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Sasaki Geometry: the Classical Period (1960–1980) – a Brief History

1 Boothby-Wang (1958); Gray(1959): −−−−−−→ Topology of (almost) Contact structures

2 Sasaki (1960):−−−−→ (φ, ξ, η) structures −−−−→ (almost contact)
3 Sasaki, Hatakeyama (1961): Normal almost contact (metric) structures
4 Sasaki, Hatakeyama (1962): Normal contact metric structures
5 Okumura (1962): Some relations of normal contact metric structures with Einstein metrics.
6 Hatakeyama, Ogawa, Tanno (1963): Contact metric structure + ξ a Killing vector −−−−→

K-contact
7 Hatakeyama (1963): Relation of regular normal contact structures to the Boothby-Wang

construction.
8 Sasaki wrote Lecture Notes in 3 parts entitled “Almost Contact Manifolds”, part 1 (1965),

part 2 (1967), part 3 (1968). Unfortunately, these notes were never published and are difficult
to obtain in the west.

9 The earliest reference referring to a normal contact metric space as a Sasakian space is a
1965 paper of S. Tachibana entitled “On Harmonic Tensors in Compact Sasakian Spaces”.

10 Subsequently, almost contact structures, and Sasakian structures were ardently developed
by Japaneese mathematicians during the 1960’s and 1970’s, particularly by S. Tanno.

11 Relation to Brieskorn manifolds: Abe, Takahashi, Sasaki-Hsu
12 Sasakian 3-structures: introduced independently by Udriste, Kuo and developed further by

Ishihara, Kashiwada, Konishi, Tachibana, Tanno, Yu.
13 Some books: Blair (1976), Yano-Kon (1984)
14 I apologize if I inadvertently left some names out.
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The Foundations: 1. Contact Geometry

1 A Closed Manifold M of dimension 2n + 1, i.e. compact without boundary.

2 A contact 1-form η such that
η ∧ (dη)n 6= 0.

3 defines a contact structure
η′ ∼ η ⇐⇒ η′ = fη

for some f 6= 0, take f > 0, or equivalently a codimension 1 subbundle D = Ker η of TM with
a conformal symplectic structure. So {oriented contact 1-forms in D} ≈ C∞(M)+

4 The pair (M,D) is called a contact manifold.
5 If we choose a contact 1-form η, there is a unique vector field ξ, called the Reeb vector field,

satisfying
η(ξ) = 1, ξcdη = 0.

6 The characteristic foliation Fξ is the 1-dim’l foliation defined by ξ: It is called quasi-regular
if each leaf of Fξ passes through any nbd U at most k times. It is regular if k = 1; otherwise,
it is irregular. We also say that the contact form η is quasi-regular, regular, irregular.

7 Most contact forms in a contact structure D are irregular
8 We can choose a compatible almost complex structure J on D, that is one that satisfies

the two conditions
dη(JX , JY ) = dη(X ,Y ) dη(JX ,Y ) > 0

for any sections X ,Y of D.
9 The almost complex structure J extends to an endomorphism Φ of TM satisfying Φξ = 0.
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The Foundations: 2. Sasakian Geometry

There is a ‘canonical’ compatible metric g = dη ◦ (Φ⊗ 1l) + η⊗ η. Quadruple S = (ξ, η,Φ, g)
called contact metric structure. Contact metric manifold (M,S).

gD = dη ◦ (Φ⊗ 1l) defines a metric in D called the transverse metric and ωT = dη is a
transverse symplectic form in D.
The pair (D, J) defines an almost CR structure on D with Φ|D = J.
dη is called the Levi form of D and the condition dη(JX ,Y ) > 0 says that (D, J) is strictly
pseudo-convex abbreviated as sψCR.
We are mainly interested in the case that the almost CR structure is integrable, that is, that
(D, J) defines a CR structure.

Definition
The contact metric structure S = (ξ, η,Φ, g) is K-contact if Lξg = 0 (or LξΦ = 0). It is Sasakian
if in addition (D, J) is integrable and the transverse metric gD is Kähler (transverse holonomy
U(n)). In the latter case we say that the contact structure D is of Sasaki type.

(M,S) is Sasaki ⇐⇒ the metric cone (C(M) = M × R+, dr2 + r2g) is Kähler.
Some properties of a Sasaki manifold (M,S) of dimension 2n + 1:

1 Any Sasaki structure S has at least an S1 symmetry.
2 The characteristic foliation Fξ is Riemannian, that is, a Riemannian flow.
3 If S is irregular, then the closure F̄ξ is a torus T k of dimension 1 ≤ k ≤ n + 1.
4 The metric g is bundle-like.
5 The leaves of Fξ (orbits of ξ) are totally geodesic.
6 The Ricci curvature of g satisfies Ricg(X , ξ) = 2nη(X) for any vector field X .
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The Sasaki Cone and the Affine cone

Distinct Sasakian structures in the same underlying CR structure −→ Sasaki cone on M.
Distinct Kähler forms in the same underlying affine cone −→ Sasaki cone on Y .

On a compact Sasaki manifold (M2n+1,S) the Sasaki automophism group Aut(S) contains a
torus T k of dimension 1 ≤ k ≤ n + 1. The case k = n + 1 is a toric Sasakian structure.
Sasaki cone

1 tk the Lie algebra of T k

2 Sasaki cone (unreduced): t+
k (D, J) = {ξ′ ∈ tk | η(ξ′) > 0, } s.t. S = (ξ, η,Φ, g) ∈ (D, J) is

Sasakian.
3 Sasaki cone (reduced): κ(D, J) = t+

k (D, J)/W where W is the Weyl group of CR(D, J)
4 κ(D, J) is finite dim’l moduli of Sasakian structures with underlying CR structure (D, J).
5 1 ≤ dimκ(D, J) ≤ n + 1 and if dimκ(D, J) = n + 1, M is toric Sasakian.
6 The set of extremal rays e(D, J) is open in κ(D, J).

The Affine Cone

1 The cone C(M) is an affine cone which we denote by Y = C(M)
2 The Kählerian structure of the cone Y is determined by the Sasakian structure on M or

equivalently by the Reeb vector field ξ
3 A ξ-equivariant function r : Y−−→R+ gives the Kähler form Ω = i∂∂̄r2

4 ξ satisfies ξ = IΨ where Ψ = r ∂∂r , I is complex structure on Y .
5 We can lift the Sasaki cone t+

k to Y , denoted also by t+
k .

6 For each ξ ∈ t+
k have different Kähler form Ω on Y , get a polarized affine variety (Y , ξ).
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Deformations of Sasakian Structures

Three Types of Deformations of Sasakian Structures

First type: Fix CR structure (D, J), deform characteristic foliation F. This gives rise to Sasaki
cones.

1 Generically after this type of deformation the transverse holonomy becomes irreducible.

Second type: Fix contact structure D, deform transverse complex structure (CR) J. This gives
rise to Sasaki bouquets.

1 Here Sasaki cones in bouquets are related to conjugacy classes of tori in the contactomorphism
group Con(M,D).

Third type: Fix characteristic foliation F, deform contact structure D. This is used to obtain
extremal Sasaki metrics.

1 This type of deformation η 7→ η′ = η + dcζ, where ζ is basic and dc = i(∂̄ − ∂), does not change
the isotopy class of contact structure.

2 This leads to basic cohomology class [dη]B ∈ H2
B(Fξ).
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1 Here Sasaki cones in bouquets are related to conjugacy classes of tori in the contactomorphism
group Con(M,D).

Third type: Fix characteristic foliation F, deform contact structure D. This is used to obtain
extremal Sasaki metrics.

1 This type of deformation η 7→ η′ = η + dcζ, where ζ is basic and dc = i(∂̄ − ∂), does not change
the isotopy class of contact structure.

2 This leads to basic cohomology class [dη]B ∈ H2
B(Fξ).
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Transverse Geometry and Transverse Holomorphic Transformations

Let Lξ be the real line bundle generated by ξ and consider the short exact sequence of
vector bundles 0−−−→Lξ−−−→TM−−−→ν(Fξ)−−−→0. A choice of Sasakian structure S ∈ F(ξ)
splits this sequence as TM = Lξ ⊕D with D = ker η.

The transverse geometry is described on the quotient bundle ν(Fξ). The endomorphism Φ

induces a complex structure J̄ on ν(Fξ).

If S ∈ F(ξ) the volume VS = Vξ =
∫

M η ∧ (dη)n and the total scalar curvature
SS = Sξ =

∫
M sg η ∧ (dη)n depend only on the class [dη]B .

Let Fol(M,Fξ) be the subgroup of Diff(M) that leaves the characteristic foliation Fξ invariant.
An element φ ∈ Fol(M,Fξ) induces a map φ̄∗ : ν(Fξ)−−−→ν(Fξ).

Define the group of transverse holomorphic transformations by

HT (ξ, J̄) = {φ ∈ Fol(M,Fξ) | φ̄∗ ◦ J̄ = J̄ ◦ φ̄∗}.

The group HT (ξ, J̄) is infinite dimensional, but the quotient HT
0 (ξ, J̄) = HT (ξ, J̄)/Γ(Lξ) is a

finite dimensional Lie group.

The group HT
0 (ξ, J̄) does not preserve the contact structure D, but it does preserve its

isotopy class.

We denote by hT
0 (ξ, J̄) the Lie algebra of HT

0 (ξ, J̄).
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Extremal Sasakian metrics (B-Galicki-Simanca)

Sasakian structure S = (ξ, η,Φ, g) with scalar curvature sg .

Calabi-Sasaki Energy functional E(g) =

∫
M

s2
gdµg ,

Deform contact structure η 7→ η + tdcϕ within its isotopy class where ϕ is basic.
g is a critical point of E(g), called extremal Sasaki metric, ⇐⇒ ∂#

g sg ∈ hT
0 (ξ, J̄), i.e. it is a

transversely holomorphic vector field. Here ∂#
g denotes the (1, 0) gradient with respect to g.

g is extremal Sasaki metric ⇐⇒ the transverse metric gD is extremal Kähler metric.
g is constant scalar curvature Sasaki metric (cscS) ⇐⇒ the transverse metric gD is
constant scalar curvature Kähler metric (cscK).
If S = (ξ, η,Φ, g) is extremal (or cscS) then so is Sa = (a−1ξ, aη,Φ, ga) for any a > 0.
If c1(D) = 0 a (cscS) metric⇒ Sasaki-η-Einstein (SηE) with Ricci curvature
Ricg = ag + bη ⊗ η, a, b constants. If b = 0 get Sasaki-Einstein (SE).
SE metrics have a fixed scale and g is SE metric ⇐⇒ the transverse metric gD is
Kähler-Einstein (KE) metric with scalar curvature equal to 4n(n + 1).

The Sasaki-Futaki invariant SFξ(X) =

∫
M

X(ψg)dµg where X ∈ hT
0 (ξ, J̄) and ψg is the

Ricci potential satisfying ρT = ρT
h + i∂∂̄ψg where ρT is the transverse Ricci form and ρT

h is
its harmonic part.
An extremal Sasaki metric g has constant scalar curvature if and only if SF = 0.

Theorem
An extremal Sasaki metric g has constant scalar curvature if and only if SF = 0.
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The Sasaki-Einstein Problem: Some History

The general extremal problem involves a 4th order PDE, whereas, the easier SE problem
involves the Monge-Ampère equation, a second order PDE.

3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))

3-Sasakian manifolds over quaternionic Kähler manifolds (Ishihara, Konishi (1972-75))

Many 3-Sasakian examples B-,Galicki, Mann (Rees) (1994,1998)

SE metrics on S1 orbibundles over Kähler-Einstein (KE) orbifolds. B-,Galicki (2000)

SE metrics on certain connected sums of S2 × S3 B-,Galicki, Nakamaye (2002-3)

SE metrics on irregular Sasakian manifolds (Gauntlett, Martelli, Sparks, Waldram (2004))

SE metrics on spheres, including exotic spheres B-,Galicki, Kollár (Thomas) (2005)

SE on many 5-manifolds (Kollár; B-,Galicki, Ghigi-Kollár (2005-07))

Existence of SE metrics in Sasaki cone of toric contact manifolds of Reeb type with c1 = 0
by deforming in Sasaki cone (Futaki,Ono,Wang (2009)); Uniqueness (Cho,Futaki,Ono (2008))

Uniqueness of SE metrics in the transverse Kähler class up to transverse holomorphic
transformations (Nitta,Sekiya (2012))

New examples of SE metrics by deforming in the Sasaki cone (Mabuchi,Nakagawa (2013))

Geometry and topology of SE metrics by deforming in Sasaki cone (B-,Tønnesen-Friedman
(2015))

The Donaldson,Tian, Yau conjecture in the SE case is still open.
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The S3
w-Join Construction (B-,Tønnesen-Friedman

Join Construction: Given quasi-regular Sasakian manifolds πi : Mi−−−→ Zi for i = 1, 2.

Form (l1, l2)-join π : M1 ?l1,l2 M2−−→ Z1 ×Z2 as an S1-orbibundle (B-,Galicki,Ornea).
Take M1 = M a regular Sasaki manifold, M2 = S3

w, weighted 3-sphere with w = (w1,w2).
Our main object of study is the join M ?l1,l2 S3

w which is a smooth manifold if gcd(l2, l1wi ) = 1.
An S1 orbibundle M ?l1,l2 S3

w−−−→N × CP1[w], where N is compact Hodge manifold.
Take N with a constant scalar curvature metric. CP1[w] has an extremal Kähler metric⇒
N × CP1[w]⇒ M ?l1,l2 S3

w has an extremal Sasaki metric.
There is a 2-dimensional subcone t+w of the Sasaki cone t+ of M ?l1,l2 S3

w.
The join M ?l1,l2 S3

w can be realized as a lens space bundle over N, fiber = L(l2; l1w1, l1w2).
Given the differentials in the spectral sequence of the fibration M−−−→N−−−→BS1 get
cohomology ring of M1 ?l1,l2 S3

w using commutative diagram of fibrations:

M × S3
w −−−−−→ Ml1,l2,w −−−−−→ BS1y=

y
yψ

M × S3
w −−−−−→ N × BCP1[w] −−−−−→ BS1 × BS1

where BG is the classifying space of a group G or Haefliger’s classifying space of an orbifold
if G is an orbifold. Note that the lower fibration is a product of fibrations.
Example: M = S2p+1 get H∗(Ml1,l2,w,Z) ≈ Z[x , y ]/(w1w2l21 x2, xp+1, x2y , y2) with deg x = 2,
deg y = 2p + 1. l1,w1,w2 fixed⇒ (Sullivan) finite number of diffeomorphism types.
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The S3
w-Join and Admissible Kähler Constructions

(B-,Tønnesen-Friedman

The existence of an extra Hamiltonian Killing vector field from S3
w gives the 2-dimensional

Sasaki w-cone t+w .

The quotient space of the S1-action generated by any quasi-regular Reeb vector field ξv ∈ t+w
is a ruled orbifold (Sn,∆mv1,mv2 ) with a branch divisor

∆mv1,mv2 =
(
1−

1
mv1

)
D1 +

(
1−

1
mv2

)
D2

consisting of the zero D1 and infinity D2 sections of the projective bundle Sn = P(1l⊕ Ln)
over N with ramification indices mv1,mv2, respectively and n an integer determined by
l1, l2,w, v.
For n 6= 0, apply the admissible construction of Apostolov, Calderbank, Gauduchon,
Tønnesen-Friedman on Hamiltonian 2-forms to the ruled Kähler orbifolds (Sn,∆mv1,mv2 )

This gives the Kähler orbifold metric g(Sn,∆) = 1+rz
r gΣg + dz2

Θ(z)
+ Θ(z)θ2 where θ is a

connection 1-form, dθ = nωN , 0 < r < 1, Θ(z) > 0 and
−1 < z < 1,Θ(±1) = 0,Θ′(−1) = 2

mv2
,Θ′(1) = − 2

mv1
.

When Θ(z)(1 + rz)dN is a (dN + 3) order ((dN + 2) order) polynomial we get extremal
(CSC) Kähler metrics. Here dN is the complex dimension of N.
Lifing to Ml1,l2,w gives extremal (CSC) Sasaki metrics in the quasi-regular case.
The irregular case uses a continuity argument together with the fact that quasi-regular
Sasaki structures are dense in the Sasaki cone.
The w-cone can have several CSC Sasaki rays which comes from a sign changing count.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
October 28, 2015The 21th Symposium on Complex Geometry,Kanazawa, Japan 13

/ 21



The S3
w-Join and Admissible Kähler Constructions

(B-,Tønnesen-Friedman

The existence of an extra Hamiltonian Killing vector field from S3
w gives the 2-dimensional

Sasaki w-cone t+w .
The quotient space of the S1-action generated by any quasi-regular Reeb vector field ξv ∈ t+w
is a ruled orbifold (Sn,∆mv1,mv2 ) with a branch divisor

∆mv1,mv2 =
(
1−

1
mv1

)
D1 +

(
1−

1
mv2

)
D2

consisting of the zero D1 and infinity D2 sections of the projective bundle Sn = P(1l⊕ Ln)
over N with ramification indices mv1,mv2, respectively and n an integer determined by
l1, l2,w, v.

For n 6= 0, apply the admissible construction of Apostolov, Calderbank, Gauduchon,
Tønnesen-Friedman on Hamiltonian 2-forms to the ruled Kähler orbifolds (Sn,∆mv1,mv2 )

This gives the Kähler orbifold metric g(Sn,∆) = 1+rz
r gΣg + dz2

Θ(z)
+ Θ(z)θ2 where θ is a

connection 1-form, dθ = nωN , 0 < r < 1, Θ(z) > 0 and
−1 < z < 1,Θ(±1) = 0,Θ′(−1) = 2

mv2
,Θ′(1) = − 2

mv1
.

When Θ(z)(1 + rz)dN is a (dN + 3) order ((dN + 2) order) polynomial we get extremal
(CSC) Kähler metrics. Here dN is the complex dimension of N.
Lifing to Ml1,l2,w gives extremal (CSC) Sasaki metrics in the quasi-regular case.
The irregular case uses a continuity argument together with the fact that quasi-regular
Sasaki structures are dense in the Sasaki cone.
The w-cone can have several CSC Sasaki rays which comes from a sign changing count.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
October 28, 2015The 21th Symposium on Complex Geometry,Kanazawa, Japan 13

/ 21



The S3
w-Join and Admissible Kähler Constructions

(B-,Tønnesen-Friedman

The existence of an extra Hamiltonian Killing vector field from S3
w gives the 2-dimensional

Sasaki w-cone t+w .
The quotient space of the S1-action generated by any quasi-regular Reeb vector field ξv ∈ t+w
is a ruled orbifold (Sn,∆mv1,mv2 ) with a branch divisor

∆mv1,mv2 =
(
1−

1
mv1

)
D1 +

(
1−

1
mv2

)
D2

consisting of the zero D1 and infinity D2 sections of the projective bundle Sn = P(1l⊕ Ln)
over N with ramification indices mv1,mv2, respectively and n an integer determined by
l1, l2,w, v.
For n 6= 0, apply the admissible construction of Apostolov, Calderbank, Gauduchon,
Tønnesen-Friedman on Hamiltonian 2-forms to the ruled Kähler orbifolds (Sn,∆mv1,mv2 )

This gives the Kähler orbifold metric g(Sn,∆) = 1+rz
r gΣg + dz2

Θ(z)
+ Θ(z)θ2 where θ is a

connection 1-form, dθ = nωN , 0 < r < 1, Θ(z) > 0 and
−1 < z < 1,Θ(±1) = 0,Θ′(−1) = 2

mv2
,Θ′(1) = − 2

mv1
.

When Θ(z)(1 + rz)dN is a (dN + 3) order ((dN + 2) order) polynomial we get extremal
(CSC) Kähler metrics. Here dN is the complex dimension of N.
Lifing to Ml1,l2,w gives extremal (CSC) Sasaki metrics in the quasi-regular case.
The irregular case uses a continuity argument together with the fact that quasi-regular
Sasaki structures are dense in the Sasaki cone.
The w-cone can have several CSC Sasaki rays which comes from a sign changing count.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
October 28, 2015The 21th Symposium on Complex Geometry,Kanazawa, Japan 13

/ 21



The S3
w-Join and Admissible Kähler Constructions

(B-,Tønnesen-Friedman

The existence of an extra Hamiltonian Killing vector field from S3
w gives the 2-dimensional

Sasaki w-cone t+w .
The quotient space of the S1-action generated by any quasi-regular Reeb vector field ξv ∈ t+w
is a ruled orbifold (Sn,∆mv1,mv2 ) with a branch divisor

∆mv1,mv2 =
(
1−

1
mv1

)
D1 +

(
1−

1
mv2

)
D2

consisting of the zero D1 and infinity D2 sections of the projective bundle Sn = P(1l⊕ Ln)
over N with ramification indices mv1,mv2, respectively and n an integer determined by
l1, l2,w, v.
For n 6= 0, apply the admissible construction of Apostolov, Calderbank, Gauduchon,
Tønnesen-Friedman on Hamiltonian 2-forms to the ruled Kähler orbifolds (Sn,∆mv1,mv2 )

This gives the Kähler orbifold metric g(Sn,∆) = 1+rz
r gΣg + dz2

Θ(z)
+ Θ(z)θ2 where θ is a

connection 1-form, dθ = nωN , 0 < r < 1, Θ(z) > 0 and
−1 < z < 1,Θ(±1) = 0,Θ′(−1) = 2

mv2
,Θ′(1) = − 2

mv1
.

When Θ(z)(1 + rz)dN is a (dN + 3) order ((dN + 2) order) polynomial we get extremal
(CSC) Kähler metrics. Here dN is the complex dimension of N.
Lifing to Ml1,l2,w gives extremal (CSC) Sasaki metrics in the quasi-regular case.
The irregular case uses a continuity argument together with the fact that quasi-regular
Sasaki structures are dense in the Sasaki cone.
The w-cone can have several CSC Sasaki rays which comes from a sign changing count.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
October 28, 2015The 21th Symposium on Complex Geometry,Kanazawa, Japan 13

/ 21



The S3
w-Join and Admissible Kähler Constructions

(B-,Tønnesen-Friedman

The existence of an extra Hamiltonian Killing vector field from S3
w gives the 2-dimensional

Sasaki w-cone t+w .
The quotient space of the S1-action generated by any quasi-regular Reeb vector field ξv ∈ t+w
is a ruled orbifold (Sn,∆mv1,mv2 ) with a branch divisor

∆mv1,mv2 =
(
1−

1
mv1

)
D1 +

(
1−

1
mv2

)
D2

consisting of the zero D1 and infinity D2 sections of the projective bundle Sn = P(1l⊕ Ln)
over N with ramification indices mv1,mv2, respectively and n an integer determined by
l1, l2,w, v.
For n 6= 0, apply the admissible construction of Apostolov, Calderbank, Gauduchon,
Tønnesen-Friedman on Hamiltonian 2-forms to the ruled Kähler orbifolds (Sn,∆mv1,mv2 )

This gives the Kähler orbifold metric g(Sn,∆) = 1+rz
r gΣg + dz2

Θ(z)
+ Θ(z)θ2 where θ is a

connection 1-form, dθ = nωN , 0 < r < 1, Θ(z) > 0 and
−1 < z < 1,Θ(±1) = 0,Θ′(−1) = 2

mv2
,Θ′(1) = − 2

mv1
.

When Θ(z)(1 + rz)dN is a (dN + 3) order ((dN + 2) order) polynomial we get extremal
(CSC) Kähler metrics. Here dN is the complex dimension of N.

Lifing to Ml1,l2,w gives extremal (CSC) Sasaki metrics in the quasi-regular case.
The irregular case uses a continuity argument together with the fact that quasi-regular
Sasaki structures are dense in the Sasaki cone.
The w-cone can have several CSC Sasaki rays which comes from a sign changing count.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
October 28, 2015The 21th Symposium on Complex Geometry,Kanazawa, Japan 13

/ 21



The S3
w-Join and Admissible Kähler Constructions

(B-,Tønnesen-Friedman

The existence of an extra Hamiltonian Killing vector field from S3
w gives the 2-dimensional

Sasaki w-cone t+w .
The quotient space of the S1-action generated by any quasi-regular Reeb vector field ξv ∈ t+w
is a ruled orbifold (Sn,∆mv1,mv2 ) with a branch divisor

∆mv1,mv2 =
(
1−

1
mv1

)
D1 +

(
1−

1
mv2

)
D2

consisting of the zero D1 and infinity D2 sections of the projective bundle Sn = P(1l⊕ Ln)
over N with ramification indices mv1,mv2, respectively and n an integer determined by
l1, l2,w, v.
For n 6= 0, apply the admissible construction of Apostolov, Calderbank, Gauduchon,
Tønnesen-Friedman on Hamiltonian 2-forms to the ruled Kähler orbifolds (Sn,∆mv1,mv2 )

This gives the Kähler orbifold metric g(Sn,∆) = 1+rz
r gΣg + dz2

Θ(z)
+ Θ(z)θ2 where θ is a

connection 1-form, dθ = nωN , 0 < r < 1, Θ(z) > 0 and
−1 < z < 1,Θ(±1) = 0,Θ′(−1) = 2

mv2
,Θ′(1) = − 2

mv1
.

When Θ(z)(1 + rz)dN is a (dN + 3) order ((dN + 2) order) polynomial we get extremal
(CSC) Kähler metrics. Here dN is the complex dimension of N.
Lifing to Ml1,l2,w gives extremal (CSC) Sasaki metrics in the quasi-regular case.

The irregular case uses a continuity argument together with the fact that quasi-regular
Sasaki structures are dense in the Sasaki cone.
The w-cone can have several CSC Sasaki rays which comes from a sign changing count.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
October 28, 2015The 21th Symposium on Complex Geometry,Kanazawa, Japan 13

/ 21



The S3
w-Join and Admissible Kähler Constructions

(B-,Tønnesen-Friedman

The existence of an extra Hamiltonian Killing vector field from S3
w gives the 2-dimensional

Sasaki w-cone t+w .
The quotient space of the S1-action generated by any quasi-regular Reeb vector field ξv ∈ t+w
is a ruled orbifold (Sn,∆mv1,mv2 ) with a branch divisor

∆mv1,mv2 =
(
1−

1
mv1

)
D1 +

(
1−

1
mv2

)
D2

consisting of the zero D1 and infinity D2 sections of the projective bundle Sn = P(1l⊕ Ln)
over N with ramification indices mv1,mv2, respectively and n an integer determined by
l1, l2,w, v.
For n 6= 0, apply the admissible construction of Apostolov, Calderbank, Gauduchon,
Tønnesen-Friedman on Hamiltonian 2-forms to the ruled Kähler orbifolds (Sn,∆mv1,mv2 )

This gives the Kähler orbifold metric g(Sn,∆) = 1+rz
r gΣg + dz2

Θ(z)
+ Θ(z)θ2 where θ is a

connection 1-form, dθ = nωN , 0 < r < 1, Θ(z) > 0 and
−1 < z < 1,Θ(±1) = 0,Θ′(−1) = 2

mv2
,Θ′(1) = − 2

mv1
.

When Θ(z)(1 + rz)dN is a (dN + 3) order ((dN + 2) order) polynomial we get extremal
(CSC) Kähler metrics. Here dN is the complex dimension of N.
Lifing to Ml1,l2,w gives extremal (CSC) Sasaki metrics in the quasi-regular case.
The irregular case uses a continuity argument together with the fact that quasi-regular
Sasaki structures are dense in the Sasaki cone.

The w-cone can have several CSC Sasaki rays which comes from a sign changing count.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
October 28, 2015The 21th Symposium on Complex Geometry,Kanazawa, Japan 13

/ 21



The S3
w-Join and Admissible Kähler Constructions

(B-,Tønnesen-Friedman

The existence of an extra Hamiltonian Killing vector field from S3
w gives the 2-dimensional

Sasaki w-cone t+w .
The quotient space of the S1-action generated by any quasi-regular Reeb vector field ξv ∈ t+w
is a ruled orbifold (Sn,∆mv1,mv2 ) with a branch divisor

∆mv1,mv2 =
(
1−

1
mv1

)
D1 +

(
1−

1
mv2

)
D2

consisting of the zero D1 and infinity D2 sections of the projective bundle Sn = P(1l⊕ Ln)
over N with ramification indices mv1,mv2, respectively and n an integer determined by
l1, l2,w, v.
For n 6= 0, apply the admissible construction of Apostolov, Calderbank, Gauduchon,
Tønnesen-Friedman on Hamiltonian 2-forms to the ruled Kähler orbifolds (Sn,∆mv1,mv2 )

This gives the Kähler orbifold metric g(Sn,∆) = 1+rz
r gΣg + dz2

Θ(z)
+ Θ(z)θ2 where θ is a

connection 1-form, dθ = nωN , 0 < r < 1, Θ(z) > 0 and
−1 < z < 1,Θ(±1) = 0,Θ′(−1) = 2

mv2
,Θ′(1) = − 2

mv1
.

When Θ(z)(1 + rz)dN is a (dN + 3) order ((dN + 2) order) polynomial we get extremal
(CSC) Kähler metrics. Here dN is the complex dimension of N.
Lifing to Ml1,l2,w gives extremal (CSC) Sasaki metrics in the quasi-regular case.
The irregular case uses a continuity argument together with the fact that quasi-regular
Sasaki structures are dense in the Sasaki cone.
The w-cone can have several CSC Sasaki rays which comes from a sign changing count.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
October 28, 2015The 21th Symposium on Complex Geometry,Kanazawa, Japan 13

/ 21



Einstein-Hilbert Functional (B-,Huang,Legendre,Tønnesen-Friedman)

Sasakian structure S = (ξ, η,Φ, g) with scalar curvature sg .

The total scalar curvature as a functional restricted to the Sasaki cone: Sξ =
∫

M sg

Want invariance under transverse homothety so we define the Einstein-Hilbert Functional

H(ξ) =
Sn+1
ξ

Vn
ξ

where V is the total volume.

Variation gives

dHξ =
n(n + 1)Sn

ξ

Vn
ξ

SFξ ◦ Φ.

So critical points of H(ξ) are the zeros of the total scalar curvature Sξ and the zeros of the
Sasaki-Futaki invariant SFξ.

This gives constant scalar curvature Sasaki metrics (cscS) are critical points of H(ξ).

Sasaki version of the Donaldson-Tian-Yau conjecture: cscS ⇐⇒ cone is K-polystable.
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Variation gives

dHξ =
n(n + 1)Sn

ξ

Vn
ξ

SFξ ◦ Φ.

So critical points of H(ξ) are the zeros of the total scalar curvature Sξ and the zeros of the
Sasaki-Futaki invariant SFξ.

This gives constant scalar curvature Sasaki metrics (cscS) are critical points of H(ξ).

Sasaki version of the Donaldson-Tian-Yau conjecture: cscS ⇐⇒ cone is K-polystable.
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Sasakian K-Stability

The notions of K-stability, K-polystability, K-semistability have been amply developed in
Kählerian geometry. Here we only deal with K-semistability. A Sasaki manifold (M,S) is
said to be K-semistable if the affine cone (C(M), I) is K-semistable (Collins,Székelyhidi).

To define K-semistability we need the notion of test configuration. Let Y = C(M) be the
affine cone of a Sasaki manifold M and suppose it has an action of a complex torus TC such
that its Lie algebra tC contains the Reeb vector field ξ. We view the pair (Y , ξ) as a polarized
variety. A TC-equivariant test configuration for Y is given by a set of k TC-homogeneous
generators f1, . . . , fk of the coordinate ring of Y and k integers w1, . . . ,wk . The functions
f1, . . . , fk are generators of H0(Y ,OY ).

Using the functions f1, . . . , fk embed Y into Ck and consider the C∗ action on Ck with weights
w1, . . . ,wk .

Taking the flat limit Y0 over C of the C∗ orbits gives an affine scheme Y over C. We then get
an action of C∗ on the ‘central fiber’ Y0.

The Donaldson-Futaki invariant of such a test configuration is defined by

Fut(Y0, ξ, a) :=
Vξ
n

Da

(
Sξ
Vξ

)
+

SξDaVξ
n(n + 1)Vξ

where Da is the directional derivative.

We say that (Y , ξ) is K-semistable if for each TC with ξ ∈ t and any TC-equivariant test
configuration Fut(Y0, ξ, a) ≥ 0. It is K-polystable if equality holds only if it is a product
configuration, that is, Y0 is isomorphic to Y .
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To define K-semistability we need the notion of test configuration. Let Y = C(M) be the
affine cone of a Sasaki manifold M and suppose it has an action of a complex torus TC such
that its Lie algebra tC contains the Reeb vector field ξ. We view the pair (Y , ξ) as a polarized
variety. A TC-equivariant test configuration for Y is given by a set of k TC-homogeneous
generators f1, . . . , fk of the coordinate ring of Y and k integers w1, . . . ,wk . The functions
f1, . . . , fk are generators of H0(Y ,OY ).

Using the functions f1, . . . , fk embed Y into Ck and consider the C∗ action on Ck with weights
w1, . . . ,wk .

Taking the flat limit Y0 over C of the C∗ orbits gives an affine scheme Y over C. We then get
an action of C∗ on the ‘central fiber’ Y0.

The Donaldson-Futaki invariant of such a test configuration is defined by

Fut(Y0, ξ, a) :=
Vξ
n

Da

(
Sξ
Vξ

)
+

SξDaVξ
n(n + 1)Vξ

where Da is the directional derivative.

We say that (Y , ξ) is K-semistable if for each TC with ξ ∈ t and any TC-equivariant test
configuration Fut(Y0, ξ, a) ≥ 0. It is K-polystable if equality holds only if it is a product
configuration, that is, Y0 is isomorphic to Y .

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
October 28, 2015The 21th Symposium on Complex Geometry,Kanazawa, Japan 15

/ 21



Sasakian K-Stability

The notions of K-stability, K-polystability, K-semistability have been amply developed in
Kählerian geometry. Here we only deal with K-semistability. A Sasaki manifold (M,S) is
said to be K-semistable if the affine cone (C(M), I) is K-semistable (Collins,Székelyhidi).
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The Einstein-Hilbert Functional and K-stability
[B-,Huang,Legendre,Tønnesen-Friedman]

Theorem (1)
The set of critical points of the Einstein–Hilbert functional Hξ is the union of the zeros of the
Sasaki-Futaki invariant and of the total transversal scalar curvature. In particular, if a Reeb
vector field admits a compatible cscS metric then it is a critical point of the Einstein–Hilbert
functional.

Proof: This follows immediately from

dHξ =
n(n + 1)Sn

ξ

Vn
ξ

SFξ ◦ Φ. (1)

2

Theorem (2)

If ξ is not a critical point of H(ξ) then (Y , ξ) is not K-semistable. Alternatively, if (Y , ξ) is
K-semistable then ξ is a critical point of the Einstein-Hilbert functional H(ξ), and if in addition
Sn
ξ 6= 0, then the Sasaki–Futaki invariant SFξ vanishes identically.

Outline of Proof: The linearity in a in the equation for the Donaldson-Futaki invariant says that
K-semistability implies Fut(Y0, ξ, a) = 0 for any product test configuration.
Calculation gives Fut(Y0, ξ, a) = cnSFξ(Φ(a)) (Tipler, van Coevering).
So if ξ is not a critical point of H(ξ), then there exists a ∈ t such that Fut(Y0, ξ, a) 6= 0 for any
test configuration. The theorem then follows by contradiction. 2
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Stability Theorems continued [B-,Huang,Legendre,Tønnesen-Friedman]

Theorem (3)

Suppose the Sasaki cone is exhausted by extremal Sasaki metrics and that the total
transverse scalar curvature does not vanish. Then the set of critical points of the Einstein-Hilbert
functional is precisely the set of rays in the Sasaki cone with constant scalar curvature. In
particular, in this case a Sasakian structure S = (ξ, η,Φ, g) has constant scalar curvature if and
only if (Y , ξ) is K-semistable.

Proof: This follows from Theorem 2, work of Collins, Székelyhidi, and the vanishing of the
Sasaki-Futaki invariant for cscS metrics. 2

Theorem (4)

Let M be a regular Sasaki manifold with constant transverse scalar curvature, and consider the
S3

w-join Ml1,l2,w. Its w-cone t+w has a cscS ray rξ if and only if the Sasaki-Futaki invariant SFξ
vanishes on the Lie algebra tw ⊗ C. Then for ξ ∈ t+w the polarized affine cone (Y , ξ) associated to
Ml1,l2,w is K-semistable if and only if the Sasakian structure S = (ξ, η,Φ, g) on Ml1,l2,w has
constant scalar curvature. There can be several cscS rays in t+w .

Outline of Proof: First some notation: H is a Hamiltonian vector field on Ml1,l2,w, ξ = ξv with
v = (v1, v2) ∈ t+w , and b = v1/v2.
Generally the Sasaki-Futaki invariant SFξ is difficult to compute, but
On Ml1,l2,w the Einstein-Hilbert functional H(b) is easy to compute.
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Sasaki-Futaki invariant for cscS metrics. 2

Theorem (4)

Let M be a regular Sasaki manifold with constant transverse scalar curvature, and consider the
S3

w-join Ml1,l2,w. Its w-cone t+w has a cscS ray rξ if and only if the Sasaki-Futaki invariant SFξ
vanishes on the Lie algebra tw ⊗ C. Then for ξ ∈ t+w the polarized affine cone (Y , ξ) associated to
Ml1,l2,w is K-semistable if and only if the Sasakian structure S = (ξ, η,Φ, g) on Ml1,l2,w has
constant scalar curvature. There can be several cscS rays in t+w .

Outline of Proof: First some notation: H is a Hamiltonian vector field on Ml1,l2,w, ξ = ξv with
v = (v1, v2) ∈ t+w , and b = v1/v2.

Generally the Sasaki-Futaki invariant SFξ is difficult to compute, but
On Ml1,l2,w the Einstein-Hilbert functional H(b) is easy to compute.

Charles Boyer (University of New Mexico) EXTREMAL SASAKIAN GEOMETRY
October 28, 2015The 21th Symposium on Complex Geometry,Kanazawa, Japan 17

/ 21



Stability Theorems continued [B-,Huang,Legendre,Tønnesen-Friedman]

Theorem (3)

Suppose the Sasaki cone is exhausted by extremal Sasaki metrics and that the total
transverse scalar curvature does not vanish. Then the set of critical points of the Einstein-Hilbert
functional is precisely the set of rays in the Sasaki cone with constant scalar curvature. In
particular, in this case a Sasakian structure S = (ξ, η,Φ, g) has constant scalar curvature if and
only if (Y , ξ) is K-semistable.

Proof: This follows from Theorem 2, work of Collins, Székelyhidi, and the vanishing of the
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Outline of Proof of Theorem 4

The Einstein-Hilbert functional takes the form

H(b) =

(
l1w

dN +1
1 bdN +2+(l2A−l1w2)w

dN
1 bdN +1+(l1w1−l2A)w

dN
2 b−l1w

dN +1
2

)dN +2

(w1b−w2)

(
w

dN +1
1 bdN +2−w

dN +1
2 b

)dN +1 .

And H′(b) =
S

dN +1
ξ

(bv1)2dN +3Vξ

f (b)

(w1b−w2)3 giving SFξv (ΦH) = f (b)

v2n+1
2 (w1b−w2)3Vξv

where

f (b) = (dN + 1)l1w2dN +3
1 b2dN +4

− w2(dN +1)
1 b2dN +3(Al2 + l1(dN + 1)w2)

+ wdN +2
1 wdN

2 bdN +3((dN + 1)(A(dN + 1)l2 − l1((dN + 1)w1 + (dN + 2)w2)))

− wdN +1
1 wdN +1

2 bdN +2(2AdN (dN + 2)l2 − (dN + 1)(2dN + 3)l1(w1 + w2))

+ wdN
1 wdN +2

2 bdN +1(dN + 1)(A(dN + 1)l2 − l1((dN + 2)w1 + (dN + 1)w2))

− w2(dN +1)
2 (b(Al2 + l1(dN + 1)w1))

+ (dN + 1)l1w2dN +3
2 .

2
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Critical Points of E-H Functional
[B-,Huang,Legendre,Tønnesen-Friedman]

Theorem (5)

Assume that the total transversal scalar curvature is sign definite and bounded away from 0 on
each transversal set of the Sasaki cone, then there exists at least one Reeb vector field for
which the Sasaki–Futaki invariant SF vanishes identically.

Proof: Assume the total scalar curvature is sign definite and bounded away from zero on any
transversal subset of t+ which gives |Sξ| ≥ mξVξ, ∀ξ ∈ t+ and some constant mξ
depending only on ξ.

Assume first that Sξ > 0 the above bound gives H(ξ) ≥ mn+1
ξ Vξ.

But the left hand side is invariant under scaling of ξ, so there exists an m0 independent of ξ
such that on a transverse subset Σ we have H(ξ) ≥ mn+1

ξ Vξ ≥ mm+1
o Vξ ∀ξ ∈ Σ.

A result of He, Sun says that Vξ is strictly convex on Σ and tends to infinity on the boundary
∂Σ.

So H(ξ) must reach a minimum somewhere in Σ and the variational formula implies SF = 0.
2
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Convexity of E-H Functional [B-,Huang,Legendre,Tønnesen-Friedman]

Theorem (6)

Let (M,D, J, g, ξ) be either a cscS compact manifold of negative transverse scalar curvature or
a compact Sasaki-η–Einstein manifold of positive transverse scalar curvature. Then H is
transversally convex at ξ (or transversally concave in the negative cscS case with n odd).

Lemma: Let (M2n+1,D, J, g, ξ) be a cscS compact manifold of non-zero transversal scalar
curvature, and T ⊂ CR(D, J) ∩ Isom(g) be the maximal compact torus with Lie algebra t.

1 If the transverse scalar curvature is negative, the E-H functional H is convex if n is even and concave
if n is odd.

2 If the transverse scalar curvature is positive and the first non-zero eigenvalue λ1 of the Laplacian,

restricted to the space of T –invariant functions is bounded below by
sT
g

2n+1 , then H is convex near ξ.

Moreover, in both cases the cscS ray is isolated in the Sasaki cone.
The lemma follows from the second variational formula at a cscS metric:

d2

dt2 t=0
H(ξt ) = n(n + 1)(2n + 1)(sT

g )n

(
‖d(η(a))‖2

g −
sT

g

(2n + 1)
‖η(a)‖2

g

)
and the well known inequality ‖d(η(a))‖2

g ≥ λ1‖η(a)‖2
g . 2

Proof of Theorem (6): For negative transverse scalar curvature, the theorem follows
immediately from (1) of the lemma.

For the Sasaki-η–Einstein case a bound λ1 ≥
sT

g
2n due to Matsushima together with (2) of the

lemma gives the result. 2

This lemma leads to the general question: Are the rays of constant scalar curvature Sasaki
metrics isolated in the Sasaki cone?
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