The Sasaki Cone versus the Kähler Cone

CHARLES BOYER

University of New Mexico

Contact Manifold(compact) A contact 1-form η such that

 $\eta \wedge (d\eta)^n \neq 0.$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some $f \neq 0$, take f > 0. or equivalently a codimension 1 subbundle $\mathcal{D} = \text{Ker } \eta$ of TM. $(\mathcal{D}, d\eta)$ symplectic vector bundle Unique vector field ξ , called the **Reeb vector field**, satisfying

 $\xi \rfloor \eta = 1, \qquad \xi \rfloor d\eta = 0.$

The characteristic foliation \mathcal{F}_{ξ} each leaf of \mathcal{F}_{ξ} passes through any nbd U at most k times \iff quasi-regular, $k = 1 \leftrightarrow$ regular, otherwise irregular

Quasi-regularity is strong, most contact 1-forms are irregular.

Contact bundle $\mathfrak{D} \to \text{choose al-}$ **most complex structure** J extend to Φ with $\Phi \xi = 0$

Get a compatible metric

 $g = d\eta \circ (\Phi \otimes \mathbb{1}) + \eta \otimes \eta$

Quadruple $S = (\xi, \eta, \Phi, g)$ called contact metric structure

The pair (\mathcal{D}, J) is a strictly pseudoconvex almost CR structure. **Definition**: The structure $S = (\xi, \eta, \Phi, g)$ is **K-contact** if $\pounds_{\xi}g = 0$ (or $\pounds_{\xi}\Phi = 0$). It is **Sasakian** if in addition (\mathfrak{D}, J) is integrable. Note: Quasi-regular \Rightarrow K-contact.

 $(\xi,\eta,\Phi,g) \iff (d\eta,J,g_T)$

Sasaki cone $\kappa(\mathfrak{D}, J)$ = { ξ } s.t. $S \in (\mathfrak{D}, J)$ is Sasakian $\subset \mathfrak{t}_k$ with $1 \leq k \leq n+1$ \Rightarrow finite dim'l moduli of Sasakian structures with underlying CR structure (\mathfrak{D}, J)

Alternative Deformation Fix foliation: $\mathfrak{F}_{\xi} \Rightarrow$ basic cohomology groups $H^p_B(\mathfrak{F}_{\xi})$

Transverse holomorphic \Rightarrow basic (p,q)-forms $\Omega_B^{p,q} \Rightarrow$ basic cohomology groups $H_B^{p,q}(\mathcal{F}_{\xi})$. Riemannian foliation \Rightarrow transverse Hodge theory holds.

 $S = (\xi, \eta, \Phi, g)$ Sasakian str. Space $\mathfrak{F}(\xi)$ of Sasakian structures $S' = (\xi, \eta', \Phi', g')$ Reeb v.f. ξ

$$\begin{split} \eta &\mapsto \eta' = \eta + d\zeta, \ \zeta \text{ is basic. } [d\eta]_B \in \\ H^{1,1}_B(\mathcal{F}_{\xi}) \text{ fixed} \end{split}$$

Subspace $\$(\xi, \overline{J})$ where Φ projects to the complex structure \overline{J} on normal bundle $\nu(\xi) = TM/L_{\xi}$. The pair (ξ, \overline{J}) defines a **transverse holomorphic structure** on M, and gives infinite dim'l space $\$(\xi, \overline{J})$ of Sasakian structures.

Extremal Sasakian Metrics (B,Galicki,Simanca)

$$E(g) = \int_M s_g^2 d\mu_g,$$

Varying in $\$(\xi, \overline{J})$ gives critical point of $E(g) \iff \partial_g^{\#} s_g$ is transversely holomorphic.

Moduli of extremal Sasakian structures $e(\mathcal{D}, J) \subset \kappa(\mathcal{D}, J)$ scalar curvature s_g constant \Rightarrow extremal.

Thm (B,Galicki,Simanca) $e(\mathcal{D}, J)$ is open in $\kappa(\mathcal{D}, J)$.

 $\mathfrak{h}(\xi, \overline{J})$ Lie algebra of transversally holomorphic vector fields Sasaki-Futaki invariant

 $\mathfrak{F}_{\xi}(X) = \int_M X(\psi_g) d\mu_g$

where $X \in \mathfrak{h}(\xi, \overline{J})$ and ψ_g is the harmonic rep in $H_B^{1,1}(\mathfrak{F}_{\xi})$ of the transverse Ricci form ρ_g^T .

If S is extremal $\mathfrak{F}_{\xi}(\cdot) = 0 \iff s_g$ is constant.

Assume Sasakian, X, Y sections of $\mathcal{D} \Rightarrow$

 $\operatorname{Ric}_{g}(X,Y) = \operatorname{Ric}_{g}^{T}(X,Y) - 2g(X,Y)$ $\rho_{g}(X,Y) = \rho_{g}^{T}(X,Y) - 2d\eta(X,Y)$

 $s_g = s_T - 2n$ (scalar curvatures)

 s_g constant $\iff s_T$ constant. ρ_g^T represents $c_1(\mathcal{F}_{\xi})$ basic 1st Chern class $\rightarrow c_1(\mathcal{D})$ orbifold Boothby-Wang: Manifold M compact with (ξ, η, Φ, g) quasi-regular \Rightarrow quotient $\mathcal{I} = M/\mathcal{F}_{\xi}$ almost Kähler orbifold

Converse: $\mathcal{I} = M/\mathfrak{F}_{\xi}$ almost Kähler orbifold. ω Kähler form with $[\omega] \in$ $H_{orb}^2(\mathfrak{Z}, \mathbb{Z})$. Total space M of S^1 orbibundle over \mathfrak{Z} has K-contact structure. (\mathfrak{Z}, ω) is projective algebraic orbifold $\iff (\xi, \eta, \Phi, g)$ is Sasakian. Holomorphy Potentials $\mathcal{H}_{g}^{B} = \operatorname{Ker}(\bar{\partial}\partial^{\#})^{*}\bar{\partial}\partial^{\#}$

A map $\partial_g^{\#}$: $\mathfrak{H}_g^B \to \mathfrak{h}^T(\xi, \overline{J})/L_{\xi}$ gives transversely holomorphic vector fields that are (1, 0)-gradients. \mathcal{S} is extremal $\iff s_g \in \mathfrak{H}_g^B$.

If Sasaki cone $\kappa(\mathfrak{D}, J)$ has dim k $\Rightarrow \mathfrak{Aut}_0(S) = T^k$ where S is generic. moment map $\mu : M \to \mathfrak{t}_k^*$ whose image $\subset \mathcal{H}_g^B$. Interested in when $s_g \in \mathrm{Im}\mu$ Extremal: Special Cases

• Sasaki- η -Einstein (S η E)

$$\Rightarrow c_1(\mathcal{D}) = 0$$

 $\operatorname{Ric}_g = ag + b\eta \otimes \eta, \ a, b \text{ constants.}$

 s_g constant. M compact,

 $c_1(\mathcal{F}_{\xi}) \leq 0 \Rightarrow \dim \kappa(\mathcal{D}, J) = 1.$

dim 1 \leftrightarrow Transverse homothety

• dim $\kappa(\mathfrak{D}, J) > 1$. $\Rightarrow c_1(\mathfrak{F}_{\xi}) > 0$ or indefinite.

• $c_1(\mathcal{F}_{\xi}) > 0 + S\eta E \Rightarrow SE$, many examples including exotic spheres, $k(S^2 \times S^3)$ etc (dim $\kappa(\mathcal{D}, J) = 1$.) (B,Galicki,Nakamaye,Kollár). • $c_1(\mathfrak{F}_{\xi}) > 0$ and $c_1(\mathfrak{D}) = 0$ Toric (dim $\kappa(\mathfrak{D}, J) = n + 1.$) \Rightarrow SE (Futaki,Ono,Wang, others)

• $c_1(\mathfrak{F}_{\xi})$ indefinite $\Rightarrow c_1(\mathfrak{D}) \neq 0$ $\Rightarrow \nexists S\eta E$. Toric (dim $\kappa(\mathfrak{D}, J) =$ n+1.) generally not known whether extremal (B,Galicki,Ornea)

Question: When is $\mathfrak{e}(\mathfrak{D}, J) = \kappa(\mathfrak{D}, J)$? Only two known cases:

(1) standard CR structure on S^{2n+1} Toric (dim $\kappa(\mathcal{D}, J) = n + 1$.) All $S \in \kappa(\mathcal{D}, J)$ have extremal reps, but only transverse homothety of the round sphere has constant scalar curvature, and only the round sphere is SE. (B,Galicki,Simanca)

(2) The Heisenberg group \mathfrak{H}^{2n+1} with standard CR structure (noncompact), dim $\kappa(\mathfrak{D}, J) = n$. All $\mathcal{S} \in \kappa(\mathfrak{D}, J)$ have extremal reps, but there is only one with constanst scalar curvature, $S\eta E$ with Φ -holomorphic curvature = -2 **Obstructions to extremality** Lichnerowicz: Lowest eigenvalue of Laplacian (Gauntlett, Martelli, Sparks, Yau)