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The geometry (topology) of a Sasakian structure is determined by its transverse Kahlerian
geometry, i.e. one with transverse holonomy U(n) or a subgroup thereof.

We are interested in Sasakian structures which admit a transverse Hamiltonian 2-form
(Apostolov, Calderbank, Gauduchon) of order 1.

For example Sasakian join construction with a weighted 3-sphere S3..
Two types of deformations:

@ Deform contact structure to obtain extremal Sasaki metrics.
@ Deform in the Sasaki cone to obtain Sasaki metrics of constant scalar curvature.

Determine which admit Sasaki-Einstein metrics or Sasaki-eta-Einstein metrics.
Determine diffeomorphism, homeomorphism, homotopy types when possible.
Determine the contact structures of Sasaki type on a fixed diffeomorphism type.

Determine the moduli space of extremal Sasakian structures within a fixed isotopy class
of contact structure.

Sasaki bouquets of Sasaki cones can occur when the contactomorphism group has distinct
conjugacy classes of maximal tori. For which diffeomorphism types do these occur?
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@ The characteristic foliation J: It is called quasi-regular if each leaf of I passes through
any nbd U at most k times. It is regular if kK = 1; otherwise, it is irregular.

@ Quasi-regularity is strong, most contact 1-forms are irregular.

@ Contact bundle D — choose almost complex structure J extend to an endomorphism &
with ®¢ = 0 with a compatible metric

g=dno (¢ 0)+n®n

Quadruple § = (&, 7, ¢, g) called contact metric structure
@ The pair (D, J) is a strictly pseudo-convex almost CR structure (sy)CR structure).
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Definition
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if in addition (D, J) is integrable and the Transverse Metric g is Kahler (Transverse holonomy
U(n)). In the latter case we say that the contact structure D is of Sasaki type.
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@ Transverse Hamiltonian 2-form: a basic ¢ invariant 2-form ¢ satisfying
@ 2Vxp =2n A (®X 1 ¢) —dirp A (X dn) —dtrp A (®X_1dn)

@ special case: Hamiltonian 2-form of order 1: ¢ = Ww + 3d3 A 0. Here w is the curvature

form of a certain line bundle, 6 is a connection 1-form, r a parameter. (Apostolov, Calderbank,
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@ We call this an Admissible Transverse Structure. This is compatible with our next
construction.
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The Join Co uction

@ Join Construction: Given quasi-regular Sasakian manifolds 7; : M;—— Z; with Dim M; = n;
fori=1,2.
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The Join Construction

Join Construction: Given quasi-regular Sasakian manifolds ; : M;—— Z; with Dim M; = n;
fori=1,2.

@ Form (h, k)-join : My xj, |, Mo—— 24 x Z> as an S'-orbibundle (B-,Galicki,Ornea).
@ My %, ,, M2 has a natural quasi-regular Sasakian structure S, ;, for all relatively prime

positive integers /i, k. Fixing /1, l fixes the contact orbifold. It is a smooth manifold iff
gcd(v1k,v2l) = 1 where v is the order of orbifold Z;.

The dimension of My %, ,, Mz is ny + np — 1.
The join My x, ;, Mz has reducible transverse holonomy a subgroup of U(ny) x U(nz).

Take 72 : Mo—— 25 to be the ST orbibundle 75 : S3,—— CP'[w] determined by a weighted
S' action on S® with weights w = (wy, w,) satisfying gcd(k, liw;) = 1, and My = M regular
Sasaki manifold whose quotient is a compact Kahler manifold N.

In this case the Join Construction and Admissible Transverse Structure fit as hand and
glove.

The transverse holonomy of M x,, ,, S§ is generically U(ny) x U(2).
An S' orbibundle M x;, ;, S§——N x CP'[w], where N is compact Kahler.

The join M %, 4, SZ can be realized as a lens space bundle over N with fiber the lens space
Ll; hwy, Iy, wg).
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Two Types of Deformations of Sasakian Structures

@ First type: Fix contact structure D, deform characteristic foliation F. This gives rise to Sasaki
cones and Sasaki bouquets.
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Two Types of Deformations of Sasakian Structures

@ First type: Fix contact structure D, deform characteristic foliation F. This gives rise to Sasaki
cones and Sasaki bouquets.

@ After this type of deformation the transverse holonomy becomes irreducible.

@ Second type: Fix characteristic foliation &, deform contact structure D. This is used to obtain
extremal Sasaki metrics.

@ This type of deformation does not change the transverse holonomy nor the isotopy class of
contact structure.
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Sasaki cones and bouquets
@ Given a contact structure D of Sasaki type with a space of compatible CR structures J(D).
@ amap Q: J(D) — {conjugacy classes of tori in the contactomorphism group €on(M, D)}
@ Maximal torus T, with Lie algebra t, in Sasaki automorphism group 2ut(S) C Con(M, D).
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Given a contact structure D of Sasaki type with a space of compatible CR structures J(D).
amap 9 : J(D) — {conjugacy classes of tori in the contactomorphism group €on(M, D)}
Maximal torus T*, with Lie algebra t, in Sasaki automorphism group 2ut(S) C Con(M, D).
unreduced Sasaki cone:

(D, J) ={¢ et In(¢) > 0,818 = (&7, d',g') € (D, J) is Sasakian}.

When (D, J) is fixed, a choice of ¢’ € t; determines the Sasakian structure S’ uniquely.
@ Sasaki cones and bouquets work equally well for K-contact structures.
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unreduced Sasaki cone:
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When (D, J) is fixed, a choice of ¢’ € t; determines the Sasakian structure S’ uniquely.
Sasaki cones and bouquets work equally well for K-contact structures.

finite dim’l moduli of Sasakian structures within CR structure, the Sasaki cone

w(D,J) = t{ (D, J)/W(D,J) where Wis the Weyl group of €R(D, J).
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Sasaki cones and bouquets
Given a contact structure D of Sasaki type with a space of compatible CR structures J(D).
amap 9 : J(D) — {conjugacy classes of tori in the contactomorphism group €on(M, D)}
Maximal torus T*, with Lie algebra t, in Sasaki automorphism group 2ut(S) C Con(M, D).
unreduced Sasaki cone:

(D, J) ={¢ et In(¢) > 0,818 = (&7, d',g') € (D, J) is Sasakian}.

@ When (D, J) is fixed, a choice of ¢’ € t; determines the Sasakian structure S’ uniquely.
Sasaki cones and bouquets work equally well for K-contact structures.
@ finite dim’l moduli of Sasakian structures within CR structure, the Sasaki cone
w(D,J) = t{ (D, J)/W(D,J) where Wis the Weyl group of €R(D, J).
@ If M is Sasakian manifold with dim M = 2n+ 1 then 1 < dimkx(D,J) < n+ 1.
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Sasaki cones and bouquets
Given a contact structure D of Sasaki type with a space of compatible CR structures J(D).
amap 9 : J(D) — {conjugacy classes of tori in the contactomorphism group €on(M, D)}
Maximal torus T*, with Lie algebra t, in Sasaki automorphism group 2ut(S) C Con(M, D).
unreduced Sasaki cone:

(D, J) ={¢ et In(¢) > 0,818 = (&7, d',g') € (D, J) is Sasakian}.

@ When (D, J) is fixed, a choice of ¢’ € t; determines the Sasakian structure S’ uniquely.
@ Sasaki cones and bouquets work equally well for K-contact structures.
@ finite dim’l moduli of Sasakian structures within CR structure, the Sasaki cone
w(D,J) = t{ (D, J)/W(D,J) where Wis the Weyl group of €R(D, J).
@ If M is Sasakian manifold with dim M = 2n+ 1 then 1 < dimkx(D,J) < n+ 1.
@ When dim (D, J) = n+ 1 we say that M is toric Sasakian.
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Sasaki cones and bouquets
Given a contact structure D of Sasaki type with a space of compatible CR structures J(D).
amap 9 : J(D) — {conjugacy classes of tori in the contactomorphism group €on(M, D)}
Maximal torus T*, with Lie algebra t, in Sasaki automorphism group 2ut(S) C Con(M, D).
unreduced Sasaki cone:

(D, J) ={¢ et In(¢) > 0,818 = (&7, d',g') € (D, J) is Sasakian}.

@ When (D, J) is fixed, a choice of ¢’ € t; determines the Sasakian structure S’ uniquely.
Sasaki cones and bouquets work equally well for K-contact structures.
@ finite dim’l moduli of Sasakian structures within CR structure, the Sasaki cone
w(D,J) = t{ (D, J)/W(D,J) where Wis the Weyl group of €R(D, J).
@ If M is Sasakian manifold with dim M = 2n+ 1 then 1 < dimkx(D,J) < n+ 1.
When dim (D, J) = n+ 1 we say that M is toric Sasakian.
@ For the join of 2 Sasaki manifolds M;, if Dim x(D;, J;) = k;, then
Dim K](D1 + Dg,J] + Jg) = k1 + kg —1.
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Given a contact structure D of Sasaki type with a space of compatible CR structures J(D).
amap 9 : J(D) — {conjugacy classes of tori in the contactomorphism group €on(M, D)}
Maximal torus T*, with Lie algebra t, in Sasaki automorphism group 2ut(S) C Con(M, D).
unreduced Sasaki cone:

(D, J) ={¢ et In(¢) > 0,818 = (&7, d',g') € (D, J) is Sasakian}.

When (D, J) is fixed, a choice of ¢’ € t; determines the Sasakian structure S’ uniquely.
Sasaki cones and bouquets work equally well for K-contact structures.

finite dim’l moduli of Sasakian structures within CR structure, the Sasaki cone

w(D,J) = t{ (D, J)/W(D,J) where Wis the Weyl group of €R(D, J).

If M is Sasakian manifold with dim M = 2n+ 1 then 1 < dimx(D,J) < n+ 1.

When dim (D, J) = n+ 1 we say that M is toric Sasakian.

For the join of 2 Sasaki manifolds M;, if Dim x(D;, J;) = k;, then

Dim K](D1 + Dg,J] + Jg) = k1 + kg —1.

In particular, if M; are toric Sasakian manifolds, then so is the join My x, |, Ma.
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Sasaki cones and bouquets
Given a contact structure D of Sasaki type with a space of compatible CR structures J(D).
amap 9 : J(D) — {conjugacy classes of tori in the contactomorphism group €on(M, D)}
Maximal torus T*, with Lie algebra t, in Sasaki automorphism group 2ut(S) C Con(M, D).
unreduced Sasaki cone:

(D, J) ={¢ et In(¢) > 0,818 = (&7, d',g') € (D, J) is Sasakian}.

When (D, J) is fixed, a choice of ¢’ € t; determines the Sasakian structure S’ uniquely.
Sasaki cones and bouquets work equally well for K-contact structures.

finite dim’l moduli of Sasakian structures within CR structure, the Sasaki cone

w(D,J) = t{ (D, J)/W(D,J) where Wis the Weyl group of €R(D, J).

If M is Sasakian manifold with dim M = 2n+ 1 then 1 < dimx(D,J) < n+ 1.

When dim (D, J) = n+ 1 we say that M is toric Sasakian.

For the join of 2 Sasaki manifolds M;, if Dim x(D;, J;) = k;, then

Dim K](D1 + Dg,J] + Jg) = k1 + kg —1.

In particular, if M; are toric Sasakian manifolds, then so is the join My x, |, Ma.

A given D can have many Sasaki cones «(D, J, ) labelled by distinct complex structures. Get
bouquet U k(D, Jo) of Sasaki cones.
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Sasaki cones and bouquets
Given a contact structure D of Sasaki type with a space of compatible CR structures J(D).
amap 9 : J(D) — {conjugacy classes of tori in the contactomorphism group €on(M, D)}
Maximal torus T*, with Lie algebra t, in Sasaki automorphism group 2ut(S) C Con(M, D).
unreduced Sasaki cone:

(D, J) ={¢ et In(¢) > 0,818 = (&7, d',g') € (D, J) is Sasakian}.

When (D, J) is fixed, a choice of ¢’ € t; determines the Sasakian structure S’ uniquely.
Sasaki cones and bouquets work equally well for K-contact structures.

finite dim’l moduli of Sasakian structures within CR structure, the Sasaki cone

w(D,J) = t{ (D, J)/W(D,J) where Wis the Weyl group of €R(D, J).

If M is Sasakian manifold with dim M = 2n+ 1 then 1 < dimx(D,J) < n+ 1.

When dim (D, J) = n+ 1 we say that M is toric Sasakian.

For the join of 2 Sasaki manifolds M;, if Dim x(D;, J;) = k;, then

Dim K](D1 + Dg,J] + Jg) = k1 + kg —1.

In particular, if M; are toric Sasakian manifolds, then so is the join My x, |, Ma.

A given D can have many Sasaki cones «(D, J, ) labelled by distinct complex structures. Get
bouquet U k(D, Jo) of Sasaki cones.

A bouquet consisting of N Sasaki cones is called an N-bouquet, denoted by B). The Sasaki
cones in an N-bouquet can have different dimension.
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Sasaki cones and bouquets

Sasaki cones and bouquets
Given a contact structure D of Sasaki type with a space of compatible CR structures J(D).
amap 9 : J(D) — {conjugacy classes of tori in the contactomorphism group €on(M, D)}
Maximal torus T*, with Lie algebra t, in Sasaki automorphism group 2ut(S) C Con(M, D).
unreduced Sasaki cone:

(D, J) ={¢ et In(¢) > 0,818 = (&7, d',g') € (D, J) is Sasakian}.

When (D, J) is fixed, a choice of ¢’ € t; determines the Sasakian structure S’ uniquely.
Sasaki cones and bouquets work equally well for K-contact structures.

finite dim’l moduli of Sasakian structures within CR structure, the Sasaki cone

w(D,J) = t{ (D, J)/W(D,J) where Wis the Weyl group of €R(D, J).

If M is Sasakian manifold with dim M = 2n+ 1 then 1 < dimx(D,J) < n+ 1.

When dim (D, J) = n+ 1 we say that M is toric Sasakian.

For the join of 2 Sasaki manifolds M;, if Dim x(D;, J;) = k;, then

Dim K](D1 + Dg,J] + Jg) = k1 + kg —1.

In particular, if M; are toric Sasakian manifolds, then so is the join My x, |, Ma.

A given D can have many Sasaki cones «(D, J, ) labelled by distinct complex structures. Get
bouquet U k(D, Jo) of Sasaki cones.

A bouquet consisting of N Sasaki cones is called an N-bouquet, denoted by B). The Sasaki
cones in an N-bouquet can have different dimension.

The distinct Sasaki cones x(D, J.)’s correspond to distinct conjugacy classes of tori in
Con(M, D). They can be distinguished by equivariant Gromov-Witten invariants.
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Extremal Sasakian metrics

Extremal Sasakian metrics (B-Galicki-Simanca)
@ Sasakian structure S = (&, n, ®, g) with scalar curvature sg.
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Extremal Sasakian metrics (B-Galicki-Simanca)
@ Sasakian structure S = (&, n, ®, g) with scalar curvature sg.

@ Calabi-Sasaki Energy functional E(g) = / s5dug,
M

@ Deform contact structure n +— n + td®e within its isotopy class where ¢ is basic.
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Extremal Sasakian metrics (B-Galicki-Simanca)
@ Sasakian structure S = (&, n, ®, g) with scalar curvature sg.

@ Calabi-Sasaki Energy functional E(g) = / s5dug,
M

@ Deform contact structure n — n + td°p within its isotopy class where ¢ is basic.
@ Variation gives critical point of £(g) <= 6j3g is transversely holomorphic.
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Extremal Sasakian metrics (B-Galicki-Simanca)
@ Sasakian structure S = (&, n, ®, g) with scalar curvature sg.

@ Calabi-Sasaki Energy functional E(g) = / s5dug,
M

@ Deform contact structure n — n + td°p within its isotopy class where ¢ is basic.
@ Variation gives critical point of £(g) <= 63*39 is transversely holomorphic.
@ We say that g is extremal if it is critical point of E.
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Extremal Sasakian metrics (B-Galicki-Simanca)
@ Sasakian structure S = (&, n, ®, g) with scalar curvature sg.

@ Calabi-Sasaki Energy functional E(g) = / s5dug,
M

Deform contact structure n — n + td°¢ within its isotopy class where ¢ is basic.
Variation gives critical point of E(g) <~ 63*39 is transversely holomorphic.

We say that g is extremal if it is critical point of E.

g is extremal Sasaki metric <= the transverse metric g, is extremal Kahler metric.
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Extremal Sasakian metrics

Extremal Sasakian metrics (B-Galicki-Simanca)
@ Sasakian structure S = (&, n, ®, g) with scalar curvature sg.

@ Calabi-Sasaki Energy functional E(g) = / s5dug,
M

Deform contact structure n — n + td°p within its isotopy class where ¢ is basic.
Variation gives critical point of E(g) <~ 6j3g is transversely holomorphic.

We say that g is extremal if it is critical point of E.

g is extremal Sasaki metric <= the transverse metric g, is extremal Kahler metric.
Important special case: constant scalar curvature Sasaki (CSC) metrics.
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Extremal Sasakian metrics

Extremal Sasakian metrics (B-Galicki-Simanca)
@ Sasakian structure S = (&, n, ®, g) with scalar curvature sg.

@ Calabi-Sasaki Energy functional E(g) = / s5dug,
M

Deform contact structure n — n + td°p within its isotopy class where ¢ is basic.

Variation gives critical point of E(g) <~ 63*39 is transversely holomorphic.

We say that g is extremal if it is critical point of E.

g is extremal Sasaki metric <= the transverse metric g, is extremal Kahler metric.
Important special case: constant scalar curvature Sasaki (CSC) metrics.

If S = (&, 7m,, ) is extremal (or CSC) then so is Sz = (a~'¢, an, ®, ga) for any a > 0. So
(extremal (or CSC) Sasaki metrics occur in rays)
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Extremal Sasakian metrics

Extremal Sasakian metrics (B-Galicki-Simanca)
@ Sasakian structure S = (&, n, ®, g) with scalar curvature sg.

@ Calabi-Sasaki Energy functional E(g) = / s5dug,
M

Deform contact structure n — n + td°p within its isotopy class where ¢ is basic.

Variation gives critical point of E(g) <~ 63*39 is transversely holomorphic.

We say that g is extremal if it is critical point of E.

g is extremal Sasaki metric <= the transverse metric g, is extremal Kahler metric.
Important special case: constant scalar curvature Sasaki (CSC) metrics.

If S = (&, 7m,, ) is extremal (or CSC) then so is Sz = (a~'¢, an, ®, ga) for any a > 0. So
(extremal (or CSC) Sasaki metrics occur in rays)

@ If S; = (&, mi, @, g;) is extremal (or CSC) for each / = 1,2, so is the join S, .
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Extremal Sasakian metrics (B-Galicki-Simanca)
@ Sasakian structure S = (&, n, ®, g) with scalar curvature sg.

@ Calabi-Sasaki Energy functional E(g) = / s5dug,
M

Deform contact structure n — n + td°p within its isotopy class where ¢ is basic.

Variation gives critical point of E(g) <~ 63*39 is transversely holomorphic.

We say that g is extremal if it is critical point of E.

g is extremal Sasaki metric <= the transverse metric g, is extremal Kahler metric.
Important special case: constant scalar curvature Sasaki (CSC) metrics.

If S = (&, 7m,, ) is extremal (or CSC) then so is Sz = (a~'¢, an, ®, ga) for any a > 0. So
(extremal (or CSC) Sasaki metrics occur in rays)

@ If S; = (&, mi, j, g;) is extremal (or CSC) for each / = 1,2, so is the join S, .

@ Another important special case: Sasaki-eta-Einstein metrics which satisfy:

Ricg = ag + bn ® n for constants a, b such that a+ b = 2n.
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Extremal Sasakian metrics

Extremal Sasakian metrics (B-Galicki-Simanca)
Sasakian structure S = (&, n, ¢, g) with scalar curvature sg.

Calabi-Sasaki Energy functional E(g) = / sSdug,
M

Deform contact structure n — n + td°p within its isotopy class where ¢ is basic.
Variation gives critical point of E(g) <~ 63*39 is transversely holomorphic.

We say that g is extremal if it is critical point of E.

g is extremal Sasaki metric <= the transverse metric g, is extremal Kahler metric.
Important special case: constant scalar curvature Sasaki (CSC) metrics.

If S = (&, 7m,, ) is extremal (or CSC) then so is Sz = (a~'¢, an, ®, ga) for any a > 0. So
(extremal (or CSC) Sasaki metrics occur in rays)

If S; = (&, mi, ®j, g;) is extremal (or CSC) for each / = 1,2, so is the join S, .
Another important special case: Sasaki-eta-Einstein metrics which satisfy:

Ricg = ag + bn ® n for constants a, b such that a+ b = 2n.

g is Sasaki-eta-Einstein <= transverse metric go is Kahler-Einstein (KE).
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Extremal Sasakian metrics (B-Galicki-Simanca)
Sasakian structure S = (&, n, ¢, g) with scalar curvature sg.

Calabi-Sasaki Energy functional E(g) = / sSdug,
M

Deform contact structure n — n + td°p within its isotopy class where ¢ is basic.
Variation gives critical point of E(g) <~ 63*39 is transversely holomorphic.

We say that g is extremal if it is critical point of E.

g is extremal Sasaki metric <= the transverse metric g, is extremal Kahler metric.
Important special case: constant scalar curvature Sasaki (CSC) metrics.

If S = (&, 7m,, ) is extremal (or CSC) then so is Sz = (a~'¢, an, ®, ga) for any a > 0. So
(extremal (or CSC) Sasaki metrics occur in rays)

If S; = (&, mi, ®j, g;) is extremal (or CSC) for each / = 1,2, so is the join S, .

Another important special case: Sasaki-eta-Einstein metrics which satisfy:

Ricg = ag + bn ® n for constants a, b such that a+ b = 2n.

g is Sasaki-eta-Einstein <= transverse metric go is Kahler-Einstein (KE).

g is Sasaki-Einstein (SE) <= b=0and a=2n < gy is KE with scalar curvature
4n(n+1).
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Extremal Sasakian metrics

Extremal Sasakian metrics (B-Galicki-Simanca)
Sasakian structure S = (&, n, ¢, g) with scalar curvature sg.

Calabi-Sasaki Energy functional E(g) = / sSdug,
M

Deform contact structure n — n + td°p within its isotopy class where ¢ is basic.
Variation gives critical point of E(g) <~ 63*39 is transversely holomorphic.

We say that g is extremal if it is critical point of E.

g is extremal Sasaki metric <= the transverse metric g, is extremal Kahler metric.
Important special case: constant scalar curvature Sasaki (CSC) metrics.

If S = (&, 7m,, ) is extremal (or CSC) then so is Sz = (a~'¢, an, ®, ga) for any a > 0. So
(extremal (or CSC) Sasaki metrics occur in rays)

If S; = (&, mi, ®j, g;) is extremal (or CSC) for each / = 1,2, so is the join S, .

Another important special case: Sasaki-eta-Einstein metrics which satisfy:

Ricg = ag + bn ® n for constants a, b such that a+ b = 2n.

g is Sasaki-eta-Einstein <= transverse metric go is Kahler-Einstein (KE).

g is Sasaki-Einstein (SE) <= b=0and a=2n < gy is KE with scalar curvature
4n(n+1).

Calabi: Extremal metrics have maximal symmetry.
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Extremal Sasakian metrics

Extremal Sasakian metrics (B-Galicki-Simanca)
Sasakian structure S = (&, n, ¢, g) with scalar curvature sg.

Calabi-Sasaki Energy functional E(g) = / sSdug,
M

Deform contact structure n — n + td°p within its isotopy class where ¢ is basic.
Variation gives critical point of E(g) <~ 63*39 is transversely holomorphic.

We say that g is extremal if it is critical point of E.

g is extremal Sasaki metric <= the transverse metric g, is extremal Kahler metric.
Important special case: constant scalar curvature Sasaki (CSC) metrics.

If S = (&, 7m,, ) is extremal (or CSC) then so is Sz = (a~'¢, an, ®, ga) for any a > 0. So
(extremal (or CSC) Sasaki metrics occur in rays)

If S; = (&, mi, ®j, g;) is extremal (or CSC) for each / = 1,2, so is the join S, .

Another important special case: Sasaki-eta-Einstein metrics which satisfy:

Ricg = ag + bn ® n for constants a, b such that a+ b = 2n.

g is Sasaki-eta-Einstein <= transverse metric go is Kahler-Einstein (KE).

g is Sasaki-Einstein (SE) <= b=0and a=2n < gy is KE with scalar curvature
4n(n+1).

Calabi: Extremal metrics have maximal symmetry.

Every 3-dimensional Sasakian structure admits an extremal representative.
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Extremal Sasakian metrics (B-Galicki-Simanca)
Sasakian structure S = (&, n, ¢, g) with scalar curvature sg.

Calabi-Sasaki Energy functional E(g) = / sSdug,
M

Deform contact structure n — n + td°p within its isotopy class where ¢ is basic.
Variation gives critical point of E(g) <~ 6;*39 is transversely holomorphic.

We say that g is extremal if it is critical point of E.

g is extremal Sasaki metric <= the transverse metric g, is extremal Kahler metric.
Important special case: constant scalar curvature Sasaki (CSC) metrics.

If S = (&, 7m,, ) is extremal (or CSC) then so is Sz = (a~'¢, an, ®, ga) for any a > 0. So
(extremal (or CSC) Sasaki metrics occur in rays)

If S; = (&, mi, ®j, g;) is extremal (or CSC) for each / = 1,2, so is the join S, .

Another important special case: Sasaki-eta-Einstein metrics which satisfy:

Ricg = ag + bn ® n for constants a, b such that a+ b = 2n.

g is Sasaki-eta-Einstein <= transverse metric go is Kahler-Einstein (KE).

g is Sasaki-Einstein (SE) <= b=0and a=2n < gy is KE with scalar curvature
4n(n+1).

Calabi: Extremal metrics have maximal symmetry.

Every 3-dimensional Sasakian structure admits an extremal representative.

The Sasaki-Futaki invariant §(X) = / X(1g)dug where X is transversely holomorphic and
M -
g is the Ricci potential satisfying p” = p] + {00y where pT is the transverse Ricci form

and p[ is its harmonic part. An extremal Sasaki metric g has constant scalar curvature if and
only if §=0.
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The Extremal Set

Definition

For a fixed Sasaki cone (D, J) define the extremal subset ¢(D, J) such that there is a
deformation with an extremal representative.
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The Extremal Set

Definition

For a fixed Sasaki cone (D, J) define the extremal subset ¢(D, J) such that there is a
deformation with an extremal representative.

@ Openness Theorem: ¢(D, J) is open in x(D, J) (B-,Galicki,Simanca).
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The Extremal Set
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For a fixed Sasaki cone (D, J) define the extremal subset ¢(D, J) such that there is a
deformation with an extremal representative.

@ Openness Theorem: ¢(D, J) is open in x(D, J) (B-,Galicki,Simanca).
@ ¢(D,J) is conical in the sense that if S € ¢(D, J) so is S, for all a > 0.
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The Extremal Set

Definition
For a fixed Sasaki cone (D, J) define the extremal subset ¢(D, J) such that there is a
deformation with an extremal representative.

@ Openness Theorem: ¢(D, J) is open in x(D, J) (B-,Galicki,Simanca).
@ ¢(D,J) is conical in the sense that if S € ¢(D, J) so is S, for all a > 0.

Open Question
Is ¢(D, J) always connected?
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The Extremal Set

Definition

For a fixed Sasaki cone (D, J) define the extremal subset ¢(D, J) such that there is a
deformation with an extremal representative.

@ Openness Theorem: ¢(D, J) is open in x(D, J) (B-,Galicki,Simanca).
@ ¢(D,J) is conical in the sense that if S € ¢(D, J) so is S, for all a > 0.

Open Question
Is ¢(D, J) always connected?

When is ¢(D, J) = (D, J)?
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The Extremal Set

Definition

For a fixed Sasaki cone (D, J) define the extremal subset ¢(D, J) such that there is a
deformation with an extremal representative.

@ Openness Theorem: ¢(D, J) is open in x(D, J) (B-,Galicki,Simanca).
@ ¢(D,J) is conical in the sense that if S € ¢(D, J) so is S, for all a > 0.

Open Question
Is ¢(D, J) always connected?

When is ¢(D, J) = (D, J)?

@ There are many if dim x(D, J) = 1. Enormous number of SE metrics on certain manifolds.
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The Extremal Set

Definition

For a fixed Sasaki cone (D, J) define the extremal subset ¢(D, J) such that there is a
deformation with an extremal representative.

@ Openness Theorem: ¢(D, J) is open in x(D, J) (B-,Galicki,Simanca).
@ ¢(D,J) is conical in the sense that if S € ¢(D, J) so is S, for all a > 0.

Open Question
Is ¢(D, J) always connected?

When is ¢(D, J) = (D, J)?

@ There are many if dim x(D, J) = 1. Enormous number of SE metrics on certain manifolds.
@ Standard CR structure on S2™+! which is toric (dim #(D, J) = n+ 1.) Here
¢(D,J) = k(D, J), but only one ray has (CSC) (which also has constant $-sectional
curvature ¢ > —3), and only the round sphere (¢ = 1) is Sasaki-Einstein.
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The Extremal Set

Definition
For a fixed Sasaki cone (D, J) define the extremal subset ¢(D, J) such that there is a
deformation with an extremal representative.

@ Openness Theorem: ¢(D, J) is open in x(D, J) (B-,Galicki,Simanca).
@ ¢(D,J) is conical in the sense that if S € ¢(D, J) so is S, for all a > 0.

Open Question
Is ¢(D, J) always connected?

When is ¢(D, J) = (D, J)?

@ There are many if dim x(D, J) = 1. Enormous number of SE metrics on certain manifolds.

@ Standard CR structure on S2™+! which is toric (dim #(D, J) = n+ 1.) Here
¢(D,J) = k(D, J), but only one ray has (CSC) (which also has constant $-sectional
curvature ¢ > —3), and only the round sphere (¢ = 1) is Sasaki-Einstein.

@ A noncompact example with ¢(D, J) = (D, J) is the Heisenberg group.
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The Extremal Set

Definition

For a fixed Sasaki cone (D, J) define the extremal subset ¢(D, J) such that there is a
deformation with an extremal representative.

@ Openness Theorem: ¢(D, J) is open in x(D, J) (B-,Galicki,Simanca).
@ ¢(D,J) is conical in the sense that if S € ¢(D, J) so is S, for all a > 0.

Open Question
Is ¢(D, J) always connected?

When is ¢(D, J) = (D, J)?

@ There are many if dim x(D, J) = 1. Enormous number of SE metrics on certain manifolds.

@ Standard CR structure on S2™+! which is toric (dim #(D, J) = n+ 1.) Here
¢(D,J) = k(D, J), but only one ray has (CSC) (which also has constant $-sectional
curvature ¢ > —3), and only the round sphere (¢ = 1) is Sasaki-Einstein.

@ A noncompact example with ¢(D, J) = (D, J) is the Heisenberg group.

@ If 0 < g < 4 all 2-dimensional Sasaki cones on S3-bundles over 3 4 obtained by our
construction have ¢(D, J) = x(D, J) (B-,Tennesen-Friedman).
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General Setup: Fundamental Theorem

@ Recall M x, 4, S is a L(k; lywy, Iy, ws) bundle over a Kéhler manifold N.
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General Setup: Fundamental Theorem

@ Recall M x, 4, S is a L(k; lywy, Iy, ws) bundle over a Kéhler manifold N.

Theorem (B-,Tannesen-Friedman)

Let My, 1, w = M~ 1, Sy, be the Sg-join with a regular Sasaki manifold M which is an S'-bundle
over a compact Kahler manifold N with constant scalar curvature. Then for each vector

w = (wq, W) € ZT x Z* with relatively prime components satisfying wy > w. there exists a Reeb
vector field & in a 2-dimensional sub cone, the w-cone, of the Sasaki cone on M, ;, w such that
the corresponding ray of Sasakian structures Sy = (a~'év, anv, ®, ga) has constant scalar
curvature. Moreover, given the cohomology ring of M, the cohomology ring of M, ;, w can be
determined.
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General Setup: Fundamental Theorem

@ Recall M x, 4, S is a L(k; lywy, Iy, ws) bundle over a Kéhler manifold N.

Theorem (B-,Tannesen-Friedman)

Let My, 1, w = M~ 1, Sy, be the Sg-join with a regular Sasaki manifold M which is an S'-bundle
over a compact Kahler manifold N with constant scalar curvature. Then for each vector

w = (wq, W) € ZT x Z* with relatively prime components satisfying wy > w. there exists a Reeb
vector field & in a 2-dimensional sub cone, the w-cone, of the Sasaki cone on M, ;, w such that
the corresponding ray of Sasakian structures Sy = (a~'év, anv, ®, ga) has constant scalar
curvature. Moreover, given the cohomology ring of M, the cohomology ring of M, ;, w can be
determined.

@ Remark: Most of the CSC Sasakian structures are irregular.
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General Setup: Fundamental Theorem

@ Recall M x, 4, S is a L(k; lywy, Iy, ws) bundle over a Kéhler manifold N.

Theorem (B-,Tgnnesen-Friedman)

Let My, 1, w = M~ 1, Sy, be the Sg-join with a regular Sasaki manifold M which is an S'-bundle
over a compact Kahler manifold N with constant scalar curvature. Then for each vector

w = (wq, W) € ZT x Z* with relatively prime components satisfying wy > w. there exists a Reeb
vector field & in a 2-dimensional sub cone, the w-cone, of the Sasaki cone on M, ;, w such that
the corresponding ray of Sasakian structures Sy = (a~'év, anv, ®, ga) has constant scalar
curvature. Moreover, given the cohomology ring of M, the cohomology ring of M, ;, w can be
determined.

@ Remark: Most of the CSC Sasakian structures are irregular.
@ When N is positive KE get SE metric on M, ;, \ for appropriate choice of (/, k).
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General Setup: Fundamental Theorem

@ Recall M x, 4, S is a L(k; lywy, Iy, ws) bundle over a Kéhler manifold N.

Theorem (B-,Tgnnesen-Friedman)

Let My, 1, w = M~ 1, Sy, be the Sg-join with a regular Sasaki manifold M which is an S'-bundle
over a compact Kahler manifold N with constant scalar curvature. Then for each vector

w = (wq, W) € ZT x Z* with relatively prime components satisfying wy > w. there exists a Reeb
vector field & in a 2-dimensional sub cone, the w-cone, of the Sasaki cone on M, ;, w such that
the corresponding ray of Sasakian structures Sy = (a~'év, anv, ®, ga) has constant scalar
curvature. Moreover, given the cohomology ring of M, the cohomology ring of M, ;, w can be
determined.

@ Remark: Most of the CSC Sasakian structures are irregular.
@ When N is positive KE get SE metric on M, ;, \ for appropriate choice of (/, k).
@ In special cases determine the diffeomorphism (homeomorphism, homotopy) types.

Charles Boyer (University of New Mexico) Sasaki join, transverse Hamiltonian 2-forms, and Extrer



General Setup: Fundamental Theorem

@ Recall M x, 4, S is a L(k; lywy, Iy, ws) bundle over a Kéhler manifold N.

Theorem (B-,Tgnnesen-Friedman)

Let My, 1, w = M~ 1, Sy, be the Sg-join with a regular Sasaki manifold M which is an S'-bundle
over a compact Kahler manifold N with constant scalar curvature. Then for each vector

w = (wq, W) € ZT x Z* with relatively prime components satisfying wy > w. there exists a Reeb
vector field & in a 2-dimensional sub cone, the w-cone, of the Sasaki cone on M, ;, w such that
the corresponding ray of Sasakian structures Sy = (a~'év, anv, ®, ga) has constant scalar
curvature. Moreover, given the cohomology ring of M, the cohomology ring of M, ;, w can be
determined.

@ Remark: Most of the CSC Sasakian structures are irregular.
@ When N is positive KE get SE metric on M, ;, \ for appropriate choice of (/, k).

@ In special cases determine the diffeomorphism (homeomorphism, homotopy) types.
@ Two Cases: Reason: Interference in E, term of a Leray-Serre spectral sequence.
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General Setup: Fundamental Theorem

@ Recall M x, 4, S is a L(k; lywy, Iy, ws) bundle over a Kéhler manifold N.

Theorem (B-,Tgnnesen-Friedman)

Let My, 1, w = M~ 1, Sy, be the Sg-join with a regular Sasaki manifold M which is an S'-bundle
over a compact Kahler manifold N with constant scalar curvature. Then for each vector

w = (wq, W) € ZT x Z* with relatively prime components satisfying wy > w. there exists a Reeb
vector field & in a 2-dimensional sub cone, the w-cone, of the Sasaki cone on M, ;, w such that
the corresponding ray of Sasakian structures Sy = (a~'év, anv, ®, ga) has constant scalar
curvature. Moreover, given the cohomology ring of M, the cohomology ring of M, ;, w can be
determined.

@ Remark: Most of the CSC Sasakian structures are irregular.
@ When N is positive KE get SE metric on M, ;, \ for appropriate choice of (/, k).

@ In special cases determine the diffeomorphism (homeomorphism, homotopy) types.
@ Two Cases: Reason: Interference in E, term of a Leray-Serre spectral sequence.
@ dmc N =1;
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General Setup: Fundamental Theorem

@ Recall M x, 4, S is a L(k; lywy, Iy, ws) bundle over a Kéhler manifold N.

Theorem (B-,Tgnnesen-Friedman)

Let My, 1, w = M~ 1, Sy, be the Sg-join with a regular Sasaki manifold M which is an S'-bundle
over a compact Kahler manifold N with constant scalar curvature. Then for each vector

w = (wq, W) € ZT x Z* with relatively prime components satisfying wy > w. there exists a Reeb
vector field & in a 2-dimensional sub cone, the w-cone, of the Sasaki cone on M, ;, w such that
the corresponding ray of Sasakian structures Sy = (a~'év, anv, ®, ga) has constant scalar
curvature. Moreover, given the cohomology ring of M, the cohomology ring of M, ;, w can be
determined.

@ Remark: Most of the CSC Sasakian structures are irregular.

@ When N is positive KE get SE metric on M, ;, \ for appropriate choice of (/, k).

@ In special cases determine the diffeomorphism (homeomorphism, homotopy) types.
@ Two Cases: Reason: Interference in E, term of a Leray-Serre spectral sequence.

@ dime N =1;
Q dimcN > 1.
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S8-bundles over Riemann surfaces

@ Case 1: dimN = 1. Take N = X4, a compact Riemann surface of genus g.
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S8-bundles over Riemann surfaces

@ Case 1: dimN = 1. Take N = X4, a compact Riemann surface of genus g.

@ When g = 0 we get Sasakian structures on S3-bundles over the S? for all relatively prime
positive integers /i, . (B-,B-Pati) (Also E. Legendre). When ¢; = 0 we recover the SE
metrics on YP:9 of the physicists Guantlett, Martelli, Sparks, Waldram. For fixed p the ¢(p)
(Euler phi-function) inequivalent SE structures belong to the same contact structure, a
#(p)-bouquet B p).
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S8-bundles over Riemann surfaces

@ Case 1: dimN = 1. Take N = X4, a compact Riemann surface of genus g.

@ When g = 0 we get Sasakian structures on S3-bundles over the S? for all relatively prime
positive integers /i, . (B-,B-Pati) (Also E. Legendre). When ¢; = 0 we recover the SE
metrics on YP:9 of the physicists Guantlett, Martelli, Sparks, Waldram. For fixed p the ¢(p)
(Euler phi-function) inequivalent SE structures belong to the same contact structure, a
#(p)-bouquet B p).

@ When g > 0 we set b, = 1 to obtain S3-bundles over a Riemann surface ¥4 with two
diffeomorphism types, the trivial bundle ¥4 x S%, and the non-trivial bundle ¥4 x S2.
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S8-bundles over Riemann surfaces

@ Case 1: dimN = 1. Take N = X4, a compact Riemann surface of genus g.

@ When g = 0 we get Sasakian structures on S3-bundles over the S? for all relatively prime
positive integers /i, . (B-,B-Pati) (Also E. Legendre). When ¢; = 0 we recover the SE
metrics on YP:9 of the physicists Guantlett, Martelli, Sparks, Waldram. For fixed p the ¢(p)
(Euler phi-function) inequivalent SE structures belong to the same contact structure, a
#(p)-bouquet B p).

@ When g > 0 we set b, = 1 to obtain S3-bundles over a Riemann surface ¥4 with two
diffeomorphism types, the trivial bundle ¥4 x S%, and the non-trivial bundle ¥4 x S2.

@ On both manifolds there is a countably infinite number of inequivalent contact structures Dy
admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem
admits a ray of CSC Sasakian structures.
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S8-bundles over Riemann surfaces

Case 1: dim N = 1. Take N = X4, a compact Riemann surface of genus g.

When g = 0 we get Sasakian structures on S®-bundles over the S? for all relatively prime
positive integers /i, . (B-,B-Pati) (Also E. Legendre). When ¢; = 0 we recover the SE
metrics on YP:9 of the physicists Guantlett, Martelli, Sparks, Waldram. For fixed p the ¢(p)
(Euler phi-function) inequivalent SE structures belong to the same contact structure, a
#(p)-bouquet B p).

When g > 0 we set b = 1 to obtain S®-bundles over a Riemann surface ¥4 with two
diffeomorphism types, the trivial bundle ¥4 x S%, and the non-trivial bundle ¥4 x S2.

On both manifolds there is a countably infinite number of inequivalent contact structures Dy
admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem
admits a ray of CSC Sasakian structures.

When 0 < g < 4 all 2-dimensional Sasaki cones on S®-bundles over ¥4 satisfy

¢(Dg, J) = (D, J).
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S8-bundles over Riemann surfaces

Case 1: dim N = 1. Take N = X4, a compact Riemann surface of genus g.

When g = 0 we get Sasakian structures on S®-bundles over the S? for all relatively prime
positive integers /i, . (B-,B-Pati) (Also E. Legendre). When ¢; = 0 we recover the SE
metrics on YP:9 of the physicists Guantlett, Martelli, Sparks, Waldram. For fixed p the ¢(p)
(Euler phi-function) inequivalent SE structures belong to the same contact structure, a
#(p)-bouquet B p).

When g > 0 we set b = 1 to obtain S®-bundles over a Riemann surface ¥4 with two
diffeomorphism types, the trivial bundle ¥4 x S%, and the non-trivial bundle ¥4 x S2.

On both manifolds there is a countably infinite number of inequivalent contact structures Dy
admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem
admits a ray of CSC Sasakian structures.

When 0 < g < 4 all 2-dimensional Sasaki cones on S®-bundles over ¥4 satisfy

¢(Dg, J) = (D, J).

For any genus g > 1 and for each positive integer k, the contact manifold (X4 x S3, D) has
a k-bouquet B of 2-dimensional Sasaki cones.
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S8-bundles over Riemann surfaces

Case 1: dim N = 1. Take N = X4, a compact Riemann surface of genus g.

When g = 0 we get Sasakian structures on S®-bundles over the S? for all relatively prime
positive integers /i, . (B-,B-Pati) (Also E. Legendre). When ¢; = 0 we recover the SE
metrics on YP:9 of the physicists Guantlett, Martelli, Sparks, Waldram. For fixed p the ¢(p)
(Euler phi-function) inequivalent SE structures belong to the same contact structure, a
#(p)-bouquet B p).

When g > 0 we set b = 1 to obtain S®-bundles over a Riemann surface ¥4 with two
diffeomorphism types, the trivial bundle ¥4 x S%, and the non-trivial bundle ¥4 x S2.

On both manifolds there is a countably infinite number of inequivalent contact structures Dy
admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem
admits a ray of CSC Sasakian structures.

When 0 < g < 4 all 2-dimensional Sasaki cones on S®-bundles over ¥4 satisfy

¢(Dg, J) = (D, J).

For any genus g > 1 and for each positive integer k, the contact manifold (X4 x S3, D) has
a k-bouquet B of 2-dimensional Sasaki cones.

The distinct Sasaki cones in the bouquet 2B, correspond to distinct conjugacy classes of
maximal tori in €on(Dy, ;, w). This uses the work of Buse on equivariant Gromov-Witten
invariants.
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S8-bundles over Riemann surfaces

@ Case 1: dimN = 1. Take N = X4, a compact Riemann surface of genus g.

@ When g = 0 we get Sasakian structures on S3-bundles over the S? for all relatively prime
positive integers /i, . (B-,B-Pati) (Also E. Legendre). When ¢; = 0 we recover the SE
metrics on YP:9 of the physicists Guantlett, Martelli, Sparks, Waldram. For fixed p the ¢(p)
(Euler phi-function) inequivalent SE structures belong to the same contact structure, a
#(p)-bouquet B p).

@ When g > 0 we set b, = 1 to obtain S3-bundles over a Riemann surface ¥4 with two
diffeomorphism types, the trivial bundle ¥4 x S%, and the non-trivial bundle ¥4 x S2.

@ On both manifolds there is a countably infinite number of inequivalent contact structures Dy
admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem
admits a ray of CSC Sasakian structures.

@ When 0 < g < 4 all 2-dimensional Sasaki cones on S®-bundles over ¥4 satisfy
¢(Dg, J) = (D, J).

@ For any genus g > 1 and for each positive integer k, the contact manifold (Xg x S2, D) has
a k-bouquet B of 2-dimensional Sasaki cones.

@ The distinct Sasaki cones in the bouquet 98 correspond to distinct conjugacy classes of
maximal tori in €on(Dy, ;, w). This uses the work of Buse on equivariant Gromov-Witten
invariants.

@ The construction can be ‘twisted’ by reducible representations of the fundamental group
m1(Xg). The irreducible representations of w1 (X4) give 1-dimensional Sasaki cones. They
arise from stable rank two vector bundles and have CSC Sasaki metrics.
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S8-bundles over Riemann surfaces

Case 1: dim N = 1. Take N = X4, a compact Riemann surface of genus g.

When g = 0 we get Sasakian structures on S®-bundles over the S? for all relatively prime
positive integers /i, . (B-,B-Pati) (Also E. Legendre). When ¢; = 0 we recover the SE
metrics on YP:9 of the physicists Guantlett, Martelli, Sparks, Waldram. For fixed p the ¢(p)
(Euler phi-function) inequivalent SE structures belong to the same contact structure, a
#(p)-bouquet B p).

When g > 0 we set b = 1 to obtain S®-bundles over a Riemann surface ¥4 with two
diffeomorphism types, the trivial bundle ¥4 x S%, and the non-trivial bundle ¥4 x S2.

On both manifolds there is a countably infinite number of inequivalent contact structures Dy
admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem
admits a ray of CSC Sasakian structures.

When 0 < g < 4 all 2-dimensional Sasaki cones on S®-bundles over ¥4 satisfy

¢(Dg, J) = (D, J).

For any genus g > 1 and for each positive integer k, the contact manifold (X4 x S3, D) has
a k-bouquet B of 2-dimensional Sasaki cones.

The distinct Sasaki cones in the bouquet 2B, correspond to distinct conjugacy classes of
maximal tori in €on(Dy, ;, w). This uses the work of Buse on equivariant Gromov-Witten
invariants.

The construction can be ‘twisted’ by reducible representations of the fundamental group
m1(Xg). The irreducible representations of w1 (X4) give 1-dimensional Sasaki cones. They
arise from stable rank two vector bundles and have CSC Sasaki metrics.

Some of the same type of results can be obtained on 5-manifolds whose fundamental group
is a non-Abelian extension of 1 (Xq).
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Constant Scalar Curvature in Higher Dimension

@ Case 2. dim N > 1. Take N to be a Kahler manifold with constant scalar curvature.
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Constant Scalar Curvature in Higher Dimension

@ Case 2. dim N > 1. Take N to be a Kahler manifold with constant scalar curvature.
@ Fundamental Theorem holds but the diffeomorphism type can depend on /I, l, w.
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Constant Scalar Curvature in Higher Dimension

@ Case 2. dim N > 1. Take N to be a Kahler manifold with constant scalar curvature.
@ Fundamental Theorem holds but the diffeomorphism type can depend on /I, l, w.
@ Take N to be a positive KE manifold, and let
L = N b = _ mtwe
ged(wy + w2, Iy)’ ged(wy + wa, Iy)
where Jy denotes the Fano index of N. Then for each vector w = (wy, wo) € Z+ x ZT with
relatively prime components satisfying wy > ws there exists a Reeb vector field &y in the

2-dimensional w-Sasaki cone on M), ,, w such that the corresponding Sasakian structure
S = (&v, v, P, g) is Sasaki-Einstein.
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Constant Scalar Curvature in Higher Dimension

@ Case 2. dim N > 1. Take N to be a Kahler manifold with constant scalar curvature.
@ Fundamental Theorem holds but the diffeomorphism type can depend on /I, l, w.
@ Take N to be a positive KE manifold, and let

= Y b = o wmtwe
ged(wy + we, Iy)’ ged(wy + we, Iy)

where Jy denotes the Fano index of N. Then for each vector w = (wy, wo) € Z+ x ZT with
relatively prime components satisfying wy > ws there exists a Reeb vector field &y in the
2-dimensional w-Sasaki cone on M), ,, w such that the corresponding Sasakian structure

S = (&v, v, P, g) is Sasaki-Einstein.

@ In this case the Sasakian structure associated to every single ray, &y, in the w-Sasaki cone is
a Sasaki-Ricci soliton and ¢(D, J) = k(D, J).
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Constant Scalar Curvature in Higher Dimension

Case 2. dim N > 1. Take N to be a Kahler manifold with constant scalar curvature.
@ Fundamental Theorem holds but the diffeomorphism type can depend on /I, l, w.
@ Take N to be a positive KE manifold, and let

L = N b = _ mtwe
ged(wy + w2, Iy)’ ged(wy + wa, Iy)

where Jy denotes the Fano index of N. Then for each vector w = (wy, wo) € Z+ x ZT with
relatively prime components satisfying wy > ws there exists a Reeb vector field &y in the
2-dimensional w-Sasaki cone on M), ,, w such that the corresponding Sasakian structure

S = (&v, v, P, g) is Sasaki-Einstein.

@ In this case the Sasakian structure associated to every single ray, &y, in the w-Sasaki cone is
a Sasaki-Ricci soliton and ¢(D, J) = k(D, J).

@ Special Case: N = CPP with Fubini-Study metric and p > 1, so M = S2P*1 with its standard
Sasaki-Einstein metric. Here /I, l» are arbitrary relatively prime positive integers.
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Constant Scalar Curvature in Higher Dimension

Case 2. dim N > 1. Take N to be a Kahler manifold with constant scalar curvature.

@ Fundamental Theorem holds but the diffeomorphism type can depend on /I, l, w.
@ Take N to be a positive KE manifold, and let

L = N b = _ Wtwe
ged(wy + wp, Iy)’ ged(wr + wz, In)
where Jy denotes the Fano index of N. Then for each vector w = (wy, wo) € Z+ x ZT with
relatively prime components satisfying wy > ws there exists a Reeb vector field &y in the

2-dimensional w-Sasaki cone on M), ,, w such that the corresponding Sasakian structure
S = (&v, v, P, g) is Sasaki-Einstein.

In this case the Sasakian structure associated to every single ray, &y, in the w-Sasaki cone is
a Sasaki-Ricci soliton and ¢(D, J) = k(D, J).

Special Case: N = CPP with Fubini-Study metric and p > 1, so M = S2P+1 with its standard
Sasaki-Einstein metric. Here /I, l» are arbitrary relatively prime positive integers.

In this case the cohomology ring of the join Mf",jw =81, |, Sy is

Z[va]/(w‘l W2I12X27 Xp+1 ’ X2y7y2)

where x, y are classes of degree 2 and 2p + 1, respectively.
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Seven Dimensional Case:

@ Specialize further: Take p = 2. Then M/, and M’ are homotopy equivalent if and

1,05,w! I\l W
only if
wiwg(1)? = wiwolf, ()2 (wW) + wz)® — B(wy + wp)> =0 mod 3 € Z,,, wal?
=k mod?2,, (5P +B=0 mod wywl2.
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Seven Dimensional Case:

@ Specialize further: Take p = 2. Then M/, v w and M,Z ow '€ homotopy equivalent if and
10720 "2
only if
wiwg(1)? = wiwolf, ()2 (wW) + wz)® — B(wy + wp)> =0 mod 3 € Z,,, wal?
=k mod?2,, (5P +B=0 mod wywl2.

@ Example: The eight 7-manifolds with (/, kb, wy, wo) =

(1,2182,6545,1), (1,438, 1309, 5), (1,202, 935,7), (1,134,385, 17),

(1,74,187,35),(1,58,119,55), (1,54, 85,77)
are homotopy equivalent, admit SE metrics, but they are not homeomorphic.
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Seven Dimensional Case:

@ Specialize further: Take p = 2. Then M/, and M’ are homotopy equivalent if and

1,05,w! I\l W
only if
wiwg(1)? = wiwolf, ()2 (wW) + wz)® — B(wy + wp)> =0 mod 3 € Z,,, wal?
=k mod?2,, (5P +B=0 mod wywl2.

@ Example: The eight 7-manifolds with (/, kb, wy, wo) =

(1,2182,6545,1), (1,438, 1309, 5), (1,202, 935,7), (1,134,385, 17),

(1,74,187,35),(1,58,119,55), (1,54, 85,77)
are homotopy equivalent, admit SE metrics, but they are not homeomorphic.

@ Diffeomorphism (homeomorphism) types determined by their Kreck-Stolz invariants.
Generally they are fairly difficult to compute.
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Seven Dimensional Case:

@ Specialize further: Take p = 2. Then M/, v w and M,Z ow '€ homotopy equivalent if and
1072 2

only if
wiwg(1)? = wiwolf, ()2 (wW) + wz)® — B(wy + wp)> =0 mod 3 € Z,,, wal?

=k mod?2,, (5P +B=0 mod wywl2.

@ Example: The eight 7-manifolds with (/, kb, wy, wo) =
(1,2182,6545,1),(1,438,1309, 5), (1,202,935, 7), (1,134,385, 17),

(1,74,187,35),(1,58,119,55), (1,54, 85,77)

are homotopy equivalent, admit SE metrics, but they are not homeomorphic.

@ Diffeomorphism (homeomorphism) types determined by their Kreck-Stolz invariants.
Generally they are fairly difficult to compute.

@ Example: Simple case; M’ is homogeneous, i.e. w = (1,1). Take /; =
and M57 by(1,1) @re homeomorphic if and only if I, = L mod 50, and they are diffeomorphic if
and only if I, = b mod 100. There is a countable infinity of contact structures of Sasaki type
on each diffeomorphism type. Furthermore, they all admit CSC Sasaki metrics.

7
5. Then Ms,/é,(1,1)

Sasaki join, transverse Hamiltonian 2-forms, and Extrer
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Outline of proof of Fundamental Theorem:

@ From join construction get commutative diagram of fibrations:

M x Se,, M/1,/27w E— BS1

T

M x S\?v — N xBCP! w] — BS! x BS!

where BG is the classifying space of a group G or Haefliger’s classifying space of an orbifold
if G is an orbifold. Note that the lower fibration is a product of fibrations.
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Outline of proof of Fundamental Theorem:

@ From join construction get commutative diagram of fibrations:

M x Se,, M/1,/27w E— BS1

T

M x S\?v — N xBCP! w] — BS! x BS!

where BG is the classifying space of a group G or Haefliger’s classifying space of an orbifold
if G is an orbifold. Note that the lower fibration is a product of fibrations.

@ Given the differentials in the spectral sequence of the fibration M——N——BS", one can
use the commutative diagram to compute the cohomology ring of the contact manifold
My, b w-
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Outline of proof of Fundamental Theorem:

@ From join construction get commutative diagram of fibrations:

M x Se,, M/1,/27w E— BS1

T

M x S\?v — N xBCP! w] — BS! x BS!

where BG is the classifying space of a group G or Haefliger’s classifying space of an orbifold
if G is an orbifold. Note that the lower fibration is a product of fibrations.

@ Given the differentials in the spectral sequence of the fibration M——N——BS", one can
use the commutative diagram to compute the cohomology ring of the contact manifold
My, b w-

@ The existence of an extra Hamiltonian Killing vector field gives 2-dimensional Sasaki cone
K(Dyy s J)-
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Outline of proof of Fundamental Theorem:

@ From join construction get commutative diagram of fibrations:

MxS, — My, 1w _— BS'

M x S\?v — N xBCP! w] — BS! x BS!

where BG is the classifying space of a group G or Haefliger’s classifying space of an orbifold
if G is an orbifold. Note that the lower fibration is a product of fibrations.

@ Given the differentials in the spectral sequence of the fibration M——N——BS", one can
use the commutative diagram to compute the cohomology ring of the contact manifold
My, 1o w-

@ The existence of an extra Hamiltonian Killing vector field gives 2-dimensional Sasaki cone
K(Dyy s J)-

@ The quotient space of the S'-action generated by any quasi-regular Reeb vector field
&v € w(Dy, 1w, J) is aruled orbifold (Sp, Amv,,mv,) With a branch divisor Amy,,mv, consisting
of the zero and infinity sections of the projective bundle S, = P(1 & Ls) over N with
ramification indices mvy, mvo, respectively and n an integer determined by /1, b, w, v.
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Outline of proof of Fundamental Theorem:

@ From join construction get commutative diagram of fibrations:

MxS, — My, 1w _— BS'

M x S\?v — N xBCP! w] — BS! x BS!

where BG is the classifying space of a group G or Haefliger’s classifying space of an orbifold
if G is an orbifold. Note that the lower fibration is a product of fibrations.

@ Given the differentials in the spectral sequence of the fibration M——N——BS", one can
use the commutative diagram to compute the cohomology ring of the contact manifold
My 1y ow-

@ The existence of an extra Hamiltonian Killing vector field gives 2-dimensional Sasaki cone
K(Dyy s J)-

@ The quotient space of the S'-action generated by any quasi-regular Reeb vector field
&v € w(Dy, 1w, J) is aruled orbifold (Sp, Amv,,mv,) With a branch divisor Amy,,mv, consisting
of the zero and infinity sections of the projective bundle S, = P(1 & Ls) over N with
ramification indices mvy, mvo, respectively and n an integer determined by /1, b, w, v.

@ Extremal (CSC) Sasakian structures on Mj, j,  correspond to extremal (CSC) K&hler
structures on (Sn, Amv,,mv,)-

Charles Boyer (University of New Mexico) Sasaki join, transverse Hamiltonian 2-forms, and Extrer



Outline of proof of Fundamental Theorem:

@ From join construction get commutative diagram of fibrations:

MxS, — My, 1w _— BS'

M x S\?v — N xBCP! w] — BS! x BS!

where BG is the classifying space of a group G or Haefliger’s classifying space of an orbifold
if G is an orbifold. Note that the lower fibration is a product of fibrations.

@ Given the differentials in the spectral sequence of the fibration M——N——BS", one can
use the commutative diagram to compute the cohomology ring of the contact manifold
My 1y ow-

@ The existence of an extra Hamiltonian Killing vector field gives 2-dimensional Sasaki cone
K(Dyy s J)-

@ The quotient space of the S'-action generated by any quasi-regular Reeb vector field
&v € w(Dy, 1w, J) is aruled orbifold (Sp, Amv,,mv,) With a branch divisor Amy,,mv, consisting
of the zero and infinity sections of the projective bundle S, = P(1 & Ls) over N with
ramification indices mvy, mvo, respectively and n an integer determined by /1, b, w, v.

@ Extremal (CSC) Sasakian structures on Mj, j,  correspond to extremal (CSC) K&hler
structures on (Sn, Amv,,mv,)-

@ Irregular rays are handled by the denseness of the quasi-regular rays.
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Outline of proof of Fundamental Theorem:

@ From join construction get commutative diagram of fibrations:

MxS, — My, 1w _— BS'

| | w

M x S\?v — N xBCP! w] — BS! x BS!

where BG is the classifying space of a group G or Haefliger’s classifying space of an orbifold
if G is an orbifold. Note that the lower fibration is a product of fibrations.

@ Given the differentials in the spectral sequence of the fibration M——N——BS", one can
use the commutative diagram to compute the cohomology ring of the contact manifold
My, b w-

@ The existence of an extra Hamiltonian Killing vector field gives 2-dimensional Sasaki cone
K(Dyy s J)-

@ The quotient space of the S'-action generated by any quasi-regular Reeb vector field
&v € w(Dy, 1w, J) is aruled orbifold (Sp, Amv,,mv,) With a branch divisor Amy,,mv, consisting
of the zero and infinity sections of the projective bundle S, = P(1 & Ls) over N with
ramification indices mvy, mvo, respectively and n an integer determined by /1, b, w, v.

@ Extremal (CSC) Sasakian structures on Mj, j,  correspond to extremal (CSC) K&hler
structures on (Sn, Amv,,mv,)-

@ Irregular rays are handled by the denseness of the quasi-regular rays.

@ Easy for the local product structures n = 0 case.
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Outline of Proof of Continued:

@ For n > 0, the work of Apostolov, Calderbank, Gauduchon, Tennesen-Friedman on
Hamiltonian 2-forms shows that extremality boils down to: the transverse Kahler structure is
2
gp = 10 g, + % + ©(3)62 where 6 is a connection 1-form, df = nwy, 0 < r < 1,
_ _ 2 _ 2 d
O() >0and -1 <3< 1,0(x£1)=0,0'(-1) = m—VZ,e’(U = When ©(3)(1 + r3)
is a (d + 3) order polynomial we get extremal K&hler transverse metrics; hence, extremal

Sasaki metrics. Here d is the complex dimension of N.
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Outline of Proof of Continued:

@ For n > 0, the work of Apostolov, Calderbank, Gauduchon, Tennesen-Friedman on
Hamiltonian 2-forms shows that extremality boils down to: the transverse Kahler structure is
2
gp = 10 g, + % + ©(3)62 where 6 is a connection 1-form, df = nwy, 0 < r < 1,

O()>0and -1 <3< 1,0(+1)=0,0/(-1) = miwe'(n = —miw. When ©(3)(1 + r3)?
is a (d + 3) order polynomial we get extremal K&hler transverse metrics; hence, extremal

Sasaki metrics. Here d is the complex dimension of N.

@ Demanding a (d + 2) order polynomial one shows that each Sasaki cone has a unique CSC
ray.

Charles Boyer (University of New Mexico) Sasaki join, transverse Hamiltonian 2-forms, and Extrer



Outline of Proof of Continued:

@ For n > 0, the work of Apostolov, Calderbank, Gauduchon, Tennesen-Friedman on
Hamiltonian 2-forms shows that extremality boils down to: the transverse Kahler structure is
2
gp = 10 g, + % + ©(3)62 where 6 is a connection 1-form, df = nwy, 0 < r < 1,

O()>0and -1 <3< 1,0(+1)=0,0/(-1) = miwe'(n = —miw. When ©(3)(1 + r3)?
is a (d + 3) order polynomial we get extremal K&hler transverse metrics; hence, extremal
Sasaki metrics. Here d is the complex dimension of N.

@ Demanding a (d + 2) order polynomial one shows that each Sasaki cone has a unique CSC
ray.

e [
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Sasakian Manifolds with Perfect fundamental group

@ Also joint work with C. Tennesen-Friedman
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Sasakian Manifolds with Perfect fundamental group

@ Also joint work with C. Tennesen-Friedman

@ Represent a homology 3-sphere M2 as the link of a complete intersection L(ap, - - - , an) with
a; > 1 and pairwise relatively prime.
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Sasakian Manifolds with Perfect fundamental group

@ Also joint work with C. Tennesen-Friedman

@ Represent a homology 3-sphere M2 as the link of a complete intersection L(ap, - - - , an) with
a; > 1 and pairwise relatively prime.

@ Let N be a simply connected regular Sasakian manifold.
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Sasakian Manifolds with Perfect fundamental group

@ Also joint work with C. Tennesen-Friedman

@ Represent a homology 3-sphere M2 as the link of a complete intersection L(ap, - - - , an) with
a; > 1 and pairwise relatively prime.

@ Let N be a simply connected regular Sasakian manifold.
@ Then the join M3 x4 ; N is a Sasakian manifold with perfect fundamental group.
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Sasakian Manifolds with Perfect fundamental group

@ Also joint work with C. Tennesen-Friedman

@ Represent a homology 3-sphere M2 as the link of a complete intersection L(ap, - - - , an) with
a; > 1 and pairwise relatively prime.

@ Let N be a simply connected regular Sasakian manifold.
@ Then the join M3 x4 ; N is a Sasakian manifold with perfect fundamental group.
@ If N has an exiremal Sasaki metric so does M3 *1,1 N.
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Sasakian Manifolds with Perfect fundamental group

@ Also joint work with C. Tennesen-Friedman

@ Represent a homology 3-sphere M2 as the link of a complete intersection L(ap, - - - , an) with
a; > 1 and pairwise relatively prime.

Let N be a simply connected regular Sasakian manifold.

Then the join M3 x1 ; N is a Sasakian manifold with perfect fundamental group.
If N has an extremal Sasaki metric so does M2 *1,1 N.

If N has an CSC Sasaki metric so does Mg 1 ; N.
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Sasakian Manifolds with Perfect fundamental group

@ Also joint work with C. Tennesen-Friedman

@ Represent a homology 3-sphere M2 as the link of a complete intersection L(ap, - - - , an) with
a; > 1 and pairwise relatively prime.

Let N be a simply connected regular Sasakian manifold.

Then the join M3 x1 ; N is a Sasakian manifold with perfect fundamental group.
If N has an extremal Sasaki metric so does M2 *1,1 N.

If N has an CSC Sasaki metric so does Mg 1 ; N.

If L(ag, - ,an) # L(2,3,5) then M3 x ; N has an infinite perfect fundamental group.
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Sasakian Manifolds with Perfect fundamental group

@ Also joint work with C. Tennesen-Friedman

@ Represent a homology 3-sphere M2 as the link of a complete intersection L(ap, - - - , an) with
a; > 1 and pairwise relatively prime.

Let N be a simply connected regular Sasakian manifold.

Then the join M3 x1 ; N is a Sasakian manifold with perfect fundamental group.

If N has an extremal Sasaki metric so does M2 *1,1 N.

If N has an CSC Sasaki metric so does Mg 1 ; N.

If L(ag, - ,an) # L(2,3,5) then M3 x ; N has an infinite perfect fundamental group.

M3 = L(2,3,5) is the Poincaré sphere S3/I* and S®/I* %1 ; N gives a Sasaki-Einstein
manifold with perfect fundamental group for suitable choices of / and N.
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Sasakian Manifolds with Perfect fundamental group

@ Also joint work with C. Tennesen-Friedman

@ Represent a homology 3-sphere M2 as the link of a complete intersection L(ap, - - - , an) with
a; > 1 and pairwise relatively prime.

Let N be a simply connected regular Sasakian manifold.

Then the join M3 x1 ; N is a Sasakian manifold with perfect fundamental group.

If N has an extremal Sasaki metric so does M2 *1,1 N.

If N has an CSC Sasaki metric so does Mg 1 ; N.

If L(ag, - ,an) # L(2,3,5) then M3 x ; N has an infinite perfect fundamental group.
M3 = L(2,3,5) is the Poincaré sphere S3/I* and S®/I* %1 ; N gives a Sasaki-Einstein
manifold with perfect fundamental group for suitable choices of / and N.

@ For each odd dimension > 3 there exists a countable infinity of Sasakian manifolds with a
perfect fundamentfinial group which admit CSC Sasaki metrics. Furthermore, there is an
infinite number of such Sasakian manifolds that have the integral cohomology ring of
S2 x §2rt,
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Sasakian Manifolds with Perfect fundamental group

@ Also joint work with C. Tennesen-Friedman

@ Represent a homology 3-sphere M2 as the link of a complete intersection L(ap, - - - , an) with
a; > 1 and pairwise relatively prime.

Let N be a simply connected regular Sasakian manifold.

Then the join M3 x1 ; N is a Sasakian manifold with perfect fundamental group.

If N has an extremal Sasaki metric so does M2 *1,1 N.

If N has an CSC Sasaki metric so does Mg 1 ; N.

If L(ag, - ,an) # L(2,3,5) then M3 x ; N has an infinite perfect fundamental group.
M3 = L(2,3,5) is the Poincaré sphere S3/I* and S®/I* %1 ; N gives a Sasaki-Einstein
manifold with perfect fundamental group for suitable choices of / and N.

@ For each odd dimension > 3 there exists a countable infinity of Sasakian manifolds with a
perfect fundamentfinial group which admit CSC Sasaki metrics. Furthermore, there is an
infinite number of such Sasakian manifolds that have the integral cohomology ring of
82 x S2rt,

@ There exist a countably infinite number of aspherical contact 5-manifolds with perfect
fundamental group and the integral cohomology ring of S% x S® that admit CSC Sasaki
metrics. Moreover, there are such manifolds that admit a ray of Sasaki-n-Einstein metrics
(hence, Lorentzian Sasaki-Einstein metrics).
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