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FELIZ CUMPLEAÑOS ADOLFO

A BRIEF HISTORY

1 In the late 1970’s while in Mexico I started working on graded geometry, in particular on
supermanifolds.

2 Adolfo became my student at UNAM.
3 In 1981 Adolfo began his doctoral studies at Harvard, ultimately under the direction of

Shlomo Sternberg.
4 By the mid 1980’s I had changed the direction of my research to the study of Yang-Mills

moduli spaces and self-dual 4-manifolds.
5 In the late 1980’s Adolfo and I began a project to describe super Yang-Mills theory.
6 This resulted in only one publication about the action of Lie supergroups on

supermanifolds.
7 Adolfo, of course, continued to develop supergeometry, while I returned to the study of

Yang-Mills moduli type problems and then to the study of Sasakian geometry which
provides a large class of Einstein manifolds, namely Sasaki-Einstein manifolds.

8 PROBLEM: UNITE SUPERGEOMETRY WITH SASAKIAN GEOMETRY
IDEA

9

10 SASAKI-EINSTEIN⇒ KILLING SPINORS⇒ SUPERSYMMETRY⇒ SUPERMANIFOLD
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/ 12



FELIZ CUMPLEAÑOS ADOLFO
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/ 12



The Foundations of Sasakian Geometry

1 A Closed Manifold M of dimension 2n + 1, i.e. compact without boundary.

2 A contact 1-form η such that
η ∧ (dη)n 6= 0.

3 defines a contact structure
η′ ∼ η ⇐⇒ η′ = fη

for some f 6= 0, take f > 0, or equivalently a codimension 1 subbundle D = Ker η of TM with
a conformal symplectic structure. So {oriented contact 1-forms in D} ≈ C∞(M)+

4 The pair (M,D) is called a contact manifold.
5 If we choose a contact 1-form η, there is a unique vector field ξ, called the Reeb vector field,

satisfying
η(ξ) = 1, ξcdη = 0.

6 The characteristic foliation Fξ is the 1-dim’l foliation defined by ξ: It is called quasi-regular
if each leaf of Fξ passes through any nbd U at most k times. It is regular if k = 1; otherwise,
it is irregular. We also say that the contact form η is quasi-regular, regular, irregular.

7 Most contact forms in a contact structure D are irregular
8 We can choose a compatible almost complex structure J on D, that is one that satisfies

the two conditions
dη(JX , JY ) = dη(X ,Y ) dη(JX ,Y ) > 0

for any sections X ,Y of D.
9 The almost complex structure J extends to an endomorphism Φ of TM satisfying Φξ = 0.
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Sasakian Geometry, continued

There is a ‘canonical’ compatible metric g = dη ◦ (Φ⊗ 1l) + η⊗ η. Quadruple S = (ξ, η,Φ, g)
called contact metric structure. Contact metric manifold (M,S).

gD = dη ◦ (Φ⊗ 1l) defines a metric in D called the transverse metric and ωT = dη is a
transverse symplectic form in D.
The pair (D, J) defines an almost CR structure on D with Φ|D = J.
dη is called the Levi form of D and the condition dη(JX ,Y ) > 0 says that (D, J) is strictly
pseudo-convex abbreviated as sψCR.
We are mainly interested in the case that the almost CR structure is integrable, that is, that
(D, J) defines a CR structure.

Definition
The contact metric structure S = (ξ, η,Φ, g) is K-contact if Lξg = 0 (or LξΦ = 0). It is Sasakian
if in addition (D, J) is integrable and the transverse metric gD is Kähler (transverse holonomy
U(n)). In the latter case we say that the contact structure D is of Sasaki type.

(M,S) is Sasaki ⇐⇒ the metric cone (C(M) = M × R+, dr2 + r2g) is Kähler.
Some properties of a Sasaki manifold (M,S) of dimension 2n + 1:

1 Any Sasaki structure S has at least an S1 symmetry.
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/ 12



Sasakian Geometry, continued

There is a ‘canonical’ compatible metric g = dη ◦ (Φ⊗ 1l) + η⊗ η. Quadruple S = (ξ, η,Φ, g)
called contact metric structure. Contact metric manifold (M,S).
gD = dη ◦ (Φ⊗ 1l) defines a metric in D called the transverse metric and ωT = dη is a
transverse symplectic form in D.

The pair (D, J) defines an almost CR structure on D with Φ|D = J.
dη is called the Levi form of D and the condition dη(JX ,Y ) > 0 says that (D, J) is strictly
pseudo-convex abbreviated as sψCR.
We are mainly interested in the case that the almost CR structure is integrable, that is, that
(D, J) defines a CR structure.

Definition
The contact metric structure S = (ξ, η,Φ, g) is K-contact if Lξg = 0 (or LξΦ = 0). It is Sasakian
if in addition (D, J) is integrable and the transverse metric gD is Kähler (transverse holonomy
U(n)). In the latter case we say that the contact structure D is of Sasaki type.

(M,S) is Sasaki ⇐⇒ the metric cone (C(M) = M × R+, dr2 + r2g) is Kähler.
Some properties of a Sasaki manifold (M,S) of dimension 2n + 1:

1 Any Sasaki structure S has at least an S1 symmetry.
2 The characteristic foliation Fξ is Riemannian, that is, a Riemannian flow.
3 If S is irregular, then the closure F̄ξ is a torus T k of dimension 1 ≤ k ≤ n + 1.
4 The metric g is bundle-like and the leaves of Fξ (orbits of ξ) are totally geodesic.
5 In the quasi-regular case (M,S) is an S1 orbibundle over a projective algebraic variety with an

additional orbifold structure.
6 The Ricci curvature of g satisfies Ricg(X , ξ) = 2nη(X) for any vector field X .

Charles Boyer (University of New Mexico) A Panorama of Sasakian Geometry
November 18, 2016WORKSHOP ON GRADED ALGEBRA, GEOMETRY AND RELATED TOPICSMérida, México 4
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/ 12



Sasakian Geometry, continued

There is a ‘canonical’ compatible metric g = dη ◦ (Φ⊗ 1l) + η⊗ η. Quadruple S = (ξ, η,Φ, g)
called contact metric structure. Contact metric manifold (M,S).
gD = dη ◦ (Φ⊗ 1l) defines a metric in D called the transverse metric and ωT = dη is a
transverse symplectic form in D.
The pair (D, J) defines an almost CR structure on D with Φ|D = J.
dη is called the Levi form of D and the condition dη(JX ,Y ) > 0 says that (D, J) is strictly
pseudo-convex abbreviated as sψCR.
We are mainly interested in the case that the almost CR structure is integrable, that is, that
(D, J) defines a CR structure.

Definition
The contact metric structure S = (ξ, η,Φ, g) is K-contact if Lξg = 0 (or LξΦ = 0). It is Sasakian
if in addition (D, J) is integrable and the transverse metric gD is Kähler (transverse holonomy
U(n)). In the latter case we say that the contact structure D is of Sasaki type.

(M,S) is Sasaki ⇐⇒ the metric cone (C(M) = M × R+, dr2 + r2g) is Kähler.
Some properties of a Sasaki manifold (M,S) of dimension 2n + 1:

1 Any Sasaki structure S has at least an S1 symmetry.
2 The characteristic foliation Fξ is Riemannian, that is, a Riemannian flow.
3 If S is irregular, then the closure F̄ξ is a torus T k of dimension 1 ≤ k ≤ n + 1.
4 The metric g is bundle-like and the leaves of Fξ (orbits of ξ) are totally geodesic.

5 In the quasi-regular case (M,S) is an S1 orbibundle over a projective algebraic variety with an
additional orbifold structure.

6 The Ricci curvature of g satisfies Ricg(X , ξ) = 2nη(X) for any vector field X .

Charles Boyer (University of New Mexico) A Panorama of Sasakian Geometry
November 18, 2016WORKSHOP ON GRADED ALGEBRA, GEOMETRY AND RELATED TOPICSMérida, México 4
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The Sasaki Cone and the Affine cone

On a compact Sasaki manifold (M2n+1,S) the Sasaki automophism group Aut(S) contains a
torus T k of dimension 1 ≤ k ≤ n + 1. The case k = n + 1 is a toric Sasakian structure.

Sasaki cone

1 tk the Lie algebra of T k

2 Sasaki cone (unreduced): t+
k (D, J) = {ξ′ ∈ tk | η(ξ′) > 0, } s.t. S = (ξ, η,Φ, g) ∈ (D, J) is

Sasakian.
3 Sasaki cone (reduced): κ(D, J) = t+

k (D, J)/W where W is the Weyl group of CR(D, J)
4 We think of κ(D, J) = t+

k (D, J)/W as the moduli space of Sasakian structures whose underlying
CR structure is (D, J).

5 1 ≤ dimκ(D, J) ≤ n + 1 and if dimκ(D, J) = n + 1, M is toric Sasakian.

The Affine Cone
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/ 12



The Sasaki Cone and the Affine cone

On a compact Sasaki manifold (M2n+1,S) the Sasaki automophism group Aut(S) contains a
torus T k of dimension 1 ≤ k ≤ n + 1. The case k = n + 1 is a toric Sasakian structure.
Sasaki cone

1 tk the Lie algebra of T k

2 Sasaki cone (unreduced): t+
k (D, J) = {ξ′ ∈ tk | η(ξ′) > 0, } s.t. S = (ξ, η,Φ, g) ∈ (D, J) is

Sasakian.
3 Sasaki cone (reduced): κ(D, J) = t+

k (D, J)/W where W is the Weyl group of CR(D, J)
4 We think of κ(D, J) = t+

k (D, J)/W as the moduli space of Sasakian structures whose underlying
CR structure is (D, J).

5 1 ≤ dimκ(D, J) ≤ n + 1 and if dimκ(D, J) = n + 1, M is toric Sasakian.

The Affine Cone
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3 (M, g) is Sasaki-Einstein if and only if (C(M), ḡ) is Ricci flat Kähler.
4 These last two statements can be used as definition of Sasaki and Sasaki-Einstein, respectively.

5 Accordingly, we say that (M, g) is 3-Sasakian if (C(M), ḡ) is hyperkähler.
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/ 12



The Sasaki Cone and the Affine cone

On a compact Sasaki manifold (M2n+1,S) the Sasaki automophism group Aut(S) contains a
torus T k of dimension 1 ≤ k ≤ n + 1. The case k = n + 1 is a toric Sasakian structure.
Sasaki cone

1 tk the Lie algebra of T k

2 Sasaki cone (unreduced): t+
k (D, J) = {ξ′ ∈ tk | η(ξ′) > 0, } s.t. S = (ξ, η,Φ, g) ∈ (D, J) is

Sasakian.
3 Sasaki cone (reduced): κ(D, J) = t+

k (D, J)/W where W is the Weyl group of CR(D, J)
4 We think of κ(D, J) = t+

k (D, J)/W as the moduli space of Sasakian structures whose underlying
CR structure is (D, J).

5 1 ≤ dimκ(D, J) ≤ n + 1 and if dimκ(D, J) = n + 1, M is toric Sasakian.

The Affine Cone
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/ 12



The Sasaki-Einstein Problem: Some History

A Sasakian structure S = (ξ, η,Φ, g) is Sasaki-Einstein (SE) if the metric g is Einstein, that
is, if Ricg = 2ng.

3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))
3-Sasakian manifolds fiber over quaternionic Kähler orbifolds (Ishihara, Konishi
(1972-75),B-,Galicki,Mann (1994))
Many 3-Sasakian examples B-,Galicki, Mann (Rees) (1994,1998) especially in dimension 7.
SE metrics on S1 orbibundles over Kähler-Einstein (KE) orbifolds. B-,Galicki (2000)
SE metrics on certain connected sums of S2 × S3 B-,Galicki, Nakamaye (2002-3)
SE metrics on irregular Sasakian manifolds (Gauntlett, Martelli, Sparks, Waldram (2004))
SE metrics on spheres, including exotic spheres B-,Galicki, Kollár (Thomas) (2005)
SE on many 5-manifolds (Kollár; B-,Galicki, Ghigi-Kollár (2005-07))
Existence of SE metrics in Sasaki cone of toric contact manifolds of Reeb type with c1 = 0
by deforming in Sasaki cone (Futaki,Ono,Wang (2009)); Uniqueness (Cho,Futaki,Ono (2008))
Uniqueness of SE metrics in the transverse Kähler class up to transverse holomorphic
transformations (Nitta,Sekiya (2012))
New examples of SE metrics by deforming in the Sasaki cone (Mabuchi,Nakagawa (2013))
Geometry and topology of SE metrics by deforming in Sasaki cone (B-,Tønnesen-Friedman
(2015))
The Donaldson,Tian,Yau conjecture in the SE case as been proved recently by Collins and
Székelyhidi.
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/ 12



The Sasaki-Einstein Problem: Some History

A Sasakian structure S = (ξ, η,Φ, g) is Sasaki-Einstein (SE) if the metric g is Einstein, that
is, if Ricg = 2ng.
3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))
3-Sasakian manifolds fiber over quaternionic Kähler orbifolds (Ishihara, Konishi
(1972-75),B-,Galicki,Mann (1994))

Many 3-Sasakian examples B-,Galicki, Mann (Rees) (1994,1998) especially in dimension 7.
SE metrics on S1 orbibundles over Kähler-Einstein (KE) orbifolds. B-,Galicki (2000)
SE metrics on certain connected sums of S2 × S3 B-,Galicki, Nakamaye (2002-3)
SE metrics on irregular Sasakian manifolds (Gauntlett, Martelli, Sparks, Waldram (2004))
SE metrics on spheres, including exotic spheres B-,Galicki, Kollár (Thomas) (2005)
SE on many 5-manifolds (Kollár; B-,Galicki, Ghigi-Kollár (2005-07))
Existence of SE metrics in Sasaki cone of toric contact manifolds of Reeb type with c1 = 0
by deforming in Sasaki cone (Futaki,Ono,Wang (2009)); Uniqueness (Cho,Futaki,Ono (2008))
Uniqueness of SE metrics in the transverse Kähler class up to transverse holomorphic
transformations (Nitta,Sekiya (2012))
New examples of SE metrics by deforming in the Sasaki cone (Mabuchi,Nakagawa (2013))
Geometry and topology of SE metrics by deforming in Sasaki cone (B-,Tønnesen-Friedman
(2015))
The Donaldson,Tian,Yau conjecture in the SE case as been proved recently by Collins and
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/ 12



The Sasaki-Einstein Problem: Some History

A Sasakian structure S = (ξ, η,Φ, g) is Sasaki-Einstein (SE) if the metric g is Einstein, that
is, if Ricg = 2ng.
3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))
3-Sasakian manifolds fiber over quaternionic Kähler orbifolds (Ishihara, Konishi
(1972-75),B-,Galicki,Mann (1994))
Many 3-Sasakian examples B-,Galicki, Mann (Rees) (1994,1998) especially in dimension 7.
SE metrics on S1 orbibundles over Kähler-Einstein (KE) orbifolds. B-,Galicki (2000)
SE metrics on certain connected sums of S2 × S3 B-,Galicki, Nakamaye (2002-3)
SE metrics on irregular Sasakian manifolds (Gauntlett, Martelli, Sparks, Waldram (2004))
SE metrics on spheres, including exotic spheres B-,Galicki, Kollár (Thomas) (2005)

SE on many 5-manifolds (Kollár; B-,Galicki, Ghigi-Kollár (2005-07))
Existence of SE metrics in Sasaki cone of toric contact manifolds of Reeb type with c1 = 0
by deforming in Sasaki cone (Futaki,Ono,Wang (2009)); Uniqueness (Cho,Futaki,Ono (2008))
Uniqueness of SE metrics in the transverse Kähler class up to transverse holomorphic
transformations (Nitta,Sekiya (2012))
New examples of SE metrics by deforming in the Sasaki cone (Mabuchi,Nakagawa (2013))
Geometry and topology of SE metrics by deforming in Sasaki cone (B-,Tønnesen-Friedman
(2015))
The Donaldson,Tian,Yau conjecture in the SE case as been proved recently by Collins and
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/ 12



The Sasaki-Einstein Problem: Some History

A Sasakian structure S = (ξ, η,Φ, g) is Sasaki-Einstein (SE) if the metric g is Einstein, that
is, if Ricg = 2ng.
3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))
3-Sasakian manifolds fiber over quaternionic Kähler orbifolds (Ishihara, Konishi
(1972-75),B-,Galicki,Mann (1994))
Many 3-Sasakian examples B-,Galicki, Mann (Rees) (1994,1998) especially in dimension 7.
SE metrics on S1 orbibundles over Kähler-Einstein (KE) orbifolds. B-,Galicki (2000)
SE metrics on certain connected sums of S2 × S3 B-,Galicki, Nakamaye (2002-3)
SE metrics on irregular Sasakian manifolds (Gauntlett, Martelli, Sparks, Waldram (2004))
SE metrics on spheres, including exotic spheres B-,Galicki, Kollár (Thomas) (2005)
SE on many 5-manifolds (Kollár; B-,Galicki, Ghigi-Kollár (2005-07))
Existence of SE metrics in Sasaki cone of toric contact manifolds of Reeb type with c1 = 0
by deforming in Sasaki cone (Futaki,Ono,Wang (2009)); Uniqueness (Cho,Futaki,Ono (2008))
Uniqueness of SE metrics in the transverse Kähler class up to transverse holomorphic
transformations (Nitta,Sekiya (2012))

New examples of SE metrics by deforming in the Sasaki cone (Mabuchi,Nakagawa (2013))
Geometry and topology of SE metrics by deforming in Sasaki cone (B-,Tønnesen-Friedman
(2015))
The Donaldson,Tian,Yau conjecture in the SE case as been proved recently by Collins and
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3-Sasakian manifolds fiber over quaternionic Kähler orbifolds (Ishihara, Konishi
(1972-75),B-,Galicki,Mann (1994))
Many 3-Sasakian examples B-,Galicki, Mann (Rees) (1994,1998) especially in dimension 7.
SE metrics on S1 orbibundles over Kähler-Einstein (KE) orbifolds. B-,Galicki (2000)
SE metrics on certain connected sums of S2 × S3 B-,Galicki, Nakamaye (2002-3)
SE metrics on irregular Sasakian manifolds (Gauntlett, Martelli, Sparks, Waldram (2004))
SE metrics on spheres, including exotic spheres B-,Galicki, Kollár (Thomas) (2005)
SE on many 5-manifolds (Kollár; B-,Galicki, Ghigi-Kollár (2005-07))
Existence of SE metrics in Sasaki cone of toric contact manifolds of Reeb type with c1 = 0
by deforming in Sasaki cone (Futaki,Ono,Wang (2009)); Uniqueness (Cho,Futaki,Ono (2008))
Uniqueness of SE metrics in the transverse Kähler class up to transverse holomorphic
transformations (Nitta,Sekiya (2012))
New examples of SE metrics by deforming in the Sasaki cone (Mabuchi,Nakagawa (2013))
Geometry and topology of SE metrics by deforming in Sasaki cone (B-,Tønnesen-Friedman
(2015))

The Donaldson,Tian,Yau conjecture in the SE case as been proved recently by Collins and
Székelyhidi.
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Killing Spinors

A Clifford bundle C`(M) on (M, g) is the tensor bundle T(M) modulo the ideal bundle I

generated pointwise by elements of the form v ⊗ v + g(v , v).

A (real) spinor bundle S(M) is a bundle of modules over C`(M).
An oriented Riemannian manifold (M, g) admits a spinor bundle if and only if its second
Stiefel-Whitney class w2 vanishes in which case (M, g) is called a spin manifold.

Definition
A smooth section ψ of S(M) is called a Killing spinor if for every vector field X there is α ∈ C,
called Killing number, such that

∇Xψ = αX ·ψ .

Here ·denotes Clifford multiplication.

The Killing number α is either real or pure imaginary. If α is pure imaginary then (M, g) is
non-compact (Friedrich).
A remarkable theorem of Friedrich: Let (Mn, g) be a Riemannian spin manifold which admits
a non-trivial Killing spinor ψ with Killing number α. Then (Mn, g) is Einstein with scalar
curvature s = 4n(n − 1)α2.

A Killing spinor is a eigenvector of the Dirac operator D =
∑

i Ei · ∇Ei
with eigenvalue −nα

where {Ei} is a local orthonormal frame.
A Killing spinor which is not identically zero has no zeroes.
If ψ is a Killing spinor then Vψ =

∑
i g(ψ,Ei · ψ)Ei is a Killing vector field.
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/ 12



Killing Spinors

A Clifford bundle C`(M) on (M, g) is the tensor bundle T(M) modulo the ideal bundle I

generated pointwise by elements of the form v ⊗ v + g(v , v).
A (real) spinor bundle S(M) is a bundle of modules over C`(M).
An oriented Riemannian manifold (M, g) admits a spinor bundle if and only if its second
Stiefel-Whitney class w2 vanishes in which case (M, g) is called a spin manifold.

Definition
A smooth section ψ of S(M) is called a Killing spinor if for every vector field X there is α ∈ C,
called Killing number, such that

∇Xψ = αX ·ψ .

Here ·denotes Clifford multiplication.

The Killing number α is either real or pure imaginary. If α is pure imaginary then (M, g) is
non-compact (Friedrich).

A remarkable theorem of Friedrich: Let (Mn, g) be a Riemannian spin manifold which admits
a non-trivial Killing spinor ψ with Killing number α. Then (Mn, g) is Einstein with scalar
curvature s = 4n(n − 1)α2.

A Killing spinor is a eigenvector of the Dirac operator D =
∑

i Ei · ∇Ei
with eigenvalue −nα

where {Ei} is a local orthonormal frame.
A Killing spinor which is not identically zero has no zeroes.
If ψ is a Killing spinor then Vψ =

∑
i g(ψ,Ei · ψ)Ei is a Killing vector field.

Charles Boyer (University of New Mexico) A Panorama of Sasakian Geometry
November 18, 2016WORKSHOP ON GRADED ALGEBRA, GEOMETRY AND RELATED TOPICSMérida, México 7
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Killing Spinors and Sasaki-Einstein Manifolds

A Riemannian spin manifold (Mn, g) is of type (p, q) if it carries exactly p linearly
independent real Killing spinors with α > 0 and exactly q linearly independent real Killing
spinors with α < 0.

Theorem (Friedrich,Kath)
Every simply connected Sasaki-Einstein manifold admits non-trivial real Killing spinors.

For Sasaki-Einstein manifolds we have the following table:

dim(M) Manifold M type (p, q)

2m + 1 S2m+1 (2m, 2m)
4m + 1 Sasaki − Einstein (1, 1)
4m + 3 Sasaki − Einstein (2, 0)
4m + 3 3 Sasakian (m + 2, 0)

The two Killing spinors of type (2, 0) form a vector space; whereas those of type (1, 1) do
not form a vector space.

The only other compact manifolds that admit real Killing spinors are the round spheres of
any dimension and manifolds of dimension 6 and 7 whose Riemannian cone has holonomy
G2 and Spin7, respectively.
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Supersymmetry and Supermanifolds

Supermanifolds

We denote by Rn|m the space Rn endowed with the structure sheaf A = C∞[θ1, · · · , θm]
where the θi generate an exterior algebra A1 and C∞ is the sheaf of smooth functions on Rn.

A supermanifold M is a space |M| that is locally isomorphic to Rn|m with structure sheaf
AM .
Morphisms preserve the Z2 grading.
Note that |M| with structure sheaf AM/A

1
M is an ordinary smooth manifold.

Since the variables θi are nilpotent, it is perhaps better to think of (M,A) as a scheme albeit
with a Z2 graded ring–a superscheme.
A Lie supergroup is a group in the category of supermanifolds.

Supersymmetry

Supersymmetry was defined by physicists as a symmetry in quantum field theory between
fermionic fields that anticommute and bosonic fields that commute.
In mathematical terms one can work with bundles of Clifford superalgebra modules.
The generators of supersymmetry should form a Lie superalgebra.
An Example: The Lie superalgebra g = g0 + g1 where g0 is generated by the vector field ∂t
and g1 is generated by Q = ∂θ + θ∂t . They satisfy the Z2 graded bracket relations
[Q,Q] = 2∂t and [∂t ,Q] = 0.
This generates an action of a Lie supergroup G on R1|1, namely
(t , θ) 7→ (t + t ′ + θ′θ, θ + θ′).
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/ 12



Supersymmetry and Supermanifolds

Supermanifolds

We denote by Rn|m the space Rn endowed with the structure sheaf A = C∞[θ1, · · · , θm]
where the θi generate an exterior algebra A1 and C∞ is the sheaf of smooth functions on Rn.
A supermanifold M is a space |M| that is locally isomorphic to Rn|m with structure sheaf
AM .
Morphisms preserve the Z2 grading.

Note that |M| with structure sheaf AM/A
1
M is an ordinary smooth manifold.

Since the variables θi are nilpotent, it is perhaps better to think of (M,A) as a scheme albeit
with a Z2 graded ring–a superscheme.
A Lie supergroup is a group in the category of supermanifolds.

Supersymmetry

Supersymmetry was defined by physicists as a symmetry in quantum field theory between
fermionic fields that anticommute and bosonic fields that commute.
In mathematical terms one can work with bundles of Clifford superalgebra modules.
The generators of supersymmetry should form a Lie superalgebra.
An Example: The Lie superalgebra g = g0 + g1 where g0 is generated by the vector field ∂t
and g1 is generated by Q = ∂θ + θ∂t . They satisfy the Z2 graded bracket relations
[Q,Q] = 2∂t and [∂t ,Q] = 0.
This generates an action of a Lie supergroup G on R1|1, namely
(t , θ) 7→ (t + t ′ + θ′θ, θ + θ′).

Charles Boyer (University of New Mexico) A Panorama of Sasakian Geometry
November 18, 2016WORKSHOP ON GRADED ALGEBRA, GEOMETRY AND RELATED TOPICSMérida, México 9
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Supersymmetry a la Dan Freed

Here we have a baby example of supersymmetry:

N a Riemannian manifold and x : R−−−→N is a path of a classical particle x .

The manifold N can be Euclidean space, a representation of spin group, or more generally
certain Riemannian manifolds to incorporate the so-called nonlinear σ models.

A fermionic superpartner ϕ that is an odd tangent vector along the path.

This can be described by a map Φ : R1|1−−−→N such that x = ι∗Φ and ϕ = ι∗DΦ where
D = ∂θ − θ∂t and ι : R−−−→R1|1 is the inclusion defined by ι∗t = t and ι∗θ = 0.

The Lagrangian density for this is

L =
1
2
|ẋ |2 +

1
2
< ϕ,∇ẋϕ > .

L is invariant under the Lie supergroup G generated by ∂t ,Q = ∂θ + θ∂t , that is L is
supersymmetric.
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/ 12



Supersymmetry a la Dan Freed

Here we have a baby example of supersymmetry:

N a Riemannian manifold and x : R−−−→N is a path of a classical particle x .

The manifold N can be Euclidean space, a representation of spin group, or more generally
certain Riemannian manifolds to incorporate the so-called nonlinear σ models.

A fermionic superpartner ϕ that is an odd tangent vector along the path.

This can be described by a map Φ : R1|1−−−→N such that x = ι∗Φ and ϕ = ι∗DΦ where
D = ∂θ − θ∂t and ι : R−−−→R1|1 is the inclusion defined by ι∗t = t and ι∗θ = 0.

The Lagrangian density for this is

L =
1
2
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Killing Spinors, Supersymmetry and Supermanifolds

I want to understand the following implications:

SASAKI-EINSTEIN⇒ KILLING SPINORS⇒ SUPERMANIFOLD with SUPERSYMMETRY
The first implication is now clear.

Folklore: according to physicists Killing spinors give rise to supersymmetry.

QUESTIONS

Exactly how does this occur? Is there a general recipe that associates a Lie superalgebra to
a vector space of Killing spinors?

Given a Sasaki-Einstein manifold |M|, can we associate a supermanifold structure (M,A)
on |M| such that the Killing spinors “generate” a Lie supergroup action on (M,A)?
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