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PROGRAM: FOCAL POINTS

Joint work with Christina Tønnesen-Friedman.

The geometry (topology) of a Sasakian structure is determined by its transverse Kählerian
geometry, i.e. one with transverse holonomy U(n) or a subgroup thereof.

We are interested in Sasakian structures which admit a transverse Hamiltonian 2-form
(Apostolov, Calderbank, Gauduchon) of order 1.

For example Sasakian join construction with a weighted 3-sphere S3
w.

Two types of deformations:

1 Deform contact structure to obtain extremal Sasaki metrics.
2 Deform in the Sasaki cone to obtain Sasaki metrics of constant scalar curvature.

Determine which admit Sasaki-Einstein metrics or Sasaki-eta-Einstein metrics.

Determine diffeomorphism, homeomorphism, homotopy types when possible.

Determine the contact structures of Sasaki type on a fixed diffeomorphism type.

Determine the moduli space of extremal Sasakian structures within a fixed isotopy class
of contact structure.

Sasaki bouquets of Sasaki cones can occur when the contactomorphism group has distinct
conjugacy classes of maximal tori. For which diffeomorphism types do these occur?
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Contact manifold

• Compact Contact Manifold M of dimension 2n + 1.

A contact 1-form η such that
η ∧ (dη)n 6= 0.

defines a contact structure
η′ ∼ η ⇐⇒ η′ = fη

for some f 6= 0, take f > 0. or equivalently a codimension 1 subbundle D = Ker η of TM with
a conformal symplectic structure.
A contact invariant: the first Chern class c1(D)

Unique vector field ξ, called the Reeb vector field, satisfying

ξcη = 1, ξcdη = 0.

The characteristic foliation Fξ: It is called quasi-regular if each leaf of Fξ passes through
any nbd U at most k times. It is regular if k = 1; otherwise, it is irregular.
Quasi-regularity is strong, most contact 1-forms are irregular.
Contact bundle D→ choose almost complex structure J extend to an endomorphism Φ
with Φξ = 0 with a compatible metric

g = dη ◦ (Φ⊗ 1l) + η ⊗ η

Quadruple S = (ξ, η,Φ, g) called contact metric structure
The pair (D, J) is a strictly pseudo-convex almost CR structure (sψCR structure).
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Transverse Holonomy: Sasakian Manifolds, Hamiltonian 2-forms

Definition
The contact metric structure S = (ξ, η,Φ, g) is K-contact if Lξg = 0 (or LξΦ = 0). It is Sasakian
if in addition (D, J) is integrable and the Transverse Metric gD is Kähler (Transverse holonomy
U(n)). In the latter case we say that the contact structure D is of Sasaki type.

A Sasakian structure determines a strictly pseudo-convex CR structure (D, J).

Assumption
The Sasakian structure S admits the following type of transverse structure:

Transverse Hamiltonian 2-form: a basic Φ invariant 2-form φ satisfying

2∇Xφ = 2η ∧ (ΦX φ)− d tr φ ∧ (X dη)− dc tr φ ∧ (ΦX dη)

special case: Hamiltonian 2-form of order 1: φ = −(1+rz)

r2 ω + zdz ∧ θ. Here ω is the curvature
form of a certain line bundle, θ is a connection 1-form, r a parameter. (Apostolov, Calderbank,
Gauduchon, Tønnesen-Friedman)

We call this an Admissible Transverse Structure. This is compatible with our next
construction.
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A Sasakian structure determines a strictly pseudo-convex CR structure (D, J).

Assumption
The Sasakian structure S admits the following type of transverse structure:

Transverse Hamiltonian 2-form: a basic Φ invariant 2-form φ satisfying

2∇Xφ = 2η ∧ (ΦX φ)− d tr φ ∧ (X dη)− dc tr φ ∧ (ΦX dη)

special case: Hamiltonian 2-form of order 1: φ = −(1+rz)

r2 ω + zdz ∧ θ. Here ω is the curvature
form of a certain line bundle, θ is a connection 1-form, r a parameter. (Apostolov, Calderbank,
Gauduchon, Tønnesen-Friedman)
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The Join Construction

Join Construction: Given quasi-regular Sasakian manifolds πi : Mi−−−→ Zi with Dim Mi = ni
for i = 1, 2.

Form (l1, l2)-join π : M1 ?l1,l2 M2−−→ Z1 ×Z2 as an S1-orbibundle (B-,Galicki,Ornea).

M1 ?l1,l2 M2 has a natural quasi-regular Sasakian structure Sl1,l2 for all relatively prime
positive integers l1, l2. Fixing l1, l2 fixes the contact orbifold. It is a smooth manifold iff
gcd(υ1l2, υ2l1) = 1 where υi is the order of orbifold Zi .

The dimension of M1 ?l1,l2 M2 is n1 + n2 − 1.

The join M1 ?l1,l2 M2 has reducible transverse holonomy a subgroup of U(n1)× U(n2).

Take π2 : M2−−−→ Z2 to be the S1 orbibundle π2 : S3
w−−−→ CP1[w] determined by a weighted

S1 action on S3 with weights w = (w1,w2) satisfying gcd(l2, l1wi ) = 1, and M1 = M regular
Sasaki manifold whose quotient is a compact Kähler manifold N.

In this case the Join Construction and Admissible Transverse Structure fit as hand and
glove.

The transverse holonomy of M ?l1,l2 S3
w is generically U(n1)× U(2).

An S1 orbibundle M ?l1,l2 S3
w−−−→N × CP1[w], where N is compact Kähler.

The join M ?l1,l2 S3
w can be realized as a lens space bundle over N with fiber the lens space

L(l2; l1w1, l1,w2).
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Two Types of Deformations of Sasakian Structures

First type: Fix contact structure D, deform characteristic foliation F. This gives rise to Sasaki
cones and Sasaki bouquets.

After this type of deformation the transverse holonomy becomes irreducible.

Second type: Fix characteristic foliation F, deform contact structure D. This is used to obtain
extremal Sasaki metrics.

This type of deformation does not change the transverse holonomy nor the isotopy class of
contact structure.
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Sasaki cones and bouquets

Sasaki cones and bouquets
Given a contact structure D of Sasaki type with a space of compatible CR structures J(D).

a map Q : J(D)→ {conjugacy classes of tori in the contactomorphism group Con(M,D)}
Maximal torus T k , with Lie algebra tk , in Sasaki automorphism group Aut(S) ⊂ Con(M,D).
unreduced Sasaki cone:

t+
k (D, J) = {ξ′ ∈ tk | η(ξ′) > 0, s.t. S′ = (ξ′, η′,Φ′, g′) ∈ (D, J) is Sasakian}.

When (D, J) is fixed, a choice of ξ′ ∈ t+
k determines the Sasakian structure S′ uniquely.

Sasaki cones and bouquets work equally well for K-contact structures.
finite dim’l moduli of Sasakian structures within CR structure, the Sasaki cone
κ(D, J) = t+

k (D, J)/W(D, J) where W is the Weyl group of CR(D, J).
If M is Sasakian manifold with dim M = 2n + 1 then 1 ≤ dimκ(D, J) ≤ n + 1.
When dimκ(D, J) = n + 1 we say that M is toric Sasakian.
For the join of 2 Sasaki manifolds Mi , if Dim κ(Di , Ji ) = ki , then
Dim κ(D1 + D2, J1 + J2) = k1 + k2 − 1.
In particular, if Mi are toric Sasakian manifolds, then so is the join M1 ?l1,l2 M2.
A given D can have many Sasaki cones κ(D, Jα) labelled by distinct complex structures. Get
bouquet

[
α

κ(D, Jα) of Sasaki cones.

A bouquet consisting of N Sasaki cones is called an N-bouquet, denoted by BN . The Sasaki
cones in an N-bouquet can have different dimension.
The distinct Sasaki cones κ(D, Jα)’s correspond to distinct conjugacy classes of tori in
Con(M,D). They can be distinguished by equivariant Gromov-Witten invariants.
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Extremal Sasakian metrics

Extremal Sasakian metrics (B-Galicki-Simanca)
Sasakian structure S = (ξ, η,Φ, g) with scalar curvature sg .

Calabi-Sasaki Energy functional E(g) =

Z
M

s2
gdµg ,

Deform contact structure η 7→ η + tdcϕ within its isotopy class where ϕ is basic.
Variation gives critical point of E(g) ⇐⇒ ∂#

g sg is transversely holomorphic.
We say that g is extremal if it is critical point of E .
g is extremal Sasaki metric ⇐⇒ the transverse metric gD is extremal Kähler metric.
Important special case: constant scalar curvature Sasaki (CSC) metrics.
If S = (ξ, η,Φ, g) is extremal (or CSC) then so is Sa = (a−1ξ, aη,Φ, ga) for any a > 0. So
(extremal (or CSC) Sasaki metrics occur in rays)
If Si = (ξi , ηi ,Φi , gi ) is extremal (or CSC) for each i = 1, 2, so is the join Sl1,l2 .
Another important special case: Sasaki-eta-Einstein metrics which satisfy:
Ricg = ag + bη ⊗ η for constants a, b such that a + b = 2n.
g is Sasaki-eta-Einstein ⇐⇒ transverse metric gD is Kähler-Einstein (KE).
g is Sasaki-Einstein (SE) ⇐⇒ b = 0 and a = 2n ⇐⇒ gD is KE with scalar curvature
4n(n + 1).
Calabi: Extremal metrics have maximal symmetry.
Every 3-dimensional Sasakian structure admits an extremal representative.

The Sasaki-Futaki invariant F(X) =

Z
M

X(ψg)dµg where X is transversely holomorphic and

ψg is the Ricci potential satisfying ρT = ρT
h + i∂∂̄ψg where ρT is the transverse Ricci form

and ρT
h is its harmonic part. An extremal Sasaki metric g has constant scalar curvature if and

only if F = 0.
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The Extremal Set

Definition
For a fixed Sasaki cone κ(D, J) define the extremal subset e(D, J) such that there is a
deformation with an extremal representative.

Openness Theorem: e(D, J) is open in κ(D, J) (B-,Galicki,Simanca).
e(D, J) is conical in the sense that if S ∈ e(D, J) so is Sa for all a > 0.

Open Question
Is e(D, J) always connected?

Question
When is e(D, J) = κ(D, J)?

There are many if dimκ(D, J) = 1. Enormous number of SE metrics on certain manifolds.
Standard CR structure on S2n+1 which is toric (dim κ(D, J) = n + 1.) Here
e(D, J) = κ(D, J), but only one ray has (CSC) (which also has constant Φ-sectional
curvature c > −3), and only the round sphere (c = 1) is Sasaki-Einstein.
A noncompact example with e(D, J) = κ(D, J) is the Heisenberg group.
If 0 < g ≤ 4 all 2-dimensional Sasaki cones on S3-bundles over Σg obtained by our
construction have e(D, J) = κ(D, J) (B-,Tønnesen-Friedman).
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General Setup: Fundamental Theorem

Recall M ?l1,l2 S3
w is a L(l2; l1w1, l1,w2) bundle over a Kähler manifold N.

Theorem (B-,Tønnesen-Friedman)

Let Ml1,l2,w = M ?l1,l2 S3
w be the S3

w-join with a regular Sasaki manifold M which is an S1-bundle
over a compact Kähler manifold N with constant scalar curvature. Then for each vector
w = (w1,w2) ∈ Z+ × Z+ with relatively prime components satisfying w1 > w2 there exists a Reeb
vector field ξv in a 2-dimensional sub cone, the w-cone, of the Sasaki cone on Ml1,l2,w such that
the corresponding ray of Sasakian structures Sa = (a−1ξv, aηv,Φ, ga) has constant scalar
curvature. Moreover, given the cohomology ring of M, the cohomology ring of Ml1,l2,w can be
determined.

Remark: Most of the CSC Sasakian structures are irregular.
When N is positive KE get SE metric on Ml1,l2,w for appropriate choice of (l1, l2).

In special cases determine the diffeomorphism (homeomorphism, homotopy) types.
Two Cases: Reason: Interference in E2 term of a Leray-Serre spectral sequence.

1 dimC N = 1;
2 dimC N > 1.
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S3-bundles over Riemann surfaces

Case 1: dim N = 1. Take N = Σg , a compact Riemann surface of genus g.

When g = 0 we get Sasakian structures on S3-bundles over the S2 for all relatively prime
positive integers l1, l2. (B-,B-Pati) (Also E. Legendre). When c1 = 0 we recover the SE
metrics on Y p,q of the physicists Guantlett, Martelli, Sparks, Waldram. For fixed p the φ(p)
(Euler phi-function) inequivalent SE structures belong to the same contact structure, a
φ(p)-bouquet Bφ(p).
When g > 0 we set l2 = 1 to obtain S3-bundles over a Riemann surface Σg with two
diffeomorphism types, the trivial bundle Σg × S3, and the non-trivial bundle Σg e×S3.
On both manifolds there is a countably infinite number of inequivalent contact structures Dk
admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem
admits a ray of CSC Sasakian structures.
When 0 < g ≤ 4 all 2-dimensional Sasaki cones on S3-bundles over Σg satisfy
e(Dk , J) = κ(Dk , J).
For any genus g ≥ 1 and for each positive integer k , the contact manifold (Σg × S3,Dk ) has
a k -bouquet Bk of 2-dimensional Sasaki cones.
The distinct Sasaki cones in the bouquet Bk correspond to distinct conjugacy classes of
maximal tori in Con(Dl1,l2,w). This uses the work of Buşe on equivariant Gromov-Witten
invariants.
The construction can be ‘twisted’ by reducible representations of the fundamental group
π1(Σg). The irreducible representations of π1(Σg) give 1-dimensional Sasaki cones. They
arise from stable rank two vector bundles and have CSC Sasaki metrics.
Some of the same type of results can be obtained on 5-manifolds whose fundamental group
is a non-Abelian extension of π1(Σg).
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Constant Scalar Curvature in Higher Dimension

Case 2. dim N > 1. Take N to be a Kähler manifold with constant scalar curvature.

Fundamental Theorem holds but the diffeomorphism type can depend on l1, l2,w.

Take N to be a positive KE manifold, and let

l1 =
IN

gcd(w1 + w2, IN )
, l2 =

w1 + w2

gcd(w1 + w2, IN )

where IN denotes the Fano index of N. Then for each vector w = (w1,w2) ∈ Z+ × Z+ with
relatively prime components satisfying w1 > w2 there exists a Reeb vector field ξv in the
2-dimensional w-Sasaki cone on Ml1,l2,w such that the corresponding Sasakian structure
S = (ξv, ηv,Φ, g) is Sasaki-Einstein.

In this case the Sasakian structure associated to every single ray, ξv, in the w-Sasaki cone is
a Sasaki-Ricci soliton and e(D, J) = κ(D, J).

Special Case: N = CPp with Fubini-Study metric and p > 1, so M = S2p+1 with its standard
Sasaki-Einstein metric. Here l1, l2 are arbitrary relatively prime positive integers.

In this case the cohomology ring of the join M2p+1
l1,l2,w

= S2p+1 ?l1,l2 S3
w is

Z[x , y ]/(w1w2l21 x2, xp+1, x2y , y2)

where x , y are classes of degree 2 and 2p + 1, respectively.
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Seven Dimensional Case:

Specialize further: Take p = 2. Then M7
l′1,l

′
2,w

′ and M7
l1,l2,w

are homotopy equivalent if and

only if

w ′1w ′2(l ′1)2 = w1w2l21 , (l ′1)2(w ′1 + w ′2)2 − l21 (w1 + w2)2 ≡ 0 mod 3 ∈ Zw1w2 l21

l ′2 ≡ l2 mod 2, , (l ′2)3 ± l32 ≡ 0 mod w1w2l21 .

Example: The eight 7-manifolds with (l1, l2,w1,w2) =

(1, 2182, 6545, 1), (1, 438, 1309, 5), (1, 202, 935, 7), (1, 134, 385, 17),

(1, 74, 187, 35), (1, 58, 119, 55), (1, 54, 85, 77)

are homotopy equivalent, admit SE metrics, but they are not homeomorphic.

Diffeomorphism (homeomorphism) types determined by their Kreck-Stolz invariants.
Generally they are fairly difficult to compute.

Example: Simple case; M7 is homogeneous, i.e. w = (1, 1). Take l1 = 5. Then M7
5,l′2,(1,1)

and M7
5,l2,(1,1)

are homeomorphic if and only if l ′2 ≡ l2 mod 50, and they are diffeomorphic if
and only if l ′2 ≡ l2 mod 100. There is a countable infinity of contact structures of Sasaki type
on each diffeomorphism type. Furthermore, they all admit CSC Sasaki metrics.
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Outline of proof of Fundamental Theorem:

From join construction get commutative diagram of fibrations:

M × S3
w −−−−−→ Ml1,l2,w −−−−−→ BS1?????y=

????y
??????yψ

M × S3
w −−−−−→ N × BCP1[w] −−−−−→ BS1 × BS1

where BG is the classifying space of a group G or Haefliger’s classifying space of an orbifold
if G is an orbifold. Note that the lower fibration is a product of fibrations.

Given the differentials in the spectral sequence of the fibration M−−−→N−−−→BS1, one can
use the commutative diagram to compute the cohomology ring of the contact manifold
Ml1,l2,w.
The existence of an extra Hamiltonian Killing vector field gives 2-dimensional Sasaki cone
κ(Dl1,l2,w, J).

The quotient space of the S1-action generated by any quasi-regular Reeb vector field
ξv ∈ κ(Dl1,l2,w, J) is a ruled orbifold (Sn,∆mv1,mv2 ) with a branch divisor ∆mv1,mv2 consisting
of the zero and infinity sections of the projective bundle Sn = P(1l⊕ Ln) over N with
ramification indices mv1,mv2, respectively and n an integer determined by l1, l2,w, v.
Extremal (CSC) Sasakian structures on Ml1,l2,w correspond to extremal (CSC) Kähler
structures on (Sn,∆mv1,mv2 ).
Irregular rays are handled by the denseness of the quasi-regular rays.
Easy for the local product structures n = 0 case.
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Outline of Proof of Continued:

For n > 0, the work of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman on
Hamiltonian 2-forms shows that extremality boils down to: the transverse Kähler structure is

gD = 1+rz
r gΣg + dz2

Θ(z)
+ Θ(z)θ2 where θ is a connection 1-form, dθ = nωN , 0 < r < 1,

Θ(z) > 0 and −1 < z < 1,Θ(±1) = 0,Θ′(−1) = 2
mv2

,Θ′(1) = − 2
mv1

. When Θ(z)(1 + rz)d

is a (d + 3) order polynomial we get extremal Kähler transverse metrics; hence, extremal
Sasaki metrics. Here d is the complex dimension of N.

Demanding a (d + 2) order polynomial one shows that each Sasaki cone has a unique CSC
ray.
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Sasakian Manifolds with Perfect fundamental group

Also joint work with C. Tønnesen-Friedman

Represent a homology 3-sphere M3
a as the link of a complete intersection L(a0, · · · , an) with

ai > 1 and pairwise relatively prime.

Let N be a simply connected regular Sasakian manifold.

Then the join M3
a ?1,l N is a Sasakian manifold with perfect fundamental group.

If N has an extremal Sasaki metric so does M3
a ?1,l N.

If N has an CSC Sasaki metric so does M3
a ?1,l N.

If L(a0, · · · , an) 6= L(2, 3, 5) then M3
a ?1,l N has an infinite perfect fundamental group.

M3
a = L(2, 3, 5) is the Poincaré sphere S3/I∗ and S3/I∗ ?1,l N gives a Sasaki-Einstein

manifold with perfect fundamental group for suitable choices of l and N.

For each odd dimension ≥ 3 there exists a countable infinity of Sasakian manifolds with a
perfect fundamentfinial group which admit CSC Sasaki metrics. Furthermore, there is an
infinite number of such Sasakian manifolds that have the integral cohomology ring of
S2 × S2r+1.

There exist a countably infinite number of aspherical contact 5-manifolds with perfect
fundamental group and the integral cohomology ring of S2 × S3 that admit CSC Sasaki
metrics. Moreover, there are such manifolds that admit a ray of Sasaki-η-Einstein metrics
(hence, Lorentzian Sasaki-Einstein metrics).
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