DEDICATED TO PROFESSOR ADOLFO SANCHEZ-VALENZUELA

A Panorama of Sasakian Geometry

Charles Boyer

University of New Mexico

November 18, 2016
WORKSHOP ON GRADED ALGEBRA, GEOMETRY AND RELATED TOPICS
Mérida, México

Charles Boyer (University of New Mexico) A Panorama of Sasakian Geometry



FELIZ CUMPLEANOS ADOLFO

A BRIEF HISTORY

@ In the late 1970’s while in Mexico | started working on graded geometry, in particular on
supermanifolds.

Charles Boyer (University of New Mexico) A Panorama of Sasakian Geometry



FELIZ CUMPLEANOS ADOLFO

A BRIEF HISTORY

@ In the late 1970’s while in Mexico | started working on graded geometry, in particular on
supermanifolds.

@ Adolfo became my student at UNAM.

Charles Boyer (University of New Mexico) A Panorama of Sasakian Geometry



FELIZ CUMPLEANOS ADOLFO

A BRIEF HISTORY

@ In the late 1970’s while in Mexico | started working on graded geometry, in particular on
supermanifolds.
@ Adolfo became my student at UNAM.

© In 1981 Adolfo began his doctoral studies at Harvard, ultimately under the direction of
Shlomo Sternberg.

Charles Boyer (University of New Mexico) A Panorama of Sasakian Geometry



FELIZ CUMPLEANOS ADOLFO

A BRIEF HISTORY
@ In the late 1970’s while in Mexico | started working on graded geometry, in particular on
supermanifolds.
@ Adolfo became my student at UNAM.

© In 1981 Adolfo began his doctoral studies at Harvard, ultimately under the direction of
Shlomo Sternberg.

© By the mid 1980’s | had changed the direction of my research to the study of Yang-Mills
moduli spaces and self-dual 4-manifolds.

Charles Boyer (University of New Mexico) A Panorama of Sasakian Geometry



FELIZ CUMPLEANOS ADOLFO

A BRIEF HISTORY
@ In the late 1970’s while in Mexico | started working on graded geometry, in particular on
supermanifolds.
@ Adolfo became my student at UNAM.

© In 1981 Adolfo began his doctoral studies at Harvard, ultimately under the direction of
Shlomo Sternberg.

© By the mid 1980’s | had changed the direction of my research to the study of Yang-Mills
moduli spaces and self-dual 4-manifolds.

@ In the late 1980’s Adolfo and | began a project to describe super Yang-Mills theory.

Charles Boyer (University of New Mexico) A Panorama of Sasakian Geometry



FELIZ CUMPLEANOS ADOLFO

A BRIEF HISTORY
@ In the late 1970’s while in Mexico | started working on graded geometry, in particular on
supermanifolds.
@ Adolfo became my student at UNAM.

© In 1981 Adolfo began his doctoral studies at Harvard, ultimately under the direction of
Shlomo Sternberg.

© By the mid 1980’s | had changed the direction of my research to the study of Yang-Mills
moduli spaces and self-dual 4-manifolds.

@ In the late 1980’s Adolfo and | began a project to describe super Yang-Mills theory.

© This resulted in only one publication about the action of Lie supergroups on
supermanifolds.

Charles Boyer (University of New Mexico) A Panorama of Sasakian Geometry



FELIZ CUMPLEANOS ADOLFO

A BRIEF HISTORY
@ In the late 1970’s while in Mexico | started working on graded geometry, in particular on
supermanifolds.
@ Adolfo became my student at UNAM.

© In 1981 Adolfo began his doctoral studies at Harvard, ultimately under the direction of
Shlomo Sternberg.

© By the mid 1980’s | had changed the direction of my research to the study of Yang-Mills
moduli spaces and self-dual 4-manifolds.

@ In the late 1980’s Adolfo and | began a project to describe super Yang-Mills theory.

© This resulted in only one publication about the action of Lie supergroups on
supermanifolds.

@ Adolfo, of course, continued to develop supergeometry, while | returned to the study of
Yang-Mills moduli type problems and then to the study of Sasakian geometry which
provides a large class of Einstein manifolds, namely Sasaki-Einstein manifolds.

Charles Boyer (University of New Mexico) A Panorama of Sasakian Geometry



FELIZ CUMPLEANOS ADOLFO

A BRIEF HISTORY
@ In the late 1970’s while in Mexico | started working on graded geometry, in particular on
supermanifolds.
@ Adolfo became my student at UNAM.

© In 1981 Adolfo began his doctoral studies at Harvard, ultimately under the direction of
Shlomo Sternberg.

© By the mid 1980’s | had changed the direction of my research to the study of Yang-Mills
moduli spaces and self-dual 4-manifolds.

@ In the late 1980’s Adolfo and | began a project to describe super Yang-Mills theory.

© This resulted in only one publication about the action of Lie supergroups on
supermanifolds.

@ Adolfo, of course, continued to develop supergeometry, while | returned to the study of
Yang-Mills moduli type problems and then to the study of Sasakian geometry which
provides a large class of Einstein manifolds, namely Sasaki-Einstein manifolds.

© PROBLEM: UNITE SUPERGEOMETRY WITH SASAKIAN GEOMETRY

Charles Boyer (University of New Mexico) A Panorama of Sasakian Geometry



FELIZ CUMPLEANOS ADOLFO

A BRIEF HISTORY
@ In the late 1970’s while in Mexico | started working on graded geometry, in particular on
supermanifolds.
@ Adolfo became my student at UNAM.

© In 1981 Adolfo began his doctoral studies at Harvard, ultimately under the direction of
Shlomo Sternberg.

© By the mid 1980’s | had changed the direction of my research to the study of Yang-Mills
moduli spaces and self-dual 4-manifolds.

@ In the late 1980’s Adolfo and | began a project to describe super Yang-Mills theory.

© This resulted in only one publication about the action of Lie supergroups on
supermanifolds.

@ Adolfo, of course, continued to develop supergeometry, while | returned to the study of
Yang-Mills moduli type problems and then to the study of Sasakian geometry which
provides a large class of Einstein manifolds, namely Sasaki-Einstein manifolds.

© PROBLEM: UNITE SUPERGEOMETRY WITH SASAKIAN GEOMETRY

IDEA
o

Charles Boyer (University of New Mexico) A Panorama of Sasakian Geometry



FELIZ CUMPLEANOS ADOLFO

A BRIEF HISTORY
@ In the late 1970’s while in Mexico | started working on graded geometry, in particular on
supermanifolds.
@ Adolfo became my student at UNAM.

© In 1981 Adolfo began his doctoral studies at Harvard, ultimately under the direction of
Shlomo Sternberg.

© By the mid 1980’s | had changed the direction of my research to the study of Yang-Mills
moduli spaces and self-dual 4-manifolds.

@ In the late 1980’s Adolfo and | began a project to describe super Yang-Mills theory.

© This resulted in only one publication about the action of Lie supergroups on
supermanifolds.

@ Adolfo, of course, continued to develop supergeometry, while | returned to the study of
Yang-Mills moduli type problems and then to the study of Sasakian geometry which
provides a large class of Einstein manifolds, namely Sasaki-Einstein manifolds.

© PROBLEM: UNITE SUPERGEOMETRY WITH SASAKIAN GEOMETRY

IDEA
o
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dn(JX,JY) = dn(X,Y) dn(JX,Y) >0
for any sections X, Y of D.
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Sasakian Geometry, continued

@ There is a ‘canonical’ compatible metric g = dno (¢ ® 1) +n ® n. Quadruple S = (£,n, P, g)
called contact metric structure. Contact metric manifold (M, S).
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@ If Sisirregular, then the closure F; is a torus T of dimension 1 < k < n+ 1.
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@ Some properties of a Sasaki manifold (M, S) of dimension 2n + 1:

@ Any Sasaki structure S has at least an S' symmetry.

@ The characteristic foliation JF¢ is Riemannian, that is, a Riemannian flow.

@ If Sisirregular, then the closure F; is a torus T of dimension 1 < k < n+ 1.

© The metric g is bundle-like and the leaves of F¢ (orbits of ) are totally geodesic.
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@ There is a ‘canonical’ compatible metric g = dno (¢ ® 1) +n ® n. Quadruple S = (£,n, P, g)
called contact metric structure. Contact metric manifold (M, S).

@ gp = dno (¢ ® 1) defines a metric in D called the transverse metric and w’ = dnis a
transverse symplectic form in D.

@ The pair (D, J) defines an almost CR structure on D with ®|;, = J.

@ dnis called the Levi form of D and the condition dn(JX, Y) > 0 says that (D, J) is strictly
pseudo-convex abbreviated as sy CR.

@ We are mainly interested in the case that the almost CR structure is integrable, that is, that
(D, J) defines a CR structure.

Definition

The contact metric structure S = (&, n, @, g) is K-contact if Leg = 0 (or L ® = 0). It is Sasakian
if in addition (D, J) is integrable and the transverse metric gy, is Kahler (transverse holonomy
U(n)). In the latter case we say that the contact structure D is of Sasaki type.

@ (M,S)is Sasaki <= the metric cone (C(M) = M x R*, dr? + r?g) is Kéhler.
@ Some properties of a Sasaki manifold (M, S) of dimension 2n + 1:

@ Any Sasaki structure S has at least an S' symmetry.

@ The characteristic foliation JF¢ is Riemannian, that is, a Riemannian flow.

@ If Sisirregular, then the closure F; is a torus T of dimension 1 < k < n+ 1.

© The metric g is bundle-like and the leaves of F¢ (orbits of ) are totally geodesic.

@ In the quasi-regular case (M, S) is an S' orbibundle over a projective algebraic variety with an
additional orbifold structure.
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@ The Affine Cone

@ The cone C(M) = M x R* with metric g = dr? + r?g is an affine cone with respect to the complex
structure / defined by extending the CR structure J to C(M) by £ = /W where W = r% and W = —/¢.

@ (M, g) is Sasaki if and only if (C(M), g) is Kahler.

© (M, g) is Sasaki-Einstein if and only if (C(M), g) is Ricci flat Kahler.

@ These last two statements can be used as definition of Sasaki and Sasaki-Einstein, respectively.

@ Accordingly, we say that (M, g) is 3-Sasakian if (C(M), g) is hyperkahler.
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@ Correspondingly, there are three contact forms 7y, 72, 73 whose Reeb fields are &1, &2, &3,
respectively.
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The Sasaki-Einstein Problem: Some History

@ A Sasakian structure S = (&, n, @, g) is Sasaki-Einstein (SE) if the metric g is Einstein, that
is, if Ricg = 2ng.
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The Sasaki-Einstein Problem: Some History

@ A Sasakian structure S = (&, n, @, g) is Sasaki-Einstein (SE) if the metric g is Einstein, that
is, if Ricg = 2ng.
@ 3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))

3-Sasakian manifolds fiber over quaternionic Kahler orbifolds (Ishihara, Konishi
(1972-75),B-,Galicki,Mann (1994))

Many 3-Sasakian examples B-,Galicki, Mann (Rees) (1994,1998) especially in dimension 7.
SE metrics on S orbibundles over Kahler-Einstein (KE) orbifolds. B-,Galicki (2000)

SE metrics on certain connected sums of S2 x S® B-,Galicki, Nakamaye (2002-3)

SE metrics on irregular Sasakian manifolds (Gauntlett, Martelli, Sparks, Waldram (2004))
SE metrics on spheres, including exotic spheres B-,Galicki, Kollar (Thomas) (2005)

SE on many 5-manifolds (Kollar; B-,Galicki, Ghigi-Kollar (2005-07))

Existence of SE metrics in Sasaki cone of toric contact manifolds of Reeb type with ¢; = 0
by deforming in Sasaki cone (Futaki,Ono,Wang (2009)); Uniqueness (Cho,Futaki,Ono (2008))

@ Uniqueness of SE metrics in the transverse Kahler class up to transverse holomorphic
transformations (Nitta,Sekiya (2012))

@ New examples of SE metrics by deforming in the Sasaki cone (Mabuchi,Nakagawa (2013))

@ Geometry and topology of SE metrics by deforming in Sasaki cone (B-,Tennesen-Friedman
(2015))
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The Sasaki-Einstein Problem: Some History

@ A Sasakian structure S = (&, n, @, g) is Sasaki-Einstein (SE) if the metric g is Einstein, that
is, if Ricg = 2ng.
@ 3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))

3-Sasakian manifolds fiber over quaternionic Kahler orbifolds (Ishihara, Konishi
(1972-75),B-,Galicki,Mann (1994))

Many 3-Sasakian examples B-,Galicki, Mann (Rees) (1994,1998) especially in dimension 7.
SE metrics on S orbibundles over Kahler-Einstein (KE) orbifolds. B-,Galicki (2000)

SE metrics on certain connected sums of S2 x S® B-,Galicki, Nakamaye (2002-3)

SE metrics on irregular Sasakian manifolds (Gauntlett, Martelli, Sparks, Waldram (2004))
SE metrics on spheres, including exotic spheres B-,Galicki, Kollar (Thomas) (2005)

SE on many 5-manifolds (Kollar; B-,Galicki, Ghigi-Kollar (2005-07))

Existence of SE metrics in Sasaki cone of toric contact manifolds of Reeb type with ¢; = 0
by deforming in Sasaki cone (Futaki,Ono,Wang (2009)); Uniqueness (Cho,Futaki,Ono (2008))

@ Uniqueness of SE metrics in the transverse Kahler class up to transverse holomorphic
transformations (Nitta,Sekiya (2012))

@ New examples of SE metrics by deforming in the Sasaki cone (Mabuchi,Nakagawa (2013))

@ Geometry and topology of SE metrics by deforming in Sasaki cone (B-,Tennesen-Friedman
(2015))

@ The Donaldson,Tian,Yau conjecture in the SE case as been proved recently by Collins and
Székelyhidi.
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Killing Spinors

@ A Clifford bundle C¢(M) on (M, g) is the tensor bundle T(M) modulo the ideal bundle J
generated pointwise by elements of the form v ® v + g(v, v).

Charles Boyer (University of New Mexico) A Panorama of Sasakian Geometry



Killing Spinors
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generated pointwise by elements of the form v ® v + g(v, v).

@ A (real) spinor bundle S(M) is a bundle of modules over C¢(M).
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Killing Spinors

@ A Clifford bundle C¢(M) on (M, g) is the tensor bundle T(M) modulo the ideal bundle J
generated pointwise by elements of the form v ® v + g(v, v).

@ A (real) spinor bundle S(M) is a bundle of modules over C¢(M).

@ An oriented Riemannian manifold (M, g) admits a spinor bundle if and only if its second
Stiefel-Whitney class w» vanishes in which case (M, g) is called a spin manifold.
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Killing Spinors

@ A Clifford bundle C¢(M) on (M, g) is the tensor bundle T(M) modulo the ideal bundle J
generated pointwise by elements of the form v ® v + g(v, v).

@ A (real) spinor bundle S(M) is a bundle of modules over C¢(M).

@ An oriented Riemannian manifold (M, g) admits a spinor bundle if and only if its second
Stiefel-Whitney class w» vanishes in which case (M, g) is called a spin manifold.

Definition

A smooth section ¥ of S(M) is called a Killing spinor if for every vector field X there is « € C,
called Killing number, such that
Vx =aX:.

Here -denotes Clifford multiplication.
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@ A Clifford bundle C¢(M) on (M, g) is the tensor bundle T(M) modulo the ideal bundle J
generated pointwise by elements of the form v ® v + g(v, v).

@ A (real) spinor bundle S(M) is a bundle of modules over C¢(M).

@ An oriented Riemannian manifold (M, g) admits a spinor bundle if and only if its second
Stiefel-Whitney class w» vanishes in which case (M, g) is called a spin manifold.

Definition

A smooth section ¥ of S(M) is called a Killing spinor if for every vector field X there is « € C,
called Killing number, such that
Vx =aX:.

Here -denotes Clifford multiplication.

@ The Killing number « is either real or pure imaginary. If « is pure imaginary then (M, g) is
non-compact (Friedrich).
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Killing Spinors

@ A Clifford bundle C¢(M) on (M, g) is the tensor bundle T(M) modulo the ideal bundle J
generated pointwise by elements of the form v ® v + g(v, v).

@ A (real) spinor bundle S(M) is a bundle of modules over C¢(M).

@ An oriented Riemannian manifold (M, g) admits a spinor bundle if and only if its second
Stiefel-Whitney class w» vanishes in which case (M, g) is called a spin manifold.

Definition

A smooth section ¥ of S(M) is called a Killing spinor if for every vector field X there is « € C,

called Killing number, such that
Vx =aX:.

Here -denotes Clifford multiplication.

@ The Killing number « is either real or pure imaginary. If « is pure imaginary then (M, g) is
non-compact (Friedrich).

@ A remarkable theorem of Friedrich: Let (M", g) be a Riemannian spin manifold which admits
a non-trivial Killing spinor ¢ with Killing number «. Then (M", g) is Einstein with scalar
curvature s = 4n(n — 1)a?.

Charles Boyer (University of New Mexico) A Panorama of Sasakian Geometry



Killing Spinors

@ A Clifford bundle C¢(M) on (M, g) is the tensor bundle T(M) modulo the ideal bundle J
generated pointwise by elements of the form v ® v + g(v, v).

@ A (real) spinor bundle S(M) is a bundle of modules over C¢(M).

@ An oriented Riemannian manifold (M, g) admits a spinor bundle if and only if its second
Stiefel-Whitney class w» vanishes in which case (M, g) is called a spin manifold.

Definition

A smooth section ¥ of S(M) is called a Killing spinor if for every vector field X there is « € C,

called Killing number, such that
Vx =aX:.

Here -denotes Clifford multiplication.

@ The Killing number « is either real or pure imaginary. If « is pure imaginary then (M, g) is
non-compact (Friedrich).

@ A remarkable theorem of Friedrich: Let (M", g) be a Riemannian spin manifold which admits
a non-trivial Killing spinor ¢ with Killing number «. Then (M", g) is Einstein with scalar
curvature s = 4n(n — 1)a?.

@ AKilling spinor is a eigenvector of the Dirac operator D = >~ E; - Vg, with eigenvalue —na
where {E;} is a local orthonormal frame.
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Killing Spinors

@ A Clifford bundle C¢(M) on (M, g) is the tensor bundle T(M) modulo the ideal bundle J
generated pointwise by elements of the form v ® v + g(v, v).
@ A (real) spinor bundle S(M) is a bundle of modules over C¢(M).

@ An oriented Riemannian manifold (M, g) admits a spinor bundle if and only if its second
Stiefel-Whitney class w» vanishes in which case (M, g) is called a spin manifold.

Definition

A smooth section ¥ of S(M) is called a Killing spinor if for every vector field X there is « € C,

called Killing number, such that
Vx =aX:.

Here -denotes Clifford multiplication.

@ The Killing number « is either real or pure imaginary. If « is pure imaginary then (M, g) is
non-compact (Friedrich).

@ A remarkable theorem of Friedrich: Let (M", g) be a Riemannian spin manifold which admits
a non-trivial Killing spinor ¢ with Killing number «. Then (M", g) is Einstein with scalar
curvature s = 4n(n — 1)a?.

@ AKilling spinor is a eigenvector of the Dirac operator D = >~ E; - Vg, with eigenvalue —na
where {E;} is a local orthonormal frame.

@ A Killing spinor which is not identically zero has no zeroes.
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Killing Spinors

@ A Clifford bundle C¢(M) on (M, g) is the tensor bundle T(M) modulo the ideal bundle J
generated pointwise by elements of the form v ® v + g(v, v).

@ A (real) spinor bundle S(M) is a bundle of modules over C¢(M).

@ An oriented Riemannian manifold (M, g) admits a spinor bundle if and only if its second
Stiefel-Whitney class w» vanishes in which case (M, g) is called a spin manifold.

Definition

A smooth section ¥ of S(M) is called a Killing spinor if for every vector field X there is « € C,
called Killing number, such that
Vx =aX:.

Here -denotes Clifford multiplication.

@ The Killing number « is either real or pure imaginary. If « is pure imaginary then (M, g) is
non-compact (Friedrich).

@ A remarkable theorem of Friedrich: Let (M", g) be a Riemannian spin manifold which admits
a non-trivial Killing spinor ¢ with Killing number «. Then (M", g) is Einstein with scalar
curvature s = 4n(n — 1)a?.

@ AKilling spinor is a eigenvector of the Dirac operator D = >~ E; - Vg, with eigenvalue —na
where {E;} is a local orthonormal frame.

@ A Killing spinor which is not identically zero has no zeroes.
@ If 1 is a Killing spinor then V¥ = 3, g(v, E; - ¥)E; is a Killing vector field.
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Killing Spinors and Sasaki-Einstein Manifolds

@ A Riemannian spin manifold (M", g) is of type (p, q) if it carries exactly p linearly
independent real Killing spinors with o > 0 and exactly q linearly independent real Killing
spinors with a < 0.
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@ A Riemannian spin manifold (M", g) is of type (p, q) if it carries exactly p linearly
independent real Killing spinors with o > 0 and exactly q linearly independent real Killing
spinors with a < 0.

Every simply connected Sasaki-Einstein manifold admits non-trivial real Killing spinors.
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@ A Riemannian spin manifold (M", g) is of type (p, q) if it carries exactly p linearly
independent real Killing spinors with o > 0 and exactly q linearly independent real Killing
spinors with a < 0.

Every simply connected Sasaki-Einstein manifold admits non-trivial real Killing spinors.

@ For Sasaki-Einstein manifolds we have the following table:
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Killing Spinors and Sasaki-Einstein Manifolds

@ A Riemannian spin manifold (M", g) is of type (p, q) if it carries exactly p linearly
independent real Killing spinors with o > 0 and exactly q linearly independent real Killing

spinors with a < 0.

Every simply connected Sasaki-Einstein manifold admits non-trivial real Killing spinors.

@ For Sasaki-Einstein manifolds we have the following table:

°

[ dim(M) | Manifold M [ type (p,q) |
2m 1 [ &2+ (2m, 2m
4m+ 1 | Sasaki — Einstein | (1,1)
4m+ 3 | Sasaki — Einstein | (2,0)
4m+ 3 | 3 Sasakian (m+2,0)
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Killing Spinors and Sasaki-Einstein Manifolds

@ A Riemannian spin manifold (M", g) is of type (p, q) if it carries exactly p linearly

independent real Killing spinors with o > 0 and exactly q linearly independent real Killing
spinors with a < 0.

Every simply connected Sasaki-Einstein manifold admits non-trivial real Killing spinors.

@ For Sasaki-Einstein manifolds we have the following table:
°

[ dim(M) | Manifold M [ type (p,q) |
2m 1 [ &2+ (2m, 2m
4m+ 1 | Sasaki — Einstein | (1,1)
4m+ 3 | Sasaki — Einstein | (2,0)
4m+ 3 | 3 Sasakian (m+2,0)

@ The two Killing spinors of type (2, 0) form a vector space; whereas those of type (1,1) do
not form a vector space.
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Killing Spinors and Sasaki-Einstein Manifolds

@ A Riemannian spin manifold (M", g) is of type (p, q) if it carries exactly p linearly

independent real Killing spinors with o > 0 and exactly q linearly independent real Killing
spinors with a < 0.

Every simply connected Sasaki-Einstein manifold admits non-trivial real Killing spinors.

@ For Sasaki-Einstein manifolds we have the following table:
°

[ dim(M) | Manifold M [ type (p,q) |
2m 1 [ &2+ (2m, 2m
4m+ 1 | Sasaki — Einstein | (1,1)
4m+ 3 | Sasaki — Einstein | (2,0)
4m+ 3 | 3 Sasakian (m+2,0)

@ The two Killing spinors of type (2, 0) form a vector space; whereas those of type (1,1) do
not form a vector space.

@ The only other compact manifolds that admit real Killing spinors are the round spheres of

any dimension and manifolds of dimension 6 and 7 whose Riemannian cone has holonomy
G, and Spin7, respectively.
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Supersymmetry and Supermanifolds

Supermanifolds

@ We denote by R"™ the space R” endowed with the structure sheaf A = ¢>°[9', ..., 0]
where the 6’ generate an exterior algebra A" and > is the sheaf of smooth functions on R”.

Supersymmetry
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@ We denote by R"™ the space R” endowed with the structure sheaf A = ¢>°[9', ..., 0]
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@ A supermanifold M is a space | M| that is locally isomorphic to R”I™ with structure sheaf
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Supermanifolds

@ We denote by R"™ the space R” endowed with the structure sheaf A = ¢>°[9', ..., 0]
where the 6’ generate an exterior algebra A" and > is the sheaf of smooth functions on R”.

@ A supermanifold M is a space | M| that is locally isomorphic to R”I™ with structure sheaf
Ay

@ Morphisms preserve the Z, grading.
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Supersymmetry and Supermanifolds

Supermanifolds
@ We denote by R"™ the space R” endowed with the structure sheaf A = ¢>°[9', ..., 0]
where the 6’ generate an exterior algebra A" and > is the sheaf of smooth functions on R”.

@ A supermanifold M is a space | M| that is locally isomorphic to R”I™ with structure sheaf
Ay

@ Morphisms preserve the Z, grading.
@ Note that |M| with structure sheaf AM/A}V, is an ordinary smooth manifold.
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Supersymmetry and Supermanifolds

Supermanifolds
@ We denote by R"™ the space R” endowed with the structure sheaf A = ¢>°[9', ..., 0]
where the 6’ generate an exterior algebra A" and > is the sheaf of smooth functions on R”.
@ A supermanifold M is a space | M| that is locally isomorphic to R”I™ with structure sheaf
Ay
@ Morphisms preserve the Z, grading.
@ Note that |M| with structure sheaf AM/A}V, is an ordinary smooth manifold.

@ Since the variables ¢/ are nilpotent, it is perhaps better to think of (M, .A) as a scheme albeit
with a Z, graded ring—a superscheme.
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Supersymmetry and Supermanifolds

Supermanifolds
@ We denote by R"™ the space R” endowed with the structure sheaf A = ¢>°[9', ..., 0]
where the 6’ generate an exterior algebra A" and > is the sheaf of smooth functions on R”.
@ A supermanifold M is a space | M| that is locally isomorphic to R”I™ with structure sheaf
Ay
Morphisms preserve the Z, grading.
Note that |[M| with structure sheaf AM/A}V, is an ordinary smooth manifold.

Since the variables 6’ are nilpotent, it is perhaps better to think of (M, A) as a scheme albeit
with a Z, graded ring—a superscheme.

@ A Lie supergroup is a group in the category of supermanifolds.

Supersymmetry
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Supersymmetry and Supermanifolds

Supermanifolds
@ We denote by R"™ the space R” endowed with the structure sheaf A = ¢>°[9', ..., 0]
where the 6’ generate an exterior algebra A" and > is the sheaf of smooth functions on R”.
@ A supermanifold M is a space | M| that is locally isomorphic to R”I™ with structure sheaf
Ay
@ Morphisms preserve the Z, grading.
@ Note that |M| with structure sheaf AM/A}V, is an ordinary smooth manifold.

@ Since the variables ¢/ are nilpotent, it is perhaps better to think of (M, .A) as a scheme albeit
with a Z, graded ring—a superscheme.

@ A Lie supergroup is a group in the category of supermanifolds.
Supersymmetry

@ Supersymmetry was defined by physicists as a symmetry in quantum field theory between
fermionic fields that anticommute and bosonic fields that commute.
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Supermanifolds
@ We denote by R"™ the space R” endowed with the structure sheaf A = ¢>°[9', ..., 0]
where the 6’ generate an exterior algebra A" and > is the sheaf of smooth functions on R”.
@ A supermanifold M is a space | M| that is locally isomorphic to R”I™ with structure sheaf
Ay
@ Morphisms preserve the Z, grading.
@ Note that |M| with structure sheaf AM/A}V, is an ordinary smooth manifold.

@ Since the variables ¢/ are nilpotent, it is perhaps better to think of (M, .A) as a scheme albeit
with a