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Fundamental Problems

Talk based on joint work with Christina Tønnesen-Friedman

Problems: (1) Given a manifold determine how many contact structures of Sasaki type there are.

(2) Given a contact structure or isotopy class of contact structures:

Determine the space of compatible Sasakian structures.

Determine the (pre)-moduli space of extremal Sasakian structures.

Determine those of constant scalar curvature (cscS). How many?

Determine the (pre)-moduli space of Sasakian structures with the same underlying CR
structure.

Determine those having distinct underlying CR structures.

We give partial answers to these problems for particular cases that are obtained by combining
the Sasaki join construction of B-, Galicki, Ornea with the admissible Kähler construction of
Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman.
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Contact manifold

• Compact Contact Manifold M.

A contact 1-form η such that
η ∧ (dη)n 6= 0.

defines a contact structure
η′ ∼ η ⇐⇒ η′ = fη

for some f 6= 0, take f > 0, or equivalently a codimension 1 subbundle D = Ker η of TM with
a conformal symplectic structure.
A contact invariant: the first Chern class c1(D)

Unique vector field ξ, called the Reeb vector field, satisfying

ξcη = 1, ξcdη = 0.

The characteristic foliation Fξ: It is called quasi-regular if each leaf of Fξ passes through
any nbd U at most k times. It is regular if k = 1; otherwise, it is irregular.
Quasi-regularity is strong, most contact 1-forms are irregular.
Contact bundle D→ choose almost complex structure J extend to an endomorphism Φ
with Φξ = 0 with a compatible metric

g = dη ◦ (Φ⊗ 1l) + η ⊗ η

Quadruple S = (ξ, η,Φ, g) called contact metric structure
The pair (D, J) is a strictly pseudo-convex almost CR structure (sψCR structure).
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Sasakian Structures and Symmetries

Definition
The contact metric structure S = (ξ, η,Φ, g) is K-contact if Lξg = 0 (or LξΦ = 0). It is Sasakian
if in addition (D, J) is integrable and the Transverse Metric gD is Kähler (Transverse holonomy
U(n)). In the latter case we say that the contact structure D is of Sasaki type.

A Sasakian structure determines a strictly pseudo-convex CR structure (D, J).

Nested structures: Sasakian ⊂ strictly pseudo-convex CR ⊂ Contact
Nested symmetries: Aut(S) ⊂ CR(D, J) ⊂ Con(M,D)

1 Contactomorphism Group: Con(M,D) = {φ ∈ Diff(M) | φ∗D ⊂ D}
2 CR automorphism group: CR(D, J) = {φ ∈ Con(M,D) | φ∗J = Jφ∗}
3 Sasakian automorphism group: Aut(S) = {φ ∈ CR(D, J) | φ∗ξ = ξ, φ∗g = g}

maximal torus: T k ⊂ Aut(S) ⊂ CR(D, J) ⊂ Con(M,D) with 1 ≤ k ≤ n + 1
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Sasaki cones and bouquets

Sasaki cones

1 tk the Lie algebra of T k

2 Sasaki cone (unreduced): t+
k (D, J) = {ξ′ ∈ tk | η(ξ′) > 0, } s.t. S = (ξ, η,Φ, g) ∈ (D, J) is

Sasakian.
3 Sasaki cone (reduced): κ(D, J) = t+

k (D, J)/W where W is the Weyl group of CR(D, J)
4 κ(D, J) is finite dim’l moduli of Sasakian structures with underlying CR structure (D, J)
5 1 ≤ dimκ(D, J) ≤ n + 1 and if dimκ(D, J) = n + 1, M is toric Sasakian

Sasaki bouquets

1 a contact structure D of Sasaki type with a space of compatible CR structures J(D)
2 a map Q : J(D)→ { conjugacy classes of tori in the contactomorphism group Con(M,D)}
3 Get bouquet

[
α

κ(D, Jα) of Sasaki cones, Jα ∈ J(D), α ranges over distinct conjugacy classes.

4 A bouquet consisting of N Sasaki cones is called an N-bouquet, denoted by BN . The Sasaki cones
in an N-bouquet can have different dimension. The pre-moduli space is typically non-Hausdorff.

5 the Sasaki cones κ(D, Jα) can be distinguished by equivariant Gromov-Witten invariants
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Deformations of Sasakian Structures

Three Types of Deformations of Sasakian Structures

1 First type: Fix CR structure (D, J), deform characteristic foliation F. This gives rise to Sasaki cones.
2 After this type of deformation the transverse holonomy becomes irreducible.

1 Second type: Fix contact structure D, deform transverse complex structure (CR) J. This gives rise to
Sasaki bouquets.

2 Here Sasaki cones in bouquets are related to conjugacy classes of tori in the contactomorphism
group Con(M,D).

1 Third type: Fix characteristic foliation F, deform contact structure D. This is used to obtain extremal
Sasaki metrics.

2 This type of deformation does not change the transverse holonomy nor the isotopy class of contact
structure.
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Extremal Sasakian metrics

Extremal Sasakian metrics (B-Galicki-Simanca)

Sasakian structure S = (ξ, η,Φ, g) with scalar curvature sg .

Calabi-Sasaki Energy functional E(g) =

Z
M

s2
gdµg ,

Deform contact structure η 7→ η + tdcϕ within its isotopy class where ϕ is basic.

This gives critical point of E(g) ⇐⇒ ∂#
g sg is transversely holomorphic.

We say that g is extremal if it is critical point of E .
g is extremal Sasaki metric ⇐⇒ the transverse metric gD is extremal Kähler metric.
Special case: constant scalar curvature Sasakian (CSC). If c1(D) = 0⇒ Sasaki-η-Einstein
(SηE) with Ricci curvature Ricg = ag + bη ⊗ η, a, b constants. If b = 0 get Sasaki-Einstein
(SE).
If S = (ξ, η,Φ, g) is extremal (or CSC) then so is Sa = (a−1ξ, aη,Φ, ga) for any a > 0.
Calabi: Critical points have maximal symmetry.

The Sasaki-Futaki invariant SF(X) =

Z
M

X(ψg)dµg where X is transversely holomorphic

and ψg is the Ricci potential satisfying ρT = ρT
h + i∂∂̄ψg where ρT is the transverse Ricci

form and ρT
h is its harmonic part.

Theorem
An extremal Sasaki metric g has constant scalar curvature if and only if SF = 0.
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The Join Construction

Join Construction: Given quasi-regular Sasakian manifolds πi : Mi−−−→ Zi with Dim Mi = ni
for i = 1, 2.

Form (l1, l2)-join π : M1 ?l1,l2 M2−−→ Z1 ×Z2 as an S1-orbibundle (B-,Galicki,Ornea).

M1 ?l1,l2 M2 has a natural quasi-regular Sasakian structure Sl1,l2 for all relatively prime
positive integers l1, l2. Fixing l1, l2 fixes the contact orbifold. It is a smooth manifold iff
gcd(υ1l2, υ2l1) = 1 where υi is the order of orbifold Zi .

The dimension of M1 ?l1,l2 M2 is n1 + n2 − 1.

The join M1 ?l1,l2 M2 has reducible transverse holonomy a subgroup of U(n1)× U(n2).

Take π2 : M2−−−→ Z2 to be the S1 orbibundle π2 : S3
w−−−→ CP1[w] determined by a weighted

S1 action on S3 with weights w = (w1,w2) satisfying gcd(l2, l1wi ) = 1, and M1 = M regular
Sasaki manifold whose quotient is a compact Kähler manifold N.

In this case the Join Construction and Admissible Contruction of Apostolov, Calderbank,
Gauduchon, Tønnesen-Friedman fit as hand and glove.

The transverse holonomy of M ?l1,l2 S3
w is generically U(n1)× U(2).

An S1 orbibundle M ?l1,l2 S3
w−−−→N × CP1[w], where N is compact Kähler.

The join M ?l1,l2 S3
w can be realized as a lens space bundle over N with fiber the lens space

L(l2; l1w1, l1,w2).

I present two fundamental theorems about M ?l1,l2 S3
w and then present brief outlines of

their proofs. Finally, I discuss the special case of S3-bundles over a Riemann surface Σg .
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their proofs. Finally, I discuss the special case of S3-bundles over a Riemann surface Σg .
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Fundamental Theorem: Geometry

Geometry: Existence of extremal and CSC Sasaki metrics by deforming in the Sasaki cone

Theorem (1)

[B-,Tønnesen-Friedman]: Let Ml1,l2,w = M ?l1,l2 S3
w be the S3

w-join with a regular Sasaki manifold
M which is an S1-bundle over a compact Kähler manifold N with constant scalar curvature. Then
for each vector w = (w1,w2) ∈ Z+ × Z+ with relatively prime components satisfying w1 > w2
there exists a Reeb vector field ξv in a 2-dimensional sub cone, the w-cone, of the Sasaki cone on
Ml1,l2,w such that the corresponding ray of Sasakian structures Sa = (a−1ξv, aηv,Φ, ga) has
constant scalar curvature.

1 If the scalar curvature sN of N is nonnegative, then the w-cone is exhausted by extremal Sasaki metrics.

2 If the scalar curvature sN of N is positive and l2 is large enough there are infinitely many contact CR
structures with at least 3 rays of CSC Sasakian structures in the w-cone.

3 When N is positive KE get SE metric on Ml1,l2,w for appropriate choice of (l1, l2).

The SE metrics of 3 were previously obtained by physicists (Gauntlett, Martelli, Sparks,
Waldram) by another method.
Most of the CSC Sasakian structures are irregular.
Relation to CR Yamabe Problem (Jerison and Lee): For a Sasaki structure the Webster
pseudo-Hermitian metric coincides with the transverse Kähler metric. So a CSC Sasaki
metric provides a solution to the CR Yamabe Problem. It is know that when the CR Yamabe
invariant λ(M) is nonpositive, the CSC metric is unique. However, when λ(M) > 0 there
can be several CSC solutions. Our results provides many such examples.
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Fundamental Theorem: Topology

Topology: given the cohomology ring of M, the cohomology ring of Ml1,l2,w can be
determined in principal.

Theorem (2)
[B-,Tønnesen-Friedman]: In each odd dimension 2p + 3 > 5 there exist countably infinite simply
connected toric contact manifolds Ml1,l2,w of Reeb type depending on 4 positive integers
l1, l2,w1,w2 satisfying gcd(l2, l1wi ) = gcd(w1,w2) = 1, and with integral cohomology ring

H∗(Ml1,l2,w,Z) ≈ Z[x , y ]/(w1w2l21 x2, xp+1, x2y , y2)

where x , y are classes of degree 2 and 2p + 1, respectively. Furthermore, with l1,w1,w2 fixed
there are a finite number of diffeomorphism types with the given cohomology ring. Hence, in
each such dimension there exist simply connected smooth manifolds with countably infinite toric
contact structures of Reeb type that are inequivalent as contact structures.

In special cases we can determine the diffeomorphism (homeomorphism, homotopy)
types.
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Outline of proof of Theorem (1):

The existence of an extra Hamiltonian Killing vector field from S3
w gives the 2-dimensional

Sasaki w-cone t+
w .

The quotient space of the S1-action generated by any quasi-regular Reeb vector field ξv ∈ t+
w

is a ruled orbifold (Sn,∆mv1,mv2 ) with a branch divisor

∆mv1,mv2 =
`
1−

1
mv1

´
D1 +

`
1−

1
mv2

´
D2

consisting of the zero D1 and infinity D2 sections of the projective bundle Sn = P(1l⊕ Ln)
over N with ramification indices mv1,mv2, respectively and n an integer determined by
l1, l2,w, v.
For n 6= 0, apply the admissible construction of Apostolov, Calderbank, Gauduchon,
Tønnesen-Friedman on Hamiltonian 2-forms to the ruled Kähler orbifolds (Sn,∆mv1,mv2 )

This gives the Kähler orbifold metric g(Sn,∆) = 1+rz
r gΣg + dz2

Θ(z)
+ Θ(z)θ2 where θ is a

connection 1-form, dθ = nωN , 0 < r < 1, Θ(z) > 0 and
−1 < z < 1,Θ(±1) = 0,Θ′(−1) = 2

mv2
,Θ′(1) = − 2

mv1
.

When Θ(z)(1 + rz)d is a (d + 3) order ((d + 2) order) polynomial we get extremal (CSC)
Kähler metrics. Here d is the complex dimension of N.
Lifing to Ml1,l2,w gives extremal (CSC) Sasaki metrics in the quasi-regular case.
The irregular case uses a continuity argument together with the fact that quasi-regular
Sasaki structures are dense in the Sasaki cone.
The existence of multiple rays of CSC Sasaki metrics comes from a sign changing count.
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connection 1-form, dθ = nωN , 0 < r < 1, Θ(z) > 0 and
−1 < z < 1,Θ(±1) = 0,Θ′(−1) = 2

mv2
,Θ′(1) = − 2

mv1
.

When Θ(z)(1 + rz)d is a (d + 3) order ((d + 2) order) polynomial we get extremal (CSC)
Kähler metrics. Here d is the complex dimension of N.
Lifing to Ml1,l2,w gives extremal (CSC) Sasaki metrics in the quasi-regular case.

The irregular case uses a continuity argument together with the fact that quasi-regular
Sasaki structures are dense in the Sasaki cone.
The existence of multiple rays of CSC Sasaki metrics comes from a sign changing count.
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Outline of proof of Theorem (2):

From join construction get commutative diagram of fibrations:

M × S3
w −−−−−→ Ml1,l2,w −−−−−→ BS1?????y=

????y
??????yψ

M × S3
w −−−−−→ N × BCP1[w] −−−−−→ BS1 × BS1

where BG is the classifying space of a group G or Haefliger’s classifying space of an orbifold
if G is an orbifold. Note that the lower fibration is a product of fibrations.

Given the differentials in the spectral sequence of the fibration M−−−→N−−−→BS1, use the
commutative diagram to compute the cohomology ring of the contact manifold Ml1,l2,w with
orbifold cohomology:

H r
orb(CP1[w],Z) = H r (BCP1[w],Z) =

8><>:
Z for r = 0, 2,
Zw1w2 for r > 2 even,
0 for r odd.

For Theorem (2) we take the sphere M = S2p+1 with p > 1 in which case the cohomology
ring follows by computing the differentials. p = 1 case later (S3-bundles over S2).
The finiteness of the diffeomorphism types follows by Sullivan’s rational homotopy theory.
Ml1,l2,w is formal.
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S3-bundles over Riemann surfaces

Case 1: dim N = 1. Take N = Σg , a compact Riemann surface of genus g.

When g = 0 we get Sasakian structures on the two S3-bundles over the S2 for all relatively
prime positive integers l1, l2. (B-,B-Pati) (Also E. Legendre). When c1 = 0 we recover the SE
metrics on Y p,q of the physicists Guantlett, Martelli, Sparks, Waldram. For fixed p the φ(p)
(Euler phi-function) inequivalent SE structures belong to the same contact structure, a
φ(p)-bouquet Bφ(p).
When g > 0 set l2 = 1 (B-,Tonnesen-Friedman), S3-bundles over a Riemann surface Σg

with two diffeomorphism types, the trivial bundle Σg × S3, the non-trivial bundle Σg e×S3.
On both manifolds there is a countably infinite number of inequivalent contact structures Dk
admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem 1
admits a ray of CSC Sasakian structures.
When 0 < g ≤ 4 all 2-dimensional Sasaki cones κ(Dk , J) on S3-bundles over Σg are
exhausted by extremal Sasaki metrics
For g ≥ 20 there are rays in κ(Dk , J) which admit no extremal Sasaki metrics.
For any genus g ≥ 1 and for each positive integer k , the contact manifold (Σg × S3,Dk ) has
a k -bouquet Bk of 2-dimensional Sasaki cones.
The distinct Sasaki cones in the bouquet Bk correspond to distinct conjugacy classes of
maximal tori in Con(Dl1,l2,w). Uses the work of Buşe on equivariant Gromov-Witten invariants.
The construction can be ‘twisted’ by reducible representations of the fundamental group
π1(Σg). The irreducible representations of π1(Σg) give 1-dimensional Sasaki cones. They
arise from stable rank two vector bundles and have CSC Sasaki metrics.
Some of the same type of results have been obtained on 5-manifolds whose fundamental
group is a non-Abelian extension of π1(Σg) in Castañeda’s thesis.
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When 0 < g ≤ 4 all 2-dimensional Sasaki cones κ(Dk , J) on S3-bundles over Σg are
exhausted by extremal Sasaki metrics
For g ≥ 20 there are rays in κ(Dk , J) which admit no extremal Sasaki metrics.
For any genus g ≥ 1 and for each positive integer k , the contact manifold (Σg × S3,Dk ) has
a k -bouquet Bk of 2-dimensional Sasaki cones.
The distinct Sasaki cones in the bouquet Bk correspond to distinct conjugacy classes of
maximal tori in Con(Dl1,l2,w). Uses the work of Buşe on equivariant Gromov-Witten invariants.
The construction can be ‘twisted’ by reducible representations of the fundamental group
π1(Σg). The irreducible representations of π1(Σg) give 1-dimensional Sasaki cones. They
arise from stable rank two vector bundles and have CSC Sasaki metrics.

Some of the same type of results have been obtained on 5-manifolds whose fundamental
group is a non-Abelian extension of π1(Σg) in Castañeda’s thesis.
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