric on Z; hence, a
Sasaki-Einstein metric on M.
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Sasaki-Einstein Metrics on Links

We apply the klt conditions to links of weighted homogeneous hypersurface singularities.

For the link Lfw of a general weighted homogeneous polynomial fw the estimate

0 < d(
nX

i=0

wi − d) <
n

n − 1
min

i,j

n
wi wj

o
guarantees the existence of a Sasaki-Einstein metric on Lfw (B-,Galicki,Nakamaye).

However, it is far from a necessary condition.
For example there are better estimates in dimension five (B-,Galicki,Nakamaye, Kollár,
B-,Nakamaye).
For Brieskorn-Pham polynomials we have the estimate

1 <
nX

i=0

1
ai
< 1 +

n
n − 1

min
i,j

n 1
ai
,

1
bi bj

o
.

where bj = gcd(aj ,C j ) with C j = lcm(ai : i 6= j) implying the existence of a Sasaki-Einstein
metric (B-,Galicki,Kollár). Again this is far from a necessary condition.
Obstructions: Using an estimate of Lichnerowicz, Gauntlett,Martelli,Sparks,Yau proved: If
(
Pn

i=0 wi − d) > n mini wi then Lfw cannot admit a Sasaki-Einstein metric.
Ghigi-Kollár: For a Brieskorn-Pham polynomial L(a) with the components a0, · · · , an of a
pairwise relatively prime, L(a) admits a Sasaki-Einstein metric if and only if

1 <
nX

i=0

1
ai
< 1 + n mini


1
ai

ff
.
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Sasaki-Einstein Metrics in Dimension Five

If a simply connected 5-manifold admits a Sasaki-Einstein metric, it must be a Smale
manifold M5 that is either one of the following or connected sums of the following:
M∞ = S2 × S3, M1 = S5, Mj which satisfies H2(Mj ,Z) = Zj ⊕ Zj , M5 = Mk1 # · · ·#Mks , ki
divides ki+1 or ki+1 =∞.

Not every Smale manifold can admit a Sasaki-Einstein metric. Then H2(M,Z)tor must be
trivial or one of the following groups: Z2

m,Z2n
2 ,Z

4
3,Z

6
3,Z

8
3,Z

4
4,Z

4
5 with n > 1 and m ≥ 2. (Kollár)

In dimension five there are Sasaki-Einstein metrics on the connected sum #k(S2 × S3) for
all k (B-,Galicki,Nakamaye, Kollár). There are many distinct infinite series solutions giving
infinitely many Sasaki-Seifert structures with SE metrics on the same manifold which can
also depend on arbitrary parameters which implies a local moduli space.
On S5 there are at least 82 distinct Sasaki-Seifert structures with Sasaki-Einstein metrics
many of which occur with moduli (B-,Galicki,Kollár; Ghigi,Kollár; Li,Sun). The largest local
moduli has real dimension 20 (B-,Macarini,van Koert). Moreover, there are at least 76
components of the Sasaki-Einstein moduli space (B-,Macarini,van Koert). These are
distinguished by SH+,S1

and its mean Euler characteristic.
Many rational homology 5-spheres that satisfy the above torsion constraint admit
Sasaki-Einstein metrics, but complete classification is still lacking (B-,Galicki; Kollár;
B-,Nakamaye). Some admit infinitely many Sasaki-Seifert structures and some have
arbitrary parameters implying moduli. Interesting results of Kollár show that there is a unique
Sasaki-Seifert structure on 2M5 whose moduli of SE structures is the moduli of genus
two curves. Similarly 4M3 has a unique Sasaki-Seifert structure with moduli of SE
structures equal to the moduli of hyperelliptic genus four curves.
There are also many Sasaki-Einstein metrics on mixed Smale manifolds of the form
kM∞#nMm (B-,Galicki; Kollár; B-,Nakamaye) of course satisfying the torsion constraints.
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Sasaki-Einstein Metrics in Dimension Five
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Sasaki-Einstein Metrics on Homotopy Spheres

Kervaire,Milnor showed that the set of oriented homotopy spheres of a given dimension
form Abelian group under the connect sum operation. This group has an important
subgroup, bPn+1 consisting of those that bound a parallelizable manifold. Brieskorn showed
that all elements of bP2n can be represented by certain Brieskorn-Pham polynomials.

However, the BP polynomials used by Brieskorn do not admit Sasaki-Einstein metrics by
the Lichnerowicz obstruction.

Many other BP polynomials do admit Sasaki-Einstein metrics. For example each element
in bP4n+2 ≈ Z2 for n 6= 1, 3, 7, 15 admits Sasaki-Einstein metrics, actually many and often
with moduli (B-,Galicki,Kollár). For n = 1, 3, 7, 15, bP4n+2 ≈ {id} and there are many
Sasaki-Einstein metrics (see below).

In dimension 7 there are precisely 28 oriented diffemorphism types group bP8. Each such
diffeomorphism type admits hundreds of Sasaki-Seifert structures each with a
Sasaki-Einstein metric many of which have moduli (B-,Galicki,Kollár; Ghigi,Kollár).

All 992 homotopy spheres in bP12 and all 8128 homotopy spheres in bP16 admit SE metrics
(B-,Galicki,Kollár; Ghigi,Kollár), computer computations by (E. Thomas).

Conjecture (B-,Galicki,Kollár): All homotopy spheres that bound a parallelizable manifold
admit a Sasaki-Einstein metric.

Example: the sequence a = (2, 3, 7, 43, 43 · 39) gives a 2(44 + 4− 5) = 86 real parameter
family of Sasaki-Einstein metrics on the exotic sphere Σ6 ∈ bP8 i.e. 6 times the Milnor
generator.
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Sasaki-Einstein Metrics in Abundance: the Sylvester Sequence

The above sequence arises from a boundary sequence called Sylvester’s sequence
determined by the recursion relation ck+1 = 1 + c1 · · · ck = c2

k − ck + 1 beginning with c1 = 2.
It starts as 2, 3, 7, 43, 1807, 3263443, 10650056950807, .... The importance of this sequence
is that it satisfies

Pn
i=0

1
ci

= 1− 1
c0···cn

. This sequence does not satisfy the klt conditions.
So we choose numbers that are less than the last number of the sequence, so it will satisfy a
klt condition and also certain gcd conditions. There are many such sequences, so

Both the number of Sasaki-Seifert structures with SE metrics as well as the dimension of
the local moduli grows double exponentially with n (B-,Galicki,Kollár).

The number of components of the SE moduli space grows double exponentially with n
(B-,Macarini,van Koert).

For rational homology spheres the number of Sasaki-Seifert structures and the
dimension of the local moduli grows exponentially with n (B-,Galicki).

There are more than 109 Sasaki-Seifert structures with Sasaki-Einstein metrics on S13

including a 21300113901610-dimensional family.

Typically if a manifold admits a Sasaki-Einstein metric, it will admit many, either in form of
many Sasaki-Seifert structures or a non-trivial local moduli space.

We do not know of any example of a manifold that admits a unique Sasaki-Einstein metric
up to a transverse holomorphic transformation. Uniqueness of SE metrics on a given
manifold appear hard to come by.

However, a Sasaki-Einstein metric is unique in the space F(ξ) up to a transverse
holomorphic transformation (Nitta,Sekiya).
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Join Revisited: the S3
w-Join

Recall the join construction

We take M1 = M to be a regular Sasaki manifold and M2 = S3
w, the three dimensional

weighted sphere. That is the weighted Sasakian structure Sw = (ξw, ηw,Φw, gw) mentioned
earlier with w = (w1,w2).

Our main object of study is the join M ?l1,l2 S3
w which is a smooth manifold if gcd(l2, l1wi ) = 1.

An S1 orbibundle M ?l1,l2 S3
w−−−→N × CP1[w], where N is compact Kähler.

We take N to be a Kähler manifold with a constant scalar curvature metric. It is well known
that CP1[w] has an extremal Kähler metric. It follows that N × CP1[w] has an extremal Kähler
metric; hence, M ?l1,l2 S3

w has an extremal Sasaki metric.

There is a 2-dimensional subcone t+
w of the Sasaki cone t+ of M ?l1,l2 S3

w.

The join M ?l1,l2 S3
w can also be realized as a lens space bundle over N with fiber the lens

space L(l2; l1w1, l1w2).

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 30

/ 40



Join Revisited: the S3
w-Join

Recall the join construction

We take M1 = M to be a regular Sasaki manifold and M2 = S3
w, the three dimensional

weighted sphere. That is the weighted Sasakian structure Sw = (ξw, ηw,Φw, gw) mentioned
earlier with w = (w1,w2).

Our main object of study is the join M ?l1,l2 S3
w which is a smooth manifold if gcd(l2, l1wi ) = 1.

An S1 orbibundle M ?l1,l2 S3
w−−−→N × CP1[w], where N is compact Kähler.

We take N to be a Kähler manifold with a constant scalar curvature metric. It is well known
that CP1[w] has an extremal Kähler metric. It follows that N × CP1[w] has an extremal Kähler
metric; hence, M ?l1,l2 S3

w has an extremal Sasaki metric.

There is a 2-dimensional subcone t+
w of the Sasaki cone t+ of M ?l1,l2 S3

w.

The join M ?l1,l2 S3
w can also be realized as a lens space bundle over N with fiber the lens

space L(l2; l1w1, l1w2).

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 30

/ 40



Join Revisited: the S3
w-Join

Recall the join construction

We take M1 = M to be a regular Sasaki manifold and M2 = S3
w, the three dimensional

weighted sphere. That is the weighted Sasakian structure Sw = (ξw, ηw,Φw, gw) mentioned
earlier with w = (w1,w2).

Our main object of study is the join M ?l1,l2 S3
w which is a smooth manifold if gcd(l2, l1wi ) = 1.

An S1 orbibundle M ?l1,l2 S3
w−−−→N × CP1[w], where N is compact Kähler.

We take N to be a Kähler manifold with a constant scalar curvature metric. It is well known
that CP1[w] has an extremal Kähler metric. It follows that N × CP1[w] has an extremal Kähler
metric; hence, M ?l1,l2 S3

w has an extremal Sasaki metric.

There is a 2-dimensional subcone t+
w of the Sasaki cone t+ of M ?l1,l2 S3

w.

The join M ?l1,l2 S3
w can also be realized as a lens space bundle over N with fiber the lens

space L(l2; l1w1, l1w2).

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 30

/ 40



Join Revisited: the S3
w-Join

Recall the join construction

We take M1 = M to be a regular Sasaki manifold and M2 = S3
w, the three dimensional

weighted sphere. That is the weighted Sasakian structure Sw = (ξw, ηw,Φw, gw) mentioned
earlier with w = (w1,w2).

Our main object of study is the join M ?l1,l2 S3
w which is a smooth manifold if gcd(l2, l1wi ) = 1.

An S1 orbibundle M ?l1,l2 S3
w−−−→N × CP1[w], where N is compact Kähler.

We take N to be a Kähler manifold with a constant scalar curvature metric. It is well known
that CP1[w] has an extremal Kähler metric. It follows that N × CP1[w] has an extremal Kähler
metric; hence, M ?l1,l2 S3

w has an extremal Sasaki metric.

There is a 2-dimensional subcone t+
w of the Sasaki cone t+ of M ?l1,l2 S3

w.

The join M ?l1,l2 S3
w can also be realized as a lens space bundle over N with fiber the lens

space L(l2; l1w1, l1w2).

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 30

/ 40



Join Revisited: the S3
w-Join

Recall the join construction

We take M1 = M to be a regular Sasaki manifold and M2 = S3
w, the three dimensional

weighted sphere. That is the weighted Sasakian structure Sw = (ξw, ηw,Φw, gw) mentioned
earlier with w = (w1,w2).

Our main object of study is the join M ?l1,l2 S3
w which is a smooth manifold if gcd(l2, l1wi ) = 1.

An S1 orbibundle M ?l1,l2 S3
w−−−→N × CP1[w], where N is compact Kähler.

We take N to be a Kähler manifold with a constant scalar curvature metric. It is well known
that CP1[w] has an extremal Kähler metric. It follows that N × CP1[w] has an extremal Kähler
metric; hence, M ?l1,l2 S3

w has an extremal Sasaki metric.

There is a 2-dimensional subcone t+
w of the Sasaki cone t+ of M ?l1,l2 S3

w.

The join M ?l1,l2 S3
w can also be realized as a lens space bundle over N with fiber the lens

space L(l2; l1w1, l1w2).

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 30

/ 40



Join Revisited: the S3
w-Join

Recall the join construction

We take M1 = M to be a regular Sasaki manifold and M2 = S3
w, the three dimensional

weighted sphere. That is the weighted Sasakian structure Sw = (ξw, ηw,Φw, gw) mentioned
earlier with w = (w1,w2).

Our main object of study is the join M ?l1,l2 S3
w which is a smooth manifold if gcd(l2, l1wi ) = 1.

An S1 orbibundle M ?l1,l2 S3
w−−−→N × CP1[w], where N is compact Kähler.

We take N to be a Kähler manifold with a constant scalar curvature metric. It is well known
that CP1[w] has an extremal Kähler metric. It follows that N × CP1[w] has an extremal Kähler
metric; hence, M ?l1,l2 S3

w has an extremal Sasaki metric.

There is a 2-dimensional subcone t+
w of the Sasaki cone t+ of M ?l1,l2 S3

w.

The join M ?l1,l2 S3
w can also be realized as a lens space bundle over N with fiber the lens

space L(l2; l1w1, l1w2).

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 30

/ 40



Deforming the Reeb vector field in t+
w

We deform the Reeb vector field in t+
w to a new Reeb field ξv to look for cscS and other

extremal Sasaki metrics. Here v = (v1, v2) is real valued vector.

The join gives rise to the following commutative diagram

M × L(l2; l1w1, l1w2)?????yπL

Ml1,l2,w
↙ πw ↘ πv

N × CP1[w] (Sn,∆)
pw ↘ ↙ pv

N

where πL, πw, πv, pw, pv are the obvious projections.
(Sn,∆) can be realized as the projective bundle P(1l⊕ Ln) over N where Ln is a non-trivial
complex line bundle where n = l1

`w1v2−w2v1
s

´
with s = gcd(|w1v2 − w2v1|, l2).

The fiber of (Sn,∆) is (CP1[v]/Zm) with the branch divisor

∆ = (1−
1

m1
)D1 + (1−

1
m2

)D2,

where mi = mvi with m ∈ Z+.
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Fundamental Theorem: Geometry

Geometry: Existence of extremal and CSC Sasaki metrics by deforming in the Sasaki cone

Theorem (B-,Tønnesen-Friedman)

Let Ml1,l2,w = M ?l1,l2 S3
w be the S3

w-join with a regular Sasaki manifold M which is an S1-bundle
over a compact Kähler manifold N with constant scalar curvature. Then for each vector
w = (w1,w2) ∈ Z+ × Z+ with relatively prime components satisfying w1 > w2 there exists a Reeb
vector field ξv in a 2-dimensional sub cone, the w-cone, of the Sasaki cone on Ml1,l2,w such that
the corresponding ray of Sasakian structures Sa = (a−1ξv, aηv,Φ, ga) has constant scalar
curvature.

1 If the scalar curvature sN of N is nonnegative, then the w-cone is exhausted by extremal Sasaki metrics.

2 If the scalar curvature sN of N is positive and l2 is large enough there are infinitely many contact CR
structures with at least 3 rays of CSC Sasakian structures in the w-cone.

3 When N is positive KE get SE metric on Ml1,l2,w for appropriate choice of (l1, l2).

The SE metrics of 3 were previously obtained by physicists (Gauntlett, Martelli, Sparks,
Waldram) by another method.
Most of the CSC Sasakian structures are irregular.
Relation to CR Yamabe Problem (Jerison and Lee): For a Sasaki structure the Webster
pseudo-Hermitian metric coincides with the transverse Kähler metric. So a CSC Sasaki
metric provides a solution to the CR Yamabe Problem. It is know that when the CR Yamabe
invariant λ(M) is nonpositive, the CSC metric is unique. However, when λ(M) > 0 there
can be several CSC solutions. Our results provides many such examples.
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Outline of proof of Geometry Theorem:

The existence of an extra Hamiltonian Killing vector field from S3
w gives the 2-dimensional

Sasaki w-cone t+
w .

The quotient space of the S1-action generated by any quasi-regular Reeb vector field ξv ∈ t+
w

is a ruled orbifold (Sn,∆mv1,mv2 ) with a branch divisor

∆mv1,mv2 =
`
1−

1
mv1

´
D1 +

`
1−

1
mv2

´
D2

consisting of the zero D1 and infinity D2 sections of the projective bundle Sn = P(1l⊕ Ln)
over N with ramification indices mv1,mv2, respectively and n an integer determined by
l1, l2,w, v.
For n 6= 0, apply the admissible construction of Apostolov, Calderbank, Gauduchon,
Tønnesen-Friedman on Hamiltonian 2-forms to the ruled Kähler orbifolds (Sn,∆mv1,mv2 )

This gives the Kähler orbifold metric g(Sn,∆) = 1+rz
r gΣg + dz2

Θ(z)
+ Θ(z)θ2 where θ is a

connection 1-form, dθ = nωN , 0 < r < 1, Θ(z) > 0 and
−1 < z < 1,Θ(±1) = 0,Θ′(−1) = 2

mv2
,Θ′(1) = − 2

mv1
.

When Θ(z)(1 + rz)d is a (d + 3) order ((d + 2) order) polynomial we get extremal (CSC)
Kähler metrics. Here d is the complex dimension of N.
Lifing to Ml1,l2,w gives extremal (CSC) Sasaki metrics in the quasi-regular case.
The irregular case uses a continuity argument together with the fact that quasi-regular
Sasaki structures are dense in the Sasaki cone.
The existence of multiple rays of CSC Sasaki metrics comes from a sign changing count.
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Fundamental Theorem: Topology

Topology: given the cohomology ring of M, the cohomology ring of Ml1,l2,w can be
determined in principal.

Theorem (B-,Tønnesen-Friedman)
In each odd dimension 2p + 3 > 5 there exist countably infinite simply connected toric contact
manifolds Ml1,l2,w of Reeb type depending on 4 positive integers l1, l2,w1,w2 satisfying
gcd(l2, l1wi ) = gcd(w1,w2) = 1, and with integral cohomology ring

H∗(Ml1,l2,w,Z) ≈ Z[x , y ]/(w1w2l21 x2, xp+1, x2y , y2)

where x , y are classes of degree 2 and 2p + 1, respectively. Furthermore, with l1,w1,w2 fixed
there are a finite number of diffeomorphism types with the given cohomology ring. Hence, in
each such dimension there exist simply connected smooth manifolds with countably infinite toric
contact structures of Reeb type that are inequivalent as contact structures.

In special cases we can determine the diffeomorphism (homeomorphism, homotopy)
types.
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Outline of proof of Topology Theorem:

From join construction get commutative diagram of fibrations:

M × S3
w −−−−−→ Ml1,l2,w −−−−−→ BS1?????y=

????y
??????yψ

M × S3
w −−−−−→ N × BCP1[w] −−−−−→ BS1 × BS1

where BG is the classifying space of a group G or Haefliger’s classifying space of an orbifold
if G is an orbifold. Note that the lower fibration is a product of fibrations.

Given the differentials in the spectral sequence of the fibration M−−−→N−−−→BS1, use the
commutative diagram to compute the cohomology ring of the contact manifold Ml1,l2,w with
orbifold cohomology:

H r
orb(CP1[w],Z) = H r (BCP1[w],Z) =

8><>:
Z for r = 0, 2,
Zw1w2 for r > 2 even,
0 for r odd.

For Theorem (2) we take the sphere M = S2p+1 with p > 1 in which case the cohomology
ring follows by computing the differentials. p = 1 case later (S3-bundles over S2).
The finiteness of the diffeomorphism types follows by Sullivan’s rational homotopy theory.
Ml1,l2,w is formal.
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S3-bundles over Riemann surfaces [B-,Tønnesen-Friedman]

Case 1: dim N = 1. Take N = Σg , a compact Riemann surface of genus g.

When g = 0 we get Sasakian structures on the two S3-bundles over the S2 for all relatively
prime positive integers l1, l2. (B-,B-Pati) (Also E. Legendre). When c1 = 0 we recover the SE
metrics on Y p,q of the physicists Guantlett, Martelli, Sparks, Waldram. For fixed p the φ(p)
(Euler phi-function) inequivalent SE structures belong to the same contact structure, a
φ(p)-bouquet Bφ(p).
When g > 0 set l2 = 1 (B-,Tonnesen-Friedman), S3-bundles over a Riemann surface Σg

with two diffeomorphism types, the trivial bundle Σg × S3, the non-trivial bundle Σg e×S3.
On both manifolds there is a countably infinite number of inequivalent contact structures Dk
admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem 1
admits a ray of CSC Sasakian structures.
When 0 < g ≤ 4 all 2-dimensional Sasaki cones κ(Dk , J) on S3-bundles over Σg are
exhausted by extremal Sasaki metrics
For g ≥ 20 there are rays in κ(Dk , J) which admit no extremal Sasaki metrics.
For any genus g ≥ 1 and for each positive integer k , the contact manifold (Σg × S3,Dk ) has
a k -bouquet Bk of 2-dimensional Sasaki cones.
The distinct Sasaki cones in the bouquet Bk correspond to distinct conjugacy classes of
maximal tori in Con(Dl1,l2,w). Uses the work of Buşe on equivariant Gromov-Witten
invariants.
The construction can be ‘twisted’ by reducible representations of the fundamental group
π1(Σg). The irreducible representations of π1(Σg) give 1-dimensional Sasaki cones. They
arise from stable rank two vector bundles and have CSC Sasaki metrics.
Some of the same type of results have been obtained on 5-manifolds whose fundamental
group is a non-Abelian extension of π1(Σg) in Castañeda’s thesis.
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Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 36

/ 40



S3-bundles over Riemann surfaces [B-,Tønnesen-Friedman]

Case 1: dim N = 1. Take N = Σg , a compact Riemann surface of genus g.
When g = 0 we get Sasakian structures on the two S3-bundles over the S2 for all relatively
prime positive integers l1, l2. (B-,B-Pati) (Also E. Legendre). When c1 = 0 we recover the SE
metrics on Y p,q of the physicists Guantlett, Martelli, Sparks, Waldram. For fixed p the φ(p)
(Euler phi-function) inequivalent SE structures belong to the same contact structure, a
φ(p)-bouquet Bφ(p).
When g > 0 set l2 = 1 (B-,Tonnesen-Friedman), S3-bundles over a Riemann surface Σg

with two diffeomorphism types, the trivial bundle Σg × S3, the non-trivial bundle Σg e×S3.
On both manifolds there is a countably infinite number of inequivalent contact structures Dk
admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem 1
admits a ray of CSC Sasakian structures.
When 0 < g ≤ 4 all 2-dimensional Sasaki cones κ(Dk , J) on S3-bundles over Σg are
exhausted by extremal Sasaki metrics
For g ≥ 20 there are rays in κ(Dk , J) which admit no extremal Sasaki metrics.
For any genus g ≥ 1 and for each positive integer k , the contact manifold (Σg × S3,Dk ) has
a k -bouquet Bk of 2-dimensional Sasaki cones.
The distinct Sasaki cones in the bouquet Bk correspond to distinct conjugacy classes of
maximal tori in Con(Dl1,l2,w). Uses the work of Buşe on equivariant Gromov-Witten
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Example: Bouquet on S3 × Σg

The contact structure Dl1,1,w on S3 × Σg has a 4-bouquet for all genera g.

The contact structures D4,1,(1,1) ≈ D1,1,(5,3) ≈ D2,1,(3,1) ≈ D1,1,(7,1) are all isomorphic,
but with different CR structures.

m l1 w
0 4 (1,1)
1 1 (5,3)
2 2 (3,1)
3 1 (7,1)

In all 4 cases we have c1(Dl1,1,w) = (2− 2g − l1(w1 + w2))γ = −2(g + 3)γ where γ is a
generator of H2(S3 × Σg ,Z).

Here Sn is a ruled surface with base Σg and m denotes the twisting of (Sn,∆) as a complex
bundle.

If we take l2 > 1 with gcd(l2, 210) and g = 0 we get a 3-bouquet on S3 × S2. The m = 0
term doesn’t occur.

If, however, g > 0 with l2 > 1 the topology of the join is not completely known, so we can say
nothing about bouquets.
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Sasakian K-Stability

The notions of K-stability, K-polystability, K-semistability have been amply developed in
Kählerian geometry. Here we only deal with K-semistability. A Sasaki manifold (M,S) is
said to be K-semistable if the affine cone (C(M), I) is K-semistable (Collins,Székelyhidi).

To define K-semistability we need the notion of test configuration. Let Y = C(M) be the
affine cone of a Sasaki manifold M and suppose it has an action of a complex torus TC such
that its Lie algebra tC contains the Reeb vector field ξ. We view the pair (Y , ξ) as a polarized
variety. A TC-equivariant test configuration for Y is given by a set of k TC-homogeneous
generators f1, . . . , fk of the coordinate ring of Y and k integers w1, . . . ,wk . The functions
f1, . . . , fk are generators of H0(Y ,OY ).

Using the functions f1, . . . , fk embed Y into Ck and consider the C∗ action on Ck with weights
w1, . . . ,wk .

Taking the flat limit Y0 over C of the C∗ orbits gives an affine scheme Y over C. We then get
an action of C∗ on the ‘central fiber’ Y0.

The Donaldson-Futaki invariant of such a test configuration is defined by

Fut(Y0, ξ, a) :=
Vξ
n

Da

„
Sξ
Vξ

«
+

SξDaVξ
n(n + 1)Vξ

where Da is the directional derivative.

We say that (Y , ξ) is K-semistable if for each TC with ξ ∈ t and any TC-equivariant test
configuration Fut(Y0, ξ, a) ≥ 0. It is K-polystable if equality holds only if it is a product
configuration, that is, Y0 is isomorphic to Y .
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The Einstein-Hilbert Functional and K-stability
[B-,Huang,Legendre,Tønnesen-Friedman]

Theorem (1)
The set of critical points of the Einstein–Hilbert functional Hξ is the union of the zeros of the
Sasaki-Futaki invariant and of the total transversal scalar curvature. In particular, if a Reeb
vector field admits a compatible cscS metric then it is a critical point of the Einstein–Hilbert
functional.

Proof: This follows immediately from

dHξ =
n(n + 1)Sn

ξ

Vn
ξ

SFξ ◦ Φ. (1)

2

Theorem (2)

If (Y , ξ) is K-semistable then the Sasaki–Futaki invariant Fξ vanishes identically, and ξ is a critical
point of the Einstein-Hilbert functional H(ξ). Alternatively, if ξ is not a critical point of H(ξ) then
(Y , ξ) is not K-semistable.

Outline of Proof: The linearity in a in the equation for the Donaldson-Futaki invariant says that
K-semistability implies Fut(Y0, ξ, a) = 0 for any product test configuration.
Calculation gives Fut(Y0, ξ, a) = cnFξ(Φ(a)) (Tipler, van Coevering).
Theorem then follows from Equation (1). 2
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Stability Theorems continued [B-,Huang,Legendre,Tønnesen-Friedman]

Theorem (3)

Suppose the Sasaki cone is exhausted by extremal Sasaki metrics and that the total
transverse scalar curvature does not vanish. Then the set of critical points of the Einstein-Hilbert
functional is precisely the set of rays in the Sasaki cone with constant scalar curvature. In
particular, in this case a Sasakian structure S = (ξ, η,Φ, g) has constant scalar curvature if and
only if (Y , ξ) is K-semistable.

Proof: This follows from Theorem 2, work of Collins, Székelyhidi, and the vanishing of the
Sasaki-Futaki invariant for cscS metrics. 2

Theorem (4)

Let M be a regular Sasaki manifold with constant transverse scalar curvature, and consider the
S3

w-join Ml1,l2,w. Its w-cone t+
w has a cscS ray rξ if and only if the Sasaki-Futaki invariant Fξ

vanishes on the Lie algebra tw ⊗ C. Then for ξ ∈ t+
w the polarized affine cone (Y , ξ) associated to

Ml1,l2,w is K-semistable if and only if the Sasakian structure S = (ξ, η,Φ, g) on Ml1,l2,w has
constant scalar curvature (up to isotopy).

Outline of Proof: This involves a long calculation of the admissible Kähler construction
together with the S3

w-Sasaki join construction which expresses the Sasaki-Futaki invariant in
terms of certain polynomial on the Sasaki cone. 2
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particular, in this case a Sasakian structure S = (ξ, η,Φ, g) has constant scalar curvature if and
only if (Y , ξ) is K-semistable.

Proof: This follows from Theorem 2, work of Collins, Székelyhidi, and the vanishing of the
Sasaki-Futaki invariant for cscS metrics. 2

Theorem (4)

Let M be a regular Sasaki manifold with constant transverse scalar curvature, and consider the
S3

w-join Ml1,l2,w. Its w-cone t+
w has a cscS ray rξ if and only if the Sasaki-Futaki invariant Fξ

vanishes on the Lie algebra tw ⊗ C. Then for ξ ∈ t+
w the polarized affine cone (Y , ξ) associated to

Ml1,l2,w is K-semistable if and only if the Sasakian structure S = (ξ, η,Φ, g) on Ml1,l2,w has
constant scalar curvature (up to isotopy).

Outline of Proof: This involves a long calculation of the admissible Kähler construction
together with the S3

w-Sasaki join construction which expresses the Sasaki-Futaki invariant in
terms of certain polynomial on the Sasaki cone. 2

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
September 30, 2015Inaugural Geometry Lectures,CIMAT, Merida, Mexico 40

/ 40



Stability Theorems continued [B-,Huang,Legendre,Tønnesen-Friedman]

Theorem (3)

Suppose the Sasaki cone is exhausted by extremal Sasaki metrics and that the total
transverse scalar curvature does not vanish. Then the set of critical points of the Einstein-Hilbert
functional is precisely the set of rays in the Sasaki cone with constant scalar curvature. In
particular, in this case a Sasakian structure S = (ξ, η,Φ, g) has constant scalar curvature if and
only if (Y , ξ) is K-semistable.

Proof: This follows from Theorem 2, work of Collins, Székelyhidi, and the vanishing of the
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Critical Points of E-H Functional
[B-,Huang,Legendre,Tønnesen-Friedman]

Theorem (5)

Assume that the total transversal scalar curvature is sign definite and bounded away from 0 on
each transversal set of the Sasaki cone, then there exists at least one Reeb vector field for which
the Sasaki–Futaki invariant SF vanishes identically.

Proof: Assume the total scalar curvature is sign definite and bounded away from zero on any
transversal subset of t+ which gives |Sξ| ≥ mξVξ, ∀ξ ∈ t+ and some constant mξ
depending only on ξ.

Assume first that Sξ > 0 the above bound gives H(ξ) ≥ mn+1
ξ Vξ.

But the left hand side is invariant under scaling of ξ, so there exists an m0 independent of ξ
such that on a transverse subset Σ we have H(ξ) ≥ mn+1

ξ Vξ ≥ mm+1
o Vξ ∀ξ ∈ Σ.

A result of He, Sun says that Vξ is strictly convex on Σ and tends to infinity on the boundary
∂Σ.

So H(ξ) must reach a minimum somewhere in Σ and the variational formula implies SF = 0.
2
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Convexity of E-H Functional [B-,Huang,Legendre,Tønnesen-Friedman]

Theorem (6)

Let (M,D, J, g, ξ) be either a cscS compact manifold of negative transverse scalar curvature or
a compact Sasaki-η–Einstein manifold of positive transverse scalar curvature. Then H is
transversally convex at ξ (or transversally concave in the negative cscS case with n odd).

Lemma: Let (M2n+1,D, J, g, ξ) be a cscS compact manifold of non-zero transversal scalar
curvature, and T ⊂ CR(D, J) ∩ Isom(g) be the maximal compact torus with Lie algebra t.

1 If the transverse scalar curvature is negative, the E-H functional H is convex if n is even and concave
if n is odd.

2 If the transverse scalar curvature is positive and the first non-zero eigenvalue λ1 of the Laplacian,

restricted to the space of T –invariant functions is bounded below by
sT
g

2n+1 , then H is convex near ξ.

Moreover, in both cases the cscS ray is isolated in the Sasaki cone.
The lemma follows from the second variational formula at a cscS metric:

d2

dt2 t=0
H(ξt ) = n(n + 1)(2n + 1)(sT

g )n

 
‖d(η(a))‖2

g −
sT

g

(2n + 1)
‖η(a)‖2

g

!
and the well known inequality ‖d(η(a))‖2

g ≥ λ1‖η(a)‖2
g . 2

Proof of Theorem (6): For negative transverse scalar curvature, the theorem follows
immediately from (1) of the lemma.

For the Sasaki-η–Einstein case a bound λ1 ≥
sT

g
2n due to Matsushima together with (2) of the

lemma gives the result. 2

This lemma leads to the general question: Are the rays of constant scalar curvature Sasaki
metrics isolated in the Sasaki cone?
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Lemma: Let (M2n+1,D, J, g, ξ) be a cscS compact manifold of non-zero transversal scalar
curvature, and T ⊂ CR(D, J) ∩ Isom(g) be the maximal compact torus with Lie algebra t.

1 If the transverse scalar curvature is negative, the E-H functional H is convex if n is even and concave
if n is odd.

2 If the transverse scalar curvature is positive and the first non-zero eigenvalue λ1 of the Laplacian,

restricted to the space of T –invariant functions is bounded below by
sT
g

2n+1 , then H is convex near ξ.
Moreover, in both cases the cscS ray is isolated in the Sasaki cone.
The lemma follows from the second variational formula at a cscS metric:

d2

dt2 t=0
H(ξt ) = n(n + 1)(2n + 1)(sT

g )n

 
‖d(η(a))‖2

g −
sT

g

(2n + 1)
‖η(a)‖2

g

!
and the well known inequality ‖d(η(a))‖2

g ≥ λ1‖η(a)‖2
g . 2

Proof of Theorem (6): For negative transverse scalar curvature, the theorem follows
immediately from (1) of the lemma.

For the Sasaki-η–Einstein case a bound λ1 ≥
sT

g
2n due to Matsushima together with (2) of the

lemma gives the result. 2

This lemma leads to the general question: Are the rays of constant scalar curvature Sasaki
metrics isolated in the Sasaki cone?
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THANK YOU! MUCHAS GRACIAS!
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