DEDICATED TO PROFESSOR ADOLFO SANCHEZ-VALENZUELA

A Panorama of Sasakian Geometry

Charles Boyer

University of New Mexico

November 18, 2016 WORKSHOP ON GRADED ALGEBRA, GEOMETRY AND RELATED TOPICS Mérida, México

A BRIEF HISTORY

 In the late 1970's while in Mexico I started working on graded geometry, in particular on supermanifolds.

- In the late 1970's while in Mexico I started working on graded geometry, in particular on supermanifolds.
- Adolfo became my student at UNAM.

- In the late 1970's while in Mexico I started working on graded geometry, in particular on supermanifolds.
- Adolfo became my student at UNAM.
- In 1981 Adolfo began his doctoral studies at Harvard, ultimately under the direction of Shlomo Sternberg.

- In the late 1970's while in Mexico I started working on graded geometry, in particular on supermanifolds.
- Adolfo became my student at UNAM.
- In 1981 Adolfo began his doctoral studies at Harvard, ultimately under the direction of Shlomo Sternberg.
- By the mid 1980's I had changed the direction of my research to the study of Yang-Mills moduli spaces and self-dual 4-manifolds.

- In the late 1970's while in Mexico I started working on graded geometry, in particular on supermanifolds.
- Adolfo became my student at UNAM.
- In 1981 Adolfo began his doctoral studies at Harvard, ultimately under the direction of Shlomo Sternberg.
- By the mid 1980's I had changed the direction of my research to the study of Yang-Mills moduli spaces and self-dual 4-manifolds.
- In the late 1980's Adolfo and I began a project to describe super Yang-Mills theory.

- In the late 1970's while in Mexico I started working on graded geometry, in particular on supermanifolds.
- Adolfo became my student at UNAM.
- In 1981 Adolfo began his doctoral studies at Harvard, ultimately under the direction of Shlomo Sternberg.
- By the mid 1980's I had changed the direction of my research to the study of Yang-Mills moduli spaces and self-dual 4-manifolds.
- In the late 1980's Adolfo and I began a project to describe super Yang-Mills theory.
- This resulted in only one publication about the action of Lie supergroups on supermanifolds.

- In the late 1970's while in Mexico I started working on graded geometry, in particular on supermanifolds.
- Adolfo became my student at UNAM.
- In 1981 Adolfo began his doctoral studies at Harvard, ultimately under the direction of Shlomo Sternberg.
- By the mid 1980's I had changed the direction of my research to the study of Yang-Mills moduli spaces and self-dual 4-manifolds.
- In the late 1980's Adolfo and I began a project to describe super Yang-Mills theory.
- This resulted in only one publication about the action of Lie supergroups on supermanifolds.
- Adolfo, of course, continued to develop supergeometry, while I returned to the study of Yang-Mills moduli type problems and then to the study of Sasakian geometry which provides a large class of Einstein manifolds, namely Sasaki-Einstein manifolds.

- In the late 1970's while in Mexico I started working on graded geometry, in particular on supermanifolds.
- Adolfo became my student at UNAM.
- In 1981 Adolfo began his doctoral studies at Harvard, ultimately under the direction of Shlomo Sternberg.
- By the mid 1980's I had changed the direction of my research to the study of Yang-Mills moduli spaces and self-dual 4-manifolds.
- In the late 1980's Adolfo and I began a project to describe super Yang-Mills theory.
- This resulted in only one publication about the action of Lie supergroups on supermanifolds.
- Adolfo, of course, continued to develop supergeometry, while I returned to the study of Yang-Mills moduli type problems and then to the study of Sasakian geometry which provides a large class of Einstein manifolds, namely Sasaki-Einstein manifolds.
- **8 PROBLEM: UNITE SUPERGEOMETRY WITH SASAKIAN GEOMETRY**

A BRIEF HISTORY

- In the late 1970's while in Mexico I started working on graded geometry, in particular on supermanifolds.
- Adolfo became my student at UNAM.
- In 1981 Adolfo began his doctoral studies at Harvard, ultimately under the direction of Shlomo Sternberg.
- By the mid 1980's I had changed the direction of my research to the study of Yang-Mills moduli spaces and self-dual 4-manifolds.
- In the late 1980's Adolfo and I began a project to describe super Yang-Mills theory.
- This resulted in only one publication about the action of Lie supergroups on supermanifolds.
- Adolfo, of course, continued to develop supergeometry, while I returned to the study of Yang-Mills moduli type problems and then to the study of Sasakian geometry which provides a large class of Einstein manifolds, namely Sasaki-Einstein manifolds.
- **10** PROBLEM: UNITE SUPERGEOMETRY WITH SASAKIAN GEOMETRY

IDEA

A BRIEF HISTORY

- In the late 1970's while in Mexico I started working on graded geometry, in particular on supermanifolds.
- Adolfo became my student at UNAM.
- In 1981 Adolfo began his doctoral studies at Harvard, ultimately under the direction of Shlomo Sternberg.
- By the mid 1980's I had changed the direction of my research to the study of Yang-Mills moduli spaces and self-dual 4-manifolds.
- In the late 1980's Adolfo and I began a project to describe super Yang-Mills theory.
- This resulted in only one publication about the action of Lie supergroups on supermanifolds.
- Adolfo, of course, continued to develop supergeometry, while I returned to the study of Yang-Mills moduli type problems and then to the study of Sasakian geometry which provides a large class of Einstein manifolds, namely Sasaki-Einstein manifolds.
- **10** PROBLEM: UNITE SUPERGEOMETRY WITH SASAKIAN GEOMETRY

IDEA

- 9
- SASAKI-EINSTEIN ⇒ KILLING SPINORS ⇒ SUPERSYMMETRY ⇒ SUPERMANIFOLD

1 A Closed Manifold M of dimension 2n + 1, i.e. compact without boundary.

- **1** A Closed Manifold M of dimension 2n + 1, i.e. compact without boundary.
- **2** A contact 1-form η such that

$$\eta \wedge (d\eta)^n \neq 0.$$

- **1** A Closed Manifold M of dimension 2n + 1, i.e. compact without boundary.
- ② A contact 1-form η such that

$$\eta \wedge (d\eta)^n \neq 0.$$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some $f \neq 0$, take f > 0, or equivalently a codimension 1 subbundle $\mathfrak{D} = \operatorname{Ker} \eta$ of TM with a conformal symplectic structure. So {oriented contact 1-forms in \mathfrak{D} } $\approx C^{\infty}(M)^+$

- \bullet A Closed Manifold M of dimension 2n+1, i.e. compact without boundary.
- 2 A contact 1-form η such that

$$\eta \wedge (d\eta)^n \neq 0.$$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some $f \neq 0$, take f > 0, or equivalently a codimension 1 subbundle $\mathcal{D} = \text{Ker } \eta$ of TM with a conformal symplectic structure. So {oriented contact 1-forms in \mathfrak{D} } $\approx C^{\infty}(M)^+$

The pair (M, \mathbb{D}) is called a **contact manifold**.

- **1** A Closed Manifold M of dimension 2n + 1, i.e. compact without boundary.
- ② A contact 1-form η such that

$$\eta \wedge (d\eta)^n \neq 0.$$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f \eta$$

for some $f \neq 0$, take f > 0, or equivalently a codimension 1 subbundle $\mathfrak{D} = \operatorname{Ker} \eta$ of TM with a conformal symplectic structure. So {oriented contact 1-forms in \mathfrak{D} } $\approx C^{\infty}(M)^+$

- The pair (M, \mathcal{D}) is called a **contact manifold**.
- **3** If we choose a contact 1-form η , there is a unique vector field ξ , called the **Reeb vector field**, satisfying

$$\eta(\xi) = 1, \qquad \xi \rfloor d\eta = 0.$$

- **1** A Closed Manifold M of dimension 2n + 1, i.e. compact without boundary.
- ② A contact 1-form η such that

$$\eta \wedge (d\eta)^n \neq 0.$$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some $f \neq 0$, take f > 0, or equivalently a codimension 1 subbundle $\mathfrak{D} = \operatorname{Ker} \eta$ of TM with a conformal symplectic structure. So {oriented contact 1-forms in \mathfrak{D} } $\approx C^{\infty}(M)^+$

- The pair (M, \mathcal{D}) is called a **contact manifold**.
- If we choose a contact 1-form η, there is a unique vector field ξ, called the Reeb vector field, satisfying

$$\eta(\xi) = 1, \qquad \xi \rfloor d\eta = 0.$$

3 The characteristic foliation \mathcal{F}_{ξ} is the 1-dim'l foliation defined by ξ : It is called quasi-regular if each leaf of \mathcal{F}_{ξ} passes through any nbd U at most k times. It is regular if k=1; otherwise, it is irregular. We also say that the contact form η is quasi-regular, regular, irregular.

- **1** A Closed Manifold M of dimension 2n + 1, i.e. compact without boundary.
- ② A contact 1-form η such that

$$\eta \wedge (d\eta)^n \neq 0.$$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some $f \neq 0$, take f > 0, or equivalently a codimension 1 subbundle $\mathfrak{D} = \operatorname{Ker} \eta$ of TM with a conformal symplectic structure. So {oriented contact 1-forms in \mathfrak{D} } $\approx C^{\infty}(M)^+$

- The pair (M, \mathcal{D}) is called a **contact manifold**.
- If we choose a contact 1-form η, there is a unique vector field ξ, called the Reeb vector field, satisfying

$$\eta(\xi) = 1, \qquad \xi \rfloor d\eta = 0.$$

- **1** The characteristic foliation \mathcal{F}_{ξ} is the 1-dim'l foliation defined by ξ : It is called quasi-regular if each leaf of \mathcal{F}_{ξ} passes through any nbd U at most k times. It is regular if k=1; otherwise, it is irregular. We also say that the contact form η is quasi-regular, regular, irregular.
- Most contact forms in a contact structure D are irregular

- **1** A Closed Manifold M of dimension 2n + 1, i.e. compact without boundary.
- ② A contact 1-form η such that

$$\eta \wedge (d\eta)^n \neq 0.$$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some $f \neq 0$, take f > 0, or equivalently a codimension 1 subbundle $\mathfrak{D} = \operatorname{Ker} \eta$ of TM with a conformal symplectic structure. So {oriented contact 1-forms in \mathfrak{D} } $\approx C^{\infty}(M)^+$

- The pair (M, \mathcal{D}) is called a **contact manifold**.
- If we choose a contact 1-form η, there is a unique vector field ξ, called the Reeb vector field, satisfying

$$\eta(\xi) = 1, \qquad \xi \rfloor d\eta = 0.$$

- **①** The characteristic foliation \mathcal{F}_{ξ} is the 1-dim'l foliation defined by ξ : It is called quasi-regular if each leaf of \mathcal{F}_{ξ} passes through any nbd U at most k times. It is regular if k=1; otherwise, it is irregular. We also say that the contact form η is quasi-regular, regular, irregular.
- Most contact forms in a contact structure D are irregular
- **3** We can choose a **compatible almost complex structure** J on \mathfrak{D} , that is one that satisfies the two conditions

$$d\eta(JX, JY) = d\eta(X, Y)$$
 $d\eta(JX, Y) > 0$

for any sections X, Y of \mathfrak{D} .

- **1** A Closed Manifold M of dimension 2n + 1, i.e. compact without boundary.
- **a** A contact 1-form η such that

$$\eta \wedge (d\eta)^n \neq 0.$$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some $f \neq 0$, take f > 0, or equivalently a codimension 1 subbundle $\mathfrak{D} = \operatorname{Ker} \eta$ of TM with a conformal symplectic structure. So {oriented contact 1-forms in \mathfrak{D} } $\approx C^{\infty}(M)^+$

- The pair (M, \mathcal{D}) is called a **contact manifold**.
- **3** If we choose a contact 1-form η , there is a unique vector field ξ , called the **Reeb vector field**, satisfying

$$\eta(\xi) = 1, \qquad \xi \rfloor d\eta = 0.$$

- **1** The characteristic foliation \mathcal{F}_{ξ} is the 1-dim'l foliation defined by ξ : It is called quasi-regular if each leaf of \mathcal{F}_{ξ} passes through any nbd U at most k times. It is regular if k=1; otherwise, it is irregular. We also say that the contact form η is quasi-regular, regular, irregular.
- Most contact forms in a contact structure D are irregular
- We can choose a compatible almost complex structure J on D, that is one that satisfies the two conditions

$$d\eta(JX, JY) = d\eta(X, Y)$$
 $d\eta(JX, Y) > 0$

for any sections X, Y of \mathfrak{D} .

1 The **almost complex structure** J extends to an endomorphism Φ of TM satisfying $\Phi \xi = 0$.

• There is a 'canonical' compatible metric $g = d\eta \circ (\Phi \otimes \mathbb{1}) + \eta \otimes \eta$. Quadruple $\mathcal{S} = (\xi, \eta, \Phi, g)$ called **contact metric structure**. Contact metric manifold (M, S).

- There is a 'canonical' compatible metric $g = d\eta \circ (\Phi \otimes 1) + \eta \otimes \eta$. Quadruple $S = (\xi, \eta, \Phi, g)$ called **contact metric structure**. Contact metric manifold (M, S).
- $g_{\mathcal{D}} = d\eta \circ (\Phi \otimes \mathbb{I})$ defines a metric in \mathcal{D} called the **transverse metric** and $\omega^T = d\eta$ is a **transverse symplectic form** in \mathcal{D} .

- There is a 'canonical' compatible metric $g = d\eta \circ (\Phi \otimes 1) + \eta \otimes \eta$. Quadruple $S = (\xi, \eta, \Phi, g)$ called **contact metric structure**. Contact metric manifold (M, S).
- $g_{\mathcal{D}} = d\eta \circ (\Phi \otimes 1)$ defines a metric in \mathcal{D} called the **transverse metric** and $\omega^{\mathcal{T}} = d\eta$ is a **transverse symplectic form** in \mathcal{D} .
- The pair (\mathfrak{D}, J) defines an almost CR structure on \mathfrak{D} with $\Phi|_{\mathfrak{D}} = J$.

- There is a 'canonical' compatible metric $g = d\eta \circ (\Phi \otimes 1) + \eta \otimes \eta$. Quadruple $S = (\xi, \eta, \Phi, g)$ called **contact metric structure**. Contact metric manifold (M, S).
- $g_{\mathcal{D}} = d\eta \circ (\Phi \otimes 1)$ defines a metric in \mathcal{D} called the **transverse metric** and $\omega^{\mathcal{T}} = d\eta$ is a **transverse symplectic form** in \mathcal{D} .
- The pair (\mathfrak{D}, J) defines an almost CR structure on \mathfrak{D} with $\Phi|_{\mathfrak{D}} = J$.
- $d\eta$ is called the Levi form of $\mathbb D$ and the condition $d\eta(JX,Y)>0$ says that $(\mathbb D,J)$ is strictly pseudo-convex abbreviated as $\mathbf s\psi\mathbf C\mathbf R$.

- There is a 'canonical' compatible metric $g = d\eta \circ (\Phi \otimes 1) + \eta \otimes \eta$. Quadruple $S = (\xi, \eta, \Phi, g)$ called **contact metric structure**. Contact metric manifold (M, S).
- $g_{\mathbb{D}} = d\eta \circ (\Phi \otimes \mathbb{I})$ defines a metric in \mathbb{D} called the **transverse metric** and $\omega^T = d\eta$ is a transverse symplectic form in \mathfrak{D} .
- The pair (\mathfrak{D}, J) defines an almost CR structure on \mathfrak{D} with $\Phi|_{\mathfrak{D}} = J$.
- $d\eta$ is called the **Levi form** of \mathcal{D} and the condition $d\eta(JX,Y)>0$ says that (\mathcal{D},J) is **strictly pseudo-convex** abbreviated as $\mathbf{s}\psi\mathbf{CR}$.
- We are mainly interested in the case that the almost CR structure is integrable, that is, that (\mathfrak{D}, J) defines a **CR structure**.

- There is a 'canonical' compatible metric $g = d\eta \circ (\Phi \otimes 1) + \eta \otimes \eta$. Quadruple $S = (\xi, \eta, \Phi, g)$ called **contact metric structure**. Contact metric manifold (M, S).
- $g_{\mathbb{D}} = d\eta \circ (\Phi \otimes 1)$ defines a metric in \mathbb{D} called the **transverse metric** and $\omega^{\mathcal{T}} = d\eta$ is a **transverse symplectic form** in \mathbb{D} .
- The pair (\mathfrak{D}, J) defines an almost CR structure on \mathfrak{D} with $\Phi|_{\mathfrak{D}} = J$.
- $d\eta$ is called the Levi form of \mathcal{D} and the condition $d\eta(JX,Y)>0$ says that (\mathcal{D},J) is strictly pseudo-convex abbreviated as $s\psi CR$.
- We are mainly interested in the case that the almost CR structure is integrable, that is, that
 (D, J) defines a CR structure.

Definition

- There is a 'canonical' compatible metric $g = d\eta \circ (\Phi \otimes 1) + \eta \otimes \eta$. Quadruple $S = (\xi, \eta, \Phi, g)$ called **contact metric structure**. Contact metric manifold (M, S).
- $g_{\mathcal{D}} = d\eta \circ (\Phi \otimes 1)$ defines a metric in \mathcal{D} called the **transverse metric** and $\omega^T = d\eta$ is a **transverse symplectic form** in \mathcal{D} .
- The pair (\mathfrak{D}, J) defines an almost CR structure on \mathfrak{D} with $\Phi|_{\mathfrak{D}} = J$.
- $d\eta$ is called the Levi form of \mathcal{D} and the condition $d\eta(JX,Y)>0$ says that (\mathcal{D},J) is strictly pseudo-convex abbreviated as $s\psi CR$.
- We are mainly interested in the case that the almost CR structure is integrable, that is, that
 (D, J) defines a CR structure.

Definition

The contact metric structure $\mathcal{S}=(\xi,\eta,\Phi,g)$ is **K-contact** if $\mathcal{L}_{\xi}g=0$ (or $\mathcal{L}_{\xi}\Phi=0$). It is **Sasakian** if in addition (\mathcal{D},J) is integrable and the **transverse metric** $g_{\mathcal{D}}$ is Kähler (**transverse holonomy** U(n)). In the latter case we say that the contact structure \mathcal{D} is of **Sasaki type**.

• (M, S) is Sasaki \iff the metric cone $(C(M) = M \times \mathbb{R}^+, dr^2 + r^2g)$ is Kähler.

- There is a 'canonical' compatible metric $g = d\eta \circ (\Phi \otimes 1) + \eta \otimes \eta$. Quadruple $S = (\xi, \eta, \Phi, g)$ called **contact metric structure**. Contact metric manifold (M, S).
- $g_{\mathbb{D}} = d\eta \circ (\Phi \otimes 1)$ defines a metric in \mathfrak{D} called the **transverse metric** and $\omega^T = d\eta$ is a **transverse symplectic form** in \mathfrak{D} .
- The pair (\mathfrak{D}, J) defines an almost CR structure on \mathfrak{D} with $\Phi|_{\mathfrak{D}} = J$.
- $d\eta$ is called the Levi form of \mathcal{D} and the condition $d\eta(JX,Y)>0$ says that (\mathcal{D},J) is strictly pseudo-convex abbreviated as $s\psi CR$.
- We are mainly interested in the case that the almost CR structure is integrable, that is, that
 (D, J) defines a CR structure.

Definition

- (M, S) is Sasaki \iff the metric cone $(C(M) = M \times \mathbb{R}^+, dr^2 + r^2g)$ is Kähler.
- Some properties of a Sasaki manifold (M, S) of dimension 2n + 1:

- There is a 'canonical' compatible metric $g = d\eta \circ (\Phi \otimes 1) + \eta \otimes \eta$. Quadruple $S = (\xi, \eta, \Phi, g)$ called **contact metric structure**. Contact metric manifold (M, S).
- $g_{\mathcal{D}} = d\eta \circ (\Phi \otimes 1)$ defines a metric in \mathcal{D} called the **transverse metric** and $\omega^T = d\eta$ is a **transverse symplectic form** in \mathcal{D} .
- The pair (\mathfrak{D}, J) defines an almost CR structure on \mathfrak{D} with $\Phi|_{\mathfrak{D}} = J$.
- $d\eta$ is called the Levi form of \mathcal{D} and the condition $d\eta(JX,Y)>0$ says that (\mathcal{D},J) is strictly pseudo-convex abbreviated as $s\psi CR$.
- We are mainly interested in the case that the almost CR structure is integrable, that is, that
 (D, J) defines a CR structure.

Definition

- (M, S) is Sasaki \iff the metric cone $(C(M) = M \times \mathbb{R}^+, dr^2 + r^2g)$ is Kähler.
- Some properties of a Sasaki manifold (M, S) of dimension 2n + 1:
 - Any Sasaki structure S has at least an S¹ symmetry.

- There is a 'canonical' compatible metric $g = d\eta \circ (\Phi \otimes 1) + \eta \otimes \eta$. Quadruple $S = (\xi, \eta, \Phi, g)$ called **contact metric structure**. Contact metric manifold (M, S).
- $g_{\mathbb{D}} = d\eta \circ (\Phi \otimes \mathbb{I})$ defines a metric in \mathbb{D} called the **transverse metric** and $\omega^T = d\eta$ is a transverse symplectic form in \mathfrak{D} .
- The pair (\mathfrak{D}, J) defines an almost CR structure on \mathfrak{D} with $\Phi|_{\mathfrak{D}} = J$.
- $d\eta$ is called the Levi form of \mathcal{D} and the condition $d\eta(JX,Y)>0$ says that (\mathcal{D},J) is strictly **pseudo-convex** abbreviated as $\mathbf{s}\psi\mathbf{CR}$.
- We are mainly interested in the case that the almost CR structure is integrable, that is, that (\mathfrak{D}, J) defines a **CR structure**.

Definition

- (M, S) is Sasaki \iff the metric cone $(C(M) = M \times \mathbb{R}^+, dr^2 + r^2g)$ is Kähler.
- Some properties of a Sasaki manifold (M, S) of dimension 2n + 1:
 - Any Sasaki structure S has at least an S¹ symmetry.
 - 2 The characteristic foliation $\mathcal{F}_{\varepsilon}$ is Riemannian, that is, a Riemannian flow.

- There is a 'canonical' compatible metric $g = d\eta \circ (\Phi \otimes 1) + \eta \otimes \eta$. Quadruple $S = (\xi, \eta, \Phi, g)$ called **contact metric structure**. Contact metric manifold (M, S).
- $g_{\mathbb{D}} = d\eta \circ (\Phi \otimes 1)$ defines a metric in \mathbb{D} called the **transverse metric** and $\omega^{\mathcal{T}} = d\eta$ is a **transverse symplectic form** in \mathbb{D} .
- The pair (\mathcal{D}, J) defines an almost CR structure on \mathcal{D} with $\Phi|_{\mathcal{D}} = J$.
- $d\eta$ is called the Levi form of $\mathbb D$ and the condition $d\eta(JX,Y)>0$ says that $(\mathbb D,J)$ is strictly pseudo-convex abbreviated as $\mathbf s\psi\mathbf C\mathbf R$.
- We are mainly interested in the case that the almost CR structure is integrable, that is, that
 (D, J) defines a CR structure.

Definition

- (M, S) is Sasaki \iff the metric cone $(C(M) = M \times \mathbb{R}^+, dr^2 + r^2g)$ is Kähler.
- Some properties of a Sasaki manifold (M, S) of dimension 2n + 1:
 - Any Sasaki structure S has at least an S¹ symmetry.
 - 2 The characteristic foliation \mathcal{F}_{ξ} is Riemannian, that is, a Riemannian flow.
 - **1** If S is irregular, then the closure $\bar{\mathcal{F}}_{\xi}$ is a **torus** T^k of dimension $1 \leq k \leq n+1$.

- There is a 'canonical' compatible metric $g = d\eta \circ (\Phi \otimes 1) + \eta \otimes \eta$. Quadruple $S = (\xi, \eta, \Phi, g)$ called **contact metric structure**. Contact metric manifold (M, S).
- $g_{\mathbb{D}} = d\eta \circ (\Phi \otimes 1)$ defines a metric in \mathbb{D} called the **transverse metric** and $\omega^{\mathcal{T}} = d\eta$ is a **transverse symplectic form** in \mathbb{D} .
- The pair (\mathcal{D}, J) defines an almost CR structure on \mathcal{D} with $\Phi|_{\mathcal{D}} = J$.
- $d\eta$ is called the Levi form of $\mathbb D$ and the condition $d\eta(JX,Y)>0$ says that $(\mathbb D,J)$ is strictly pseudo-convex abbreviated as $s\psi \mathbb CR$.
- We are mainly interested in the case that the almost CR structure is integrable, that is, that
 (D, J) defines a CR structure.

Definition

- (M, S) is Sasaki \iff the metric cone $(C(M) = M \times \mathbb{R}^+, dr^2 + r^2g)$ is Kähler.
- Some properties of a Sasaki manifold (M, S) of dimension 2n + 1:
 - Any Sasaki structure S has at least an S^1 symmetry.
 - 2 The characteristic foliation \mathcal{F}_{ξ} is Riemannian, that is, a Riemannian flow.
 - **③** If S is irregular, then the closure $\bar{\mathcal{F}}_{\xi}$ is a **torus** T^k of dimension $1 \leq k \leq n+1$.
 - **1** The metric g is **bundle-like** and the leaves of \mathcal{F}_{ξ} (orbits of ξ) are **totally geodesic**.

- There is a 'canonical' compatible metric $g = d\eta \circ (\Phi \otimes 1) + \eta \otimes \eta$. Quadruple $S = (\xi, \eta, \Phi, g)$ called **contact metric structure**. Contact metric manifold (M, S).
- $g_{\mathbb{D}} = d\eta \circ (\Phi \otimes 1)$ defines a metric in \mathbb{D} called the **transverse metric** and $\omega^{\mathcal{T}} = d\eta$ is a **transverse symplectic form** in \mathbb{D} .
- The pair (\mathfrak{D}, J) defines an almost CR structure on \mathfrak{D} with $\Phi|_{\mathfrak{D}} = J$.
- $d\eta$ is called the Levi form of $\mathbb D$ and the condition $d\eta(JX,Y)>0$ says that $(\mathbb D,J)$ is strictly pseudo-convex abbreviated as $s\psi \mathbb CR$.
- We are mainly interested in the case that the almost CR structure is integrable, that is, that
 (D, J) defines a CR structure.

Definition

- (M, S) is Sasaki \iff the metric cone $(C(M) = M \times \mathbb{R}^+, dr^2 + r^2g)$ is Kähler.
- Some properties of a Sasaki manifold (M, S) of dimension 2n + 1:
 - Any Sasaki structure S has at least an S^1 symmetry.
 - **2** The characteristic foliation \mathcal{F}_{ξ} is Riemannian, that is, a Riemannian flow.
 - **1** If S is irregular, then the closure $\bar{\mathcal{F}}_{\varepsilon}$ is a **torus** T^k of dimension $1 \le k \le n+1$.
 - **1** The metric g is bundle-like and the leaves of \mathcal{F}_{ξ} (orbits of ξ) are totally geodesic.
 - **⑤** In the quasi-regular case (M, S) is an S^1 orbibundle over a **projective algebraic variety** with an additional **orbifold structure**.

- There is a 'canonical' compatible metric $g = d\eta \circ (\Phi \otimes 1) + \eta \otimes \eta$. Quadruple $S = (\xi, \eta, \Phi, g)$ called **contact metric structure**. Contact metric manifold (M, S).
- $g_{\mathbb{D}} = d\eta \circ (\Phi \otimes 1)$ defines a metric in \mathbb{D} called the **transverse metric** and $\omega^{\mathcal{T}} = d\eta$ is a **transverse symplectic form** in \mathbb{D} .
- The pair (\mathfrak{D}, J) defines an almost CR structure on \mathfrak{D} with $\Phi|_{\mathfrak{D}} = J$.
- $d\eta$ is called the Levi form of \mathcal{D} and the condition $d\eta(JX,Y)>0$ says that (\mathcal{D},J) is strictly pseudo-convex abbreviated as $s\psi CR$.
- We are mainly interested in the case that the almost CR structure is integrable, that is, that
 (D, J) defines a CR structure.

Definition

- (M, S) is Sasaki \iff the metric cone $(C(M) = M \times \mathbb{R}^+, dr^2 + r^2g)$ is Kähler.
- Some properties of a Sasaki manifold (M, S) of dimension 2n + 1:
 - Any Sasaki structure S has at least an S^1 symmetry.
 - **2** The characteristic foliation \mathcal{F}_{ξ} is Riemannian, that is, a Riemannian flow.
 - **3** If S is irregular, then the closure $\bar{\mathcal{F}}_{\xi}$ is a **torus** T^k of dimension $1 \leq k \leq n+1$.
 - **1** The metric g is bundle-like and the leaves of \mathcal{F}_{ξ} (orbits of ξ) are totally geodesic.
 - **(3)** In the quasi-regular case (M, S) is an S^1 orbibundle over a **projective algebraic variety** with an additional **orbifold structure**.
 - **6** The Ricci curvature of g satisfies $Ric_g(X, \xi) = 2n\eta(X)$ for any vector field X.

The Sasaki Cone and the Affine cone

• On a compact Sasaki manifold (M^{2n+1}, S) the Sasaki automophism group $\mathfrak{Aut}(S)$ contains a torus T^k of dimension $1 \le k \le n+1$. The case k=n+1 is a **toric Sasakian** structure.

The Sasaki Cone and the Affine cone

- On a compact Sasaki manifold (M^{2n+1}, S) the Sasaki automophism group $\mathfrak{Aut}(S)$ contains a torus T^k of dimension $1 \le k \le n+1$. The case k=n+1 is a **toric Sasakian** structure.
- Sasaki cone

- On a compact Sasaki manifold (M^{2n+1}, S) the Sasaki automophism group $\mathfrak{Aut}(S)$ contains a torus T^k of dimension $1 \le k \le n+1$. The case k=n+1 is a **toric Sasakian** structure.
- Sasaki cone
 - \bullet t_k the Lie algebra of T^k

- On a compact Sasaki manifold (M^{2n+1}, S) the Sasaki automophism group $\mathfrak{Aut}(S)$ contains a torus T^k of dimension $1 \le k \le n+1$. The case k=n+1 is a **toric Sasakian** structure.
- Sasaki cone
 - \bullet the Lie algebra of T^k
 - Sasaki cone (unreduced): $\mathfrak{t}_k^+(\mathcal{D},J)=\{\xi'\in\mathfrak{t}_k\mid\eta(\xi')>0,\}$ s.t. $\mathcal{S}=(\xi,\eta,\Phi,g)\in(\mathcal{D},J)$ is Sasakian.

- On a compact Sasaki manifold (M^{2n+1}, S) the Sasaki automophism group $\mathfrak{Aut}(S)$ contains a torus T^k of dimension $1 \le k \le n+1$. The case k=n+1 is a **toric Sasakian** structure.
- Sasaki cone
 - \bullet t_k the Lie algebra of T^k
 - Sasaki cone (unreduced): $\mathfrak{t}_k^+(\mathcal{D},J)=\{\xi'\in\mathfrak{t}_k\mid\eta(\xi')>0,\}$ s.t. $\mathcal{S}=(\xi,\eta,\Phi,g)\in(\mathcal{D},J)$ is Sasakian.
 - **3** Sasaki cone (reduced): $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ where \mathcal{W} is the Weyl group of $\mathfrak{CR}(\mathcal{D}, J)$

- On a compact Sasaki manifold (M^{2n+1}, S) the Sasaki automophism group $\mathfrak{Aut}(S)$ contains a torus T^k of dimension $1 \le k \le n+1$. The case k=n+1 is a **toric Sasakian** structure.
- Sasaki cone
 - \bullet t_k the Lie algebra of T^k
 - Sasaki cone (unreduced): $\mathfrak{t}_k^+(\mathcal{D},J)=\{\xi'\in\mathfrak{t}_k\mid\eta(\xi')>0,\}$ s.t. $\mathcal{S}=(\xi,\eta,\Phi,g)\in(\mathcal{D},J)$ is Sasakian.
 - **3** Sasaki cone (reduced): $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ where \mathcal{W} is the Weyl group of $\mathfrak{CR}(\mathcal{D}, J)$
 - **(a)** We think of $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ as the **moduli space** of Sasakian structures whose underlying CR structure is (\mathcal{D}, J) .

- On a compact Sasaki manifold (M^{2n+1}, S) the Sasaki automophism group $\mathfrak{Aut}(S)$ contains a torus T^k of dimension $1 \le k \le n+1$. The case k=n+1 is a **toric Sasakian** structure.
- Sasaki cone
 - $\mathbf{0}$ \mathbf{t}_k the Lie algebra of T^k
 - Sasaki cone (unreduced): $\mathfrak{t}_k^+(\mathcal{D},J)=\{\xi'\in\mathfrak{t}_k\mid\eta(\xi')>0,\}$ s.t. $\mathcal{S}=(\xi,\eta,\Phi,g)\in(\mathcal{D},J)$ is Sasakian.
 - **3** Sasaki cone (reduced): $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ where \mathcal{W} is the Weyl group of $\mathfrak{CR}(\mathcal{D}, J)$
 - **1** We think of $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ as the **moduli space** of Sasakian structures whose underlying CR structure is (\mathcal{D}, J) .
 - **1** $\leq \dim \kappa(\mathcal{D}, J) \leq n+1$ and if $\dim \kappa(\mathcal{D}, J) = n+1$, M is toric Sasakian.

- On a compact Sasaki manifold (M^{2n+1}, S) the Sasaki automophism group $\mathfrak{Aut}(S)$ contains a torus T^k of dimension $1 \le k \le n+1$. The case k=n+1 is a **toric Sasakian** structure.
- Sasaki cone
 - \bullet t_k the Lie algebra of T^k
 - Sasaki cone (unreduced): $\mathfrak{t}_k^+(\mathcal{D},J)=\{\xi'\in\mathfrak{t}_k\mid\eta(\xi')>0,\}$ s.t. $\mathcal{S}=(\xi,\eta,\Phi,g)\in(\mathcal{D},J)$ is Sasakian.
 - **3** Sasaki cone (reduced): $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ where \mathcal{W} is the Weyl group of $\mathfrak{CR}(\mathcal{D}, J)$
 - **(a)** We think of $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ as the **moduli space** of Sasakian structures whose underlying CR structure is (\mathcal{D}, J) .
 - **1** $\leq \dim \kappa(\mathfrak{D}, J) \leq n+1$ and if $\dim \kappa(\mathfrak{D}, J) = n+1$, M is toric Sasakian.
- The Affine Cone

- On a compact Sasaki manifold (M^{2n+1}, S) the Sasaki automophism group $\mathfrak{Aut}(S)$ contains a torus T^k of dimension $1 \le k \le n+1$. The case k=n+1 is a **toric Sasakian** structure.
- Sasaki cone
 - \bullet t_k the Lie algebra of T^k
 - Sasaki cone (unreduced): $\mathfrak{t}_k^+(\mathcal{D},J)=\{\xi'\in\mathfrak{t}_k\mid\eta(\xi')>0,\}$ s.t. $\mathcal{S}=(\xi,\eta,\Phi,g)\in(\mathcal{D},J)$ is Sasakian.
 - **3** Sasaki cone (reduced): $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ where \mathcal{W} is the Weyl group of $\mathfrak{CR}(\mathcal{D}, J)$
 - We think of $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ as the moduli space of Sasakian structures whose underlying CR structure is (\mathcal{D}, J) .
 - **1** $\leq \dim \kappa(\mathfrak{D},J) \leq n+1$ and if $\dim \kappa(\mathfrak{D},J)=n+1$, M is toric Sasakian.
- The Affine Cone
 - **1** The cone $C(M) = M \times \mathbb{R}^+$ with metric $\bar{g} = dr^2 + r^2 g$ is an **affine cone** with respect to the complex structure I defined by extending the CR structure I to C(M) by $\xi = I\Psi$ where $\Psi = r \frac{\partial}{\partial r}$ and $\Psi = -I\xi$.

- On a compact Sasaki manifold (M^{2n+1}, S) the Sasaki automophism group $\mathfrak{Aut}(S)$ contains a torus T^k of dimension $1 \le k \le n+1$. The case k=n+1 is a **toric Sasakian** structure.
- Sasaki cone
 - $\mathbf{0}$ \mathbf{t}_k the Lie algebra of T^k
 - Sasaki cone (unreduced): $\mathfrak{t}_k^+(\mathcal{D},J)=\{\xi'\in\mathfrak{t}_k\mid\eta(\xi')>0,\}$ s.t. $\mathcal{S}=(\xi,\eta,\Phi,g)\in(\mathcal{D},J)$ is Sasakian.
 - **3** Sasaki cone (reduced): $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ where \mathcal{W} is the Weyl group of $\mathfrak{CR}(\mathcal{D}, J)$
 - We think of $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ as the moduli space of Sasakian structures whose underlying CR structure is (\mathcal{D}, J) .
 - **1** $\leq \dim \kappa(\mathfrak{D}, J) \leq n+1$ and if $\dim \kappa(\mathfrak{D}, J) = n+1$, M is toric Sasakian.
- The Affine Cone
 - **1** The cone $C(M) = M \times \mathbb{R}^+$ with metric $\bar{g} = dr^2 + r^2 g$ is an **affine cone** with respect to the complex structure I defined by extending the CR structure J to C(M) by $\xi = I\Psi$ where $\Psi = r \frac{\partial}{\partial r}$ and $\Psi = -I\xi$.
 - (M, g) is **Sasaki** if and only if $(C(M), \bar{g})$ is **Kähler**.

- On a compact Sasaki manifold (M^{2n+1}, S) the Sasaki automophism group $\mathfrak{Aut}(S)$ contains a torus T^k of dimension $1 \le k \le n+1$. The case k = n+1 is a toric Sasakian structure.
- Sasaki cone
 - \bullet t_k the Lie algebra of T^k
 - Sasaki cone (unreduced): $\mathfrak{t}_{k}^{+}(\mathcal{D},J)=\{\xi'\in\mathfrak{t}_{k}\mid\eta(\xi')>0,\}$ s.t. $\mathcal{S}=(\xi,\eta,\Phi,g)\in(\mathcal{D},J)$ is Sasakian.
 - **Sasaki cone** (reduced): $\kappa(\mathcal{D}, J) = \mathfrak{t}_{k}^{+}(\mathcal{D}, J)/\mathcal{W}$ where \mathcal{W} is the Weyl group of $\mathfrak{CR}(\mathcal{D}, J)$
 - We think of $\kappa(\mathcal{D}, J) = \mathfrak{t}^{\perp}_{\mu}(\mathcal{D}, J)/\mathcal{W}$ as the **moduli space** of Sasakian structures whose underlying CR structure is (\mathfrak{D}, J) .
 - **6** $1 < \dim \kappa(\mathcal{D}, J) < n+1$ and if $\dim \kappa(\mathcal{D}, J) = n+1$, M is toric Sasakian.
- The Affine Cone
 - **1** The cone $C(M) = M \times \mathbb{R}^+$ with metric $\bar{q} = dr^2 + r^2 q$ is an **affine cone** with respect to the complex structure I defined by extending the CR structure J to C(M) by $\xi = I\Psi$ where $\Psi = r\frac{\partial}{\partial t}$ and $\Psi = -I\xi$.
 - (M, q) is Sasaki if and only if $(C(M), \bar{q})$ is Kähler.
 - **3** (M, g) is Sasaki-Einstein if and only if $(C(M), \bar{g})$ is Ricci flat Kähler.

- On a compact Sasaki manifold (M^{2n+1}, S) the Sasaki automophism group $\mathfrak{Aut}(S)$ contains a torus T^k of dimension $1 \le k \le n+1$. The case k=n+1 is a **toric Sasakian** structure.
- Sasaki cone
 - $\mathbf{0}$ \mathbf{t}_k the Lie algebra of T^k
 - **3 Sasaki cone** (unreduced): $\mathfrak{t}_k^+(\mathcal{D}, J) = \{\xi' \in \mathfrak{t}_k \mid \eta(\xi') > 0, \} \text{ s.t. } \mathcal{S} = (\xi, \eta, \Phi, g) \in (\mathcal{D}, J) \text{ is Sasakian.}$
 - **3** Sasaki cone (reduced): $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ where \mathcal{W} is the Weyl group of $\mathfrak{CR}(\mathcal{D}, J)$
 - We think of $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ as the moduli space of Sasakian structures whose underlying CR structure is (\mathcal{D}, J) .
 - **1** $\leq \dim \kappa(\mathfrak{D}, J) \leq n+1$ and if $\dim \kappa(\mathfrak{D}, J) = n+1$, M is toric Sasakian.
- The Affine Cone
 - ① The cone $C(M) = M \times \mathbb{R}^+$ with metric $\bar{g} = dr^2 + r^2 g$ is an **affine cone** with respect to the complex structure I defined by extending the CR structure J to C(M) by $\xi = I\Psi$ where $\Psi = r \frac{\partial}{\partial r}$ and $\Psi = -I\xi$.
 - ② (M, g) is **Sasaki** if and only if $(C(M), \bar{g})$ is **Kähler**.
 - (M, g) is Sasaki-Einstein if and only if $(C(M), \bar{g})$ is Ricci flat Kähler.
 - These last two statements can be used as definition of Sasaki and Sasaki-Einstein, respectively.

- On a compact Sasaki manifold (M^{2n+1}, S) the Sasaki automophism group $\mathfrak{Aut}(S)$ contains a torus T^k of dimension $1 \le k \le n+1$. The case k=n+1 is a **toric Sasakian** structure.
- Sasaki cone
 - $\mathbf{0}$ \mathbf{t}_k the Lie algebra of T^k
 - Sasaki cone (unreduced): $\mathfrak{t}_k^+(\mathcal{D},J)=\{\xi'\in\mathfrak{t}_k\mid\eta(\xi')>0,\}$ s.t. $\mathcal{S}=(\xi,\eta,\Phi,g)\in(\mathcal{D},J)$ is Sasakian.
 - **3** Sasaki cone (reduced): $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ where \mathcal{W} is the Weyl group of $\mathfrak{CR}(\mathcal{D}, J)$
 - **③** We think of $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ as the **moduli space** of Sasakian structures whose underlying CR structure is (\mathcal{D}, J) .
 - **1** $\leq \dim \kappa(\mathfrak{D}, J) \leq n+1$ and if $\dim \kappa(\mathfrak{D}, J) = n+1$, M is toric Sasakian.
- The Affine Cone
 - **1** The cone $C(M) = M \times \mathbb{R}^+$ with metric $\bar{g} = dr^2 + r^2 g$ is an **affine cone** with respect to the complex structure I defined by extending the CR structure J to C(M) by $\xi = I\Psi$ where $\Psi = r \frac{\partial}{\partial r}$ and $\Psi = -I\xi$.
 - ② (M, g) is Sasaki if and only if $(C(M), \bar{g})$ is Kähler.
 - (M, g) is Sasaki-Einstein if and only if $(C(M), \bar{g})$ is Ricci flat Kähler.
 - These last two statements can be used as definition of Sasaki and Sasaki-Einstein, respectively.
 - **1** Accordingly, we say that (M, g) is **3-Sasakian** if $(C(M), \bar{g})$ is **hyperkähler**.

- On a compact Sasaki manifold (M^{2n+1}, S) the Sasaki automophism group $\mathfrak{Aut}(S)$ contains a torus T^k of dimension $1 \le k \le n+1$. The case k=n+1 is a **toric Sasakian** structure.
- Sasaki cone
 - $\mathbf{0}$ \mathbf{t}_k the Lie algebra of T^k
 - Sasaki cone (unreduced): $\mathfrak{t}_k^+(\mathcal{D},J)=\{\xi'\in\mathfrak{t}_k\mid\eta(\xi')>0,\}$ s.t. $\mathcal{S}=(\xi,\eta,\Phi,g)\in(\mathcal{D},J)$ is Sasakian.
 - **3** Sasaki cone (reduced): $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ where \mathcal{W} is the Weyl group of $\mathfrak{CR}(\mathcal{D}, J)$
 - **1** We think of $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ as the **moduli space** of Sasakian structures whose underlying CR structure is (\mathcal{D}, J) .
 - **1** $\leq \dim \kappa(\mathfrak{D}, J) \leq n+1$ and if $\dim \kappa(\mathfrak{D}, J) = n+1$, M is toric Sasakian.
- The Affine Cone
 - **1** The cone $C(M) = M \times \mathbb{R}^+$ with metric $\bar{g} = dr^2 + r^2 g$ is an **affine cone** with respect to the complex structure I defined by extending the CR structure J to C(M) by $\xi = I\Psi$ where $\Psi = r \frac{\partial}{\partial r}$ and $\Psi = -I\xi$.
 - (M, g) is Sasaki if and only if $(C(M), \bar{g})$ is Kähler.
 - (M, g) is Sasaki-Einstein if and only if $(C(M), \bar{g})$ is Ricci flat Kähler.
 - These last two statements can be used as definition of Sasaki and Sasaki-Einstein, respectively.
 - **a** Accordingly, we say that (M, g) is **3-Sasakian** if $(C(M), \bar{g})$ is **hyperkähler**.
 - In this case (M,g) has three orthogonal Sasakian structures (i.e. three Reeb vector fields ξ_1, ξ_2, ξ_3 such that $g(\xi_i, \xi_j) = \delta_{ij}$). They also satisfy the Lie algebra of SU(2), namely, $[\xi_i, \xi_j] = 2\epsilon_{ijk}\xi_k$.

• On a compact Sasaki manifold (M^{2n+1}, S) the Sasaki automophism group $\mathfrak{Aut}(S)$ contains a torus T^k of dimension $1 \le k \le n+1$. The case k=n+1 is a **toric Sasakian** structure.

Sasaki cone

- $\mathbf{0}$ \mathbf{t}_k the Lie algebra of T^k
- Sasaki cone (unreduced): $\mathfrak{t}_k^+(\mathcal{D},J)=\{\xi'\in\mathfrak{t}_k\mid\eta(\xi')>0,\}$ s.t. $\mathcal{S}=(\xi,\eta,\Phi,g)\in(\mathcal{D},J)$ is Sasakian.
- **3** Sasaki cone (reduced): $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ where \mathcal{W} is the Weyl group of $\mathfrak{CR}(\mathcal{D}, J)$
- **(a)** We think of $\kappa(\mathcal{D}, J) = \mathfrak{t}_k^+(\mathcal{D}, J)/\mathcal{W}$ as the **moduli space** of Sasakian structures whose underlying CR structure is (\mathcal{D}, J) .
- **1** $\leq \dim \kappa(\mathfrak{D}, J) \leq n+1$ and if $\dim \kappa(\mathfrak{D}, J) = n+1$, M is toric Sasakian.

The Affine Cone

- **1** The cone $C(M) = M \times \mathbb{R}^+$ with metric $\bar{g} = dr^2 + r^2 g$ is an **affine cone** with respect to the complex structure I defined by extending the CR structure J to C(M) by $\xi = I\Psi$ where $\Psi = r \frac{\partial}{\partial r}$ and $\Psi = -I\xi$.
- ② (M, g) is **Sasaki** if and only if $(C(M), \bar{g})$ is **Kähler**.
- (M, g) is Sasaki-Einstein if and only if $(C(M), \bar{g})$ is Ricci flat Kähler.
- These last two statements can be used as definition of Sasaki and Sasaki-Einstein, respectively.
- **a** Accordingly, we say that (M, g) is **3-Sasakian** if $(C(M), \bar{g})$ is **hyperkähler**.
- **1** In this case (M,g) has three orthogonal Sasakian structures (i.e. three Reeb vector fields ξ_1,ξ_2,ξ_3 such that $g(\xi_i,\xi_j)=\delta_{ij}$). They also satisfy the Lie algebra of SU(2), namely, $[\xi_i,\xi_j]=2\epsilon_{ijk}\xi_k$.
- Correspondingly, there are three contact forms η₁, η₂, η₃ whose Reeb fields are ξ₁, ξ₂, ξ₃, respectively.

• A Sasakian structure $S = (\xi, \eta, \Phi, g)$ is **Sasaki-Einstein (SE)** if the metric g is Einstein, that is, if $\text{Ric}_g = 2ng$.

- A Sasakian structure $S = (\xi, \eta, \Phi, g)$ is Sasaki-Einstein (SE) if the metric g is Einstein, that is, if $\text{Ric}_g = 2ng$.
- 3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))

- A Sasakian structure $S = (\xi, \eta, \Phi, g)$ is **Sasaki-Einstein (SE)** if the metric g is Einstein, that is, if $\text{Ric}_g = 2ng$.
- 3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))
- 3-Sasakian manifolds fiber over quaternionic Kähler orbifolds (Ishihara, Konishi (1972-75),B-,Galicki,Mann (1994))

- A Sasakian structure $S = (\xi, \eta, \Phi, g)$ is **Sasaki-Einstein (SE)** if the metric g is Einstein, that is, if $Ric_a = 2ng$.
- 3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))
- 3-Sasakian manifolds fiber over quaternionic Kähler orbifolds (Ishihara, Konishi (1972-75), B-, Galicki, Mann (1994))
- Many 3-Sasakian examples B-, Galicki, Mann (Rees) (1994,1998) especially in dimension 7.

- A Sasakian structure $S = (\xi, \eta, \Phi, g)$ is Sasaki-Einstein (SE) if the metric g is Einstein, that is, if $\text{Ric}_g = 2ng$.
- 3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))
- 3-Sasakian manifolds fiber over quaternionic Kähler orbifolds (Ishihara, Konishi (1972-75),B-,Galicki,Mann (1994))
- Many 3-Sasakian examples B-,Galicki, Mann (Rees) (1994,1998) especially in dimension 7.
- SE metrics on S¹ orbibundles over Kähler-Einstein (KE) orbifolds. B-,Galicki (2000)

- A Sasakian structure $S = (\xi, \eta, \Phi, g)$ is Sasaki-Einstein (SE) if the metric g is Einstein, that is, if $\text{Ric}_g = 2ng$.
- 3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))
- 3-Sasakian manifolds fiber over quaternionic Kähler orbifolds (Ishihara, Konishi (1972-75),B-,Galicki,Mann (1994))
- Many 3-Sasakian examples B-,Galicki, Mann (Rees) (1994,1998) especially in dimension 7.
- SE metrics on S¹ orbibundles over Kähler-Einstein (KE) orbifolds. B-,Galicki (2000)
- SE metrics on certain connected sums of $S^2 \times S^3$ B-, Galicki, Nakamaye (2002-3)

- A Sasakian structure $S = (\xi, \eta, \Phi, g)$ is Sasaki-Einstein (SE) if the metric g is Einstein, that is, if $Ric_a = 2ng$.
- 3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))
- 3-Sasakian manifolds fiber over quaternionic Kähler orbifolds (Ishihara, Konishi (1972-75), B-, Galicki, Mann (1994))
- Many 3-Sasakian examples B-, Galicki, Mann (Rees) (1994,1998) especially in dimension 7.
- SE metrics on S¹ orbibundles over Kähler-Einstein (KE) orbifolds. B-,Galicki (2000)
- SE metrics on certain connected sums of S² × S³ B-, Galicki, Nakamaye (2002-3)
- SE metrics on irregular Sasakian manifolds (Gauntlett, Martelli, Sparks, Waldram (2004))

- A Sasakian structure $S = (\xi, \eta, \Phi, g)$ is Sasaki-Einstein (SE) if the metric g is Einstein, that is, if $Ric_a = 2ng$.
- 3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))
- 3-Sasakian manifolds fiber over quaternionic Kähler orbifolds (Ishihara, Konishi (1972-75), B-, Galicki, Mann (1994))
- Many 3-Sasakian examples B-, Galicki, Mann (Rees) (1994,1998) especially in dimension 7.
- SE metrics on S¹ orbibundles over Kähler-Einstein (KE) orbifolds. B-,Galicki (2000)
- SE metrics on certain connected sums of S² × S³ B-, Galicki, Nakamaye (2002-3)
- SE metrics on irregular Sasakian manifolds (Gauntlett, Martelli, Sparks, Waldram (2004))
- SE metrics on spheres, including exotic spheres B-, Galicki, Kollár (Thomas) (2005)

- A Sasakian structure $S = (\xi, \eta, \Phi, g)$ is Sasaki-Einstein (SE) if the metric g is Einstein, that is, if $Ric_a = 2ng$.
- 3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))
- 3-Sasakian manifolds fiber over quaternionic Kähler orbifolds (Ishihara, Konishi (1972-75), B-, Galicki, Mann (1994))
- Many 3-Sasakian examples B-, Galicki, Mann (Rees) (1994,1998) especially in dimension 7.
- SE metrics on S¹ orbibundles over Kähler-Einstein (KE) orbifolds. B-,Galicki (2000)
- SE metrics on certain connected sums of S² × S³ B-, Galicki, Nakamaye (2002-3)
- SE metrics on irregular Sasakian manifolds (Gauntlett, Martelli, Sparks, Waldram (2004))
- SE metrics on spheres, including exotic spheres B-, Galicki, Kollár (Thomas) (2005)
- SE on many 5-manifolds (Kollár; B-, Galicki, Ghigi-Kollár (2005-07))

- A Sasakian structure $S = (\xi, \eta, \Phi, g)$ is Sasaki-Einstein (SE) if the metric g is Einstein, that is, if $\operatorname{Ric}_g = 2ng$.
- 3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))
- 3-Sasakian manifolds fiber over quaternionic Kähler orbifolds (Ishihara, Konishi (1972-75),B-,Galicki,Mann (1994))
- Many 3-Sasakian examples B-,Galicki, Mann (Rees) (1994,1998) especially in dimension 7.
- SE metrics on S¹ orbibundles over Kähler-Einstein (KE) orbifolds. B-, Galicki (2000)
- SE metrics on certain connected sums of $S^2 \times S^3$ B-,Galicki, Nakamaye (2002-3)
- SE metrics on irregular Sasakian manifolds (Gauntlett, Martelli, Sparks, Waldram (2004))
- SE metrics on spheres, including exotic spheres B-, Galicki, Kollár (Thomas) (2005)
- SE on many 5-manifolds (Kollár; B-,Galicki, Ghigi-Kollár (2005-07))
- Existence of SE metrics in Sasaki cone of toric contact manifolds of Reeb type with c₁ = 0
 by deforming in Sasaki cone (Futaki,Ono,Wang (2009)); Uniqueness (Cho,Futaki,Ono (2008))

- A Sasakian structure $S = (\xi, \eta, \Phi, g)$ is Sasaki-Einstein (SE) if the metric g is Einstein, that is, if $Ric_a = 2ng$.
- 3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))
- 3-Sasakian manifolds fiber over quaternionic Kähler orbifolds (Ishihara, Konishi (1972-75), B-, Galicki, Mann (1994))
- Many 3-Sasakian examples B-, Galicki, Mann (Rees) (1994,1998) especially in dimension 7.
- SE metrics on S¹ orbibundles over Kähler-Einstein (KE) orbifolds. B-,Galicki (2000)
- SE metrics on certain connected sums of S² × S³ B-, Galicki, Nakamaye (2002-3)
- SE metrics on irregular Sasakian manifolds (Gauntlett, Martelli, Sparks, Waldram (2004))
- SE metrics on spheres, including exotic spheres B-, Galicki, Kollár (Thomas) (2005)
- SE on many 5-manifolds (Kollár; B-, Galicki, Ghigi-Kollár (2005-07))
- Existence of SE metrics in Sasaki cone of toric contact manifolds of Reeb type with $c_1 = 0$ by deforming in Sasaki cone (Futaki, Ono, Wang (2009)); Uniqueness (Cho, Futaki, Ono (2008))
- Uniqueness of SE metrics in the transverse K\u00e4hler class up to transverse holomorphic transformations (Nitta, Sekiya (2012))

- A Sasakian structure $S = (\xi, \eta, \Phi, g)$ is **Sasaki-Einstein (SE)** if the metric g is Einstein, that is, if $\text{Ric}_g = 2ng$.
- 3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))
- 3-Sasakian manifolds fiber over quaternionic Kähler orbifolds (Ishihara, Konishi (1972-75),B-,Galicki,Mann (1994))
- Many 3-Sasakian examples B-,Galicki, Mann (Rees) (1994,1998) especially in dimension 7.
- SE metrics on S¹ orbibundles over Kähler-Einstein (KE) orbifolds. B-,Galicki (2000)
- SE metrics on certain connected sums of $S^2 \times S^3$ B-, Galicki, Nakamaye (2002-3)
- SE metrics on irregular Sasakian manifolds (Gauntlett, Martelli, Sparks, Waldram (2004))
- SE metrics on spheres, including exotic spheres B-,Galicki, Kollár (Thomas) (2005)
- SE on many 5-manifolds (Kollár; B-,Galicki, Ghigi-Kollár (2005-07))
- Existence of SE metrics in Sasaki cone of toric contact manifolds of Reeb type with c₁ = 0
 by deforming in Sasaki cone (Futaki,Ono,Wang (2009)); Uniqueness (Cho,Futaki,Ono (2008))
- Uniqueness of SE metrics in the transverse Kähler class up to transverse holomorphic transformations (Nitta, Sekiya (2012))
- New examples of SE metrics by deforming in the Sasaki cone (Mabuchi, Nakagawa (2013))

- A Sasakian structure $S = (\xi, \eta, \Phi, g)$ is **Sasaki-Einstein (SE)** if the metric g is Einstein, that is, if $\text{Ric}_g = 2ng$.
- 3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))
- 3-Sasakian manifolds fiber over quaternionic Kähler orbifolds (Ishihara, Konishi (1972-75),B-,Galicki,Mann (1994))
- Many 3-Sasakian examples B-,Galicki, Mann (Rees) (1994,1998) especially in dimension 7.
- SE metrics on S¹ orbibundles over Kähler-Einstein (KE) orbifolds. B-,Galicki (2000)
- SE metrics on certain connected sums of $S^2 \times S^3$ B-, Galicki, Nakamaye (2002-3)
- SE metrics on irregular Sasakian manifolds (Gauntlett, Martelli, Sparks, Waldram (2004))
- SE metrics on spheres, including exotic spheres B-,Galicki, Kollár (Thomas) (2005)
- SE on many 5-manifolds (Kollár; B-,Galicki, Ghigi-Kollár (2005-07))
- Existence of SE metrics in Sasaki cone of toric contact manifolds of Reeb type with c₁ = 0
 by deforming in Sasaki cone (Futaki,Ono,Wang (2009)); Uniqueness (Cho,Futaki,Ono (2008))
- Uniqueness of SE metrics in the transverse Kähler class up to transverse holomorphic transformations (Nitta, Sekiya (2012))
- New examples of SE metrics by deforming in the Sasaki cone (Mabuchi, Nakagawa (2013))
- Geometry and topology of SE metrics by deforming in Sasaki cone (B-,Tønnesen-Friedman (2015))

- A Sasakian structure $S = (\xi, \eta, \Phi, g)$ is **Sasaki-Einstein (SE)** if the metric g is Einstein, that is, if $\operatorname{Ric}_g = 2ng$.
- 3-Sasakian manifolds are automatically Sasaki-Einstein (SE) (Kashiwada (1971))
- 3-Sasakian manifolds fiber over quaternionic Kähler orbifolds (Ishihara, Konishi (1972-75),B-,Galicki,Mann (1994))
- Many 3-Sasakian examples B-,Galicki, Mann (Rees) (1994,1998) especially in dimension 7.
- SE metrics on S¹ orbibundles over Kähler-Einstein (KE) orbifolds. B-,Galicki (2000)
- SE metrics on certain connected sums of $S^2 \times S^3$ B-, Galicki, Nakamaye (2002-3)
- SE metrics on irregular Sasakian manifolds (Gauntlett, Martelli, Sparks, Waldram (2004))
- SE metrics on spheres, including exotic spheres B-,Galicki, Kollár (Thomas) (2005)
- SE on many 5-manifolds (Kollár; B-,Galicki, Ghigi-Kollár (2005-07))
- Existence of SE metrics in Sasaki cone of toric contact manifolds of Reeb type with c₁ = 0
 by deforming in Sasaki cone (Futaki,Ono,Wang (2009)); Uniqueness (Cho,Futaki,Ono (2008))
- Uniqueness of SE metrics in the transverse Kähler class up to transverse holomorphic transformations (Nitta, Sekiya (2012))
- New examples of SE metrics by deforming in the Sasaki cone (Mabuchi, Nakagawa (2013))
- Geometry and topology of SE metrics by deforming in Sasaki cone (B-,Tønnesen-Friedman (2015))
- The Donaldson, Tian, Yau conjecture in the SE case as been proved recently by Collins and Székelyhidi.

• A Clifford bundle $\mathfrak{C}\ell(M)$ on (M,g) is the tensor bundle $\mathfrak{I}(M)$ modulo the ideal bundle \mathfrak{I} generated pointwise by elements of the form $v\otimes v+g(v,v)$.

- A Clifford bundle $\mathfrak{C}\ell(M)$ on (M,g) is the tensor bundle $\mathfrak{I}(M)$ modulo the ideal bundle \mathfrak{I} generated pointwise by elements of the form $v\otimes v+g(v,v)$.
- A (real) **spinor bundle** S(M) is a bundle of modules over $\mathcal{C}\ell(M)$.

- A Clifford bundle $\mathfrak{C}\ell(M)$ on (M,g) is the tensor bundle $\mathfrak{I}(M)$ modulo the ideal bundle \mathfrak{I} generated pointwise by elements of the form $v\otimes v+g(v,v)$.
- A (real) **spinor bundle** S(M) is a bundle of modules over $\mathcal{C}\ell(M)$.
- An oriented Riemannian manifold (M, g) admits a spinor bundle if and only if its second Stiefel-Whitney class w_2 vanishes in which case (M, g) is called a **spin manifold**.

- A Clifford bundle $\mathfrak{C}\ell(M)$ on (M,g) is the tensor bundle $\mathfrak{I}(M)$ modulo the ideal bundle \mathfrak{I} generated pointwise by elements of the form $v\otimes v+g(v,v)$.
- A (real) **spinor bundle** S(M) is a bundle of modules over $\mathcal{C}\ell(M)$.
- An oriented Riemannian manifold (M, g) admits a spinor bundle if and only if its second Stiefel-Whitney class w_2 vanishes in which case (M, g) is called a **spin manifold**.

Definition

A smooth section ψ of S(M) is called a **Killing spinor** if for every vector field X there is $\alpha \in \mathbb{C}$, called **Killing number**, such that

$$\nabla_X \psi = \alpha X \cdot \psi \,.$$

- A Clifford bundle $\mathfrak{C}\ell(M)$ on (M,g) is the tensor bundle $\mathfrak{I}(M)$ modulo the ideal bundle \mathfrak{I} generated pointwise by elements of the form $v\otimes v+g(v,v)$.
- A (real) **spinor bundle** S(M) is a bundle of modules over $\mathcal{C}\ell(M)$.
- An oriented Riemannian manifold (M, g) admits a spinor bundle if and only if its second Stiefel-Whitney class w_2 vanishes in which case (M, g) is called a **spin manifold**.

Definition

A smooth section ψ of S(M) is called a **Killing spinor** if for every vector field X there is $\alpha \in \mathbb{C}$, called **Killing number**, such that

$$\nabla_X \psi = \alpha X \cdot \psi \,.$$

Here denotes Clifford multiplication.

• The Killing number α is either real or pure imaginary. If α is pure imaginary then (M,g) is non-compact (Friedrich).

- A Clifford bundle $\mathfrak{C}\ell(M)$ on (M,g) is the tensor bundle $\mathfrak{I}(M)$ modulo the ideal bundle \mathfrak{I} generated pointwise by elements of the form $v\otimes v+g(v,v)$.
- A (real) **spinor bundle** S(M) is a bundle of modules over $\mathcal{C}\ell(M)$.
- An oriented Riemannian manifold (M, g) admits a spinor bundle if and only if its second Stiefel-Whitney class w_2 vanishes in which case (M, g) is called a **spin manifold**.

Definition

A smooth section ψ of S(M) is called a **Killing spinor** if for every vector field X there is $\alpha \in \mathbb{C}$, called **Killing number**, such that

$$\nabla_{X}\psi=\alpha X\cdot\psi.$$

- The Killing number α is either real or pure imaginary. If α is pure imaginary then (M,g) is non-compact (Friedrich).
- A remarkable theorem of Friedrich: Let (M^n, g) be a Riemannian spin manifold which admits a non-trivial Killing spinor ψ with Killing number α . Then (M^n, g) is Einstein with scalar curvature $s = 4n(n-1)\alpha^2$.

- A Clifford bundle $\mathcal{C}\ell(M)$ on (M,g) is the tensor bundle $\mathcal{T}(M)$ modulo the ideal bundle $\mathcal{T}(M)$ generated pointwise by elements of the form $v \otimes v + g(v,v)$.
- A (real) **spinor bundle** S(M) is a bundle of modules over $\mathcal{C}\ell(M)$.
- An oriented Riemannian manifold (M, g) admits a spinor bundle if and only if its second Stiefel-Whitney class w_2 vanishes in which case (M, g) is called a **spin manifold**.

Definition

A smooth section ψ of S(M) is called a **Killing spinor** if for every vector field X there is $\alpha \in \mathbb{C}$, called **Killing number**, such that

$$\nabla_X \psi = \alpha X \cdot \psi \,.$$

- The Killing number α is either real or pure imaginary. If α is pure imaginary then (M,g) is non-compact (Friedrich).
- A remarkable theorem of Friedrich: Let (M^n,g) be a Riemannian spin manifold which admits a non-trivial Killing spinor ψ with Killing number α . Then (M^n,g) is Einstein with scalar curvature $s=4n(n-1)\alpha^2$.
- A Killing spinor is a eigenvector of the Dirac operator $D = \sum_i E_i \cdot \nabla_{E_i}$ with eigenvalue $-n\alpha$ where $\{E_i\}$ is a local orthonormal frame.

- A Clifford bundle $\mathcal{C}\ell(M)$ on (M,g) is the tensor bundle $\mathcal{T}(M)$ modulo the ideal bundle $\mathcal{T}(M)$ generated pointwise by elements of the form $v \otimes v + g(v,v)$.
- A (real) **spinor bundle** S(M) is a bundle of modules over $\mathcal{C}\ell(M)$.
- An oriented Riemannian manifold (M, g) admits a spinor bundle if and only if its second Stiefel-Whitney class w_2 vanishes in which case (M, g) is called a **spin manifold**.

Definition

A smooth section ψ of S(M) is called a **Killing spinor** if for every vector field X there is $\alpha \in \mathbb{C}$, called **Killing number**, such that

$$\nabla_{X}\psi = \alpha X \cdot \psi .$$

- The Killing number α is either real or pure imaginary. If α is pure imaginary then (M, g) is non-compact (Friedrich).
- A remarkable theorem of Friedrich: Let (M^n, g) be a Riemannian spin manifold which admits a non-trivial Killing spinor ψ with Killing number α . Then (M^n, g) is Einstein with scalar curvature $s = 4n(n-1)\alpha^2$.
- A Killing spinor is a eigenvector of the Dirac operator $D = \sum_i E_i \cdot \nabla_{E_i}$ with eigenvalue $-n\alpha$ where $\{E_i\}$ is a local orthonormal frame.
- A Killing spinor which is not identically zero has no zeroes.

- A Clifford bundle $\mathcal{C}\ell(M)$ on (M,g) is the tensor bundle $\mathcal{T}(M)$ modulo the ideal bundle $\mathcal{T}(M)$ generated pointwise by elements of the form $v \otimes v + g(v,v)$.
- A (real) **spinor bundle** S(M) is a bundle of modules over $\mathcal{C}\ell(M)$.
- An oriented Riemannian manifold (M, g) admits a spinor bundle if and only if its second Stiefel-Whitney class w_2 vanishes in which case (M, g) is called a **spin manifold**.

Definition

A smooth section ψ of S(M) is called a **Killing spinor** if for every vector field X there is $\alpha \in \mathbb{C}$, called **Killing number**, such that

$$\nabla_X \psi = \alpha X \cdot \psi \,.$$

- The Killing number α is either real or pure imaginary. If α is pure imaginary then (M, g) is non-compact (Friedrich).
- A remarkable theorem of Friedrich: Let (M^n, g) be a Riemannian spin manifold which admits a non-trivial Killing spinor ψ with Killing number α . Then (M^n, g) is Einstein with scalar curvature $s = 4n(n-1)\alpha^2$.
- A Killing spinor is a eigenvector of the Dirac operator $D = \sum_i E_i \cdot \nabla_{E_i}$ with eigenvalue $-n\alpha$ where $\{E_i\}$ is a local orthonormal frame.
- A Killing spinor which is not identically zero has no zeroes.
- If ψ is a Killing spinor then $V^{\psi} = \sum_{i} g(\psi, E_{i} \cdot \psi) E_{i}$ is a Killing vector field.

• A Riemannian spin manifold (M^n,g) is of type (p,q) if it carries exactly p linearly independent real Killing spinors with $\alpha>0$ and exactly q linearly independent real Killing spinors with $\alpha<0$.

• A Riemannian spin manifold (M^n,g) is of type (p,q) if it carries exactly p linearly independent real Killing spinors with $\alpha>0$ and exactly q linearly independent real Killing spinors with $\alpha<0$.

Theorem (Friedrich, Kath)

Every simply connected Sasaki-Einstein manifold admits non-trivial real Killing spinors.

• A Riemannian spin manifold (M^n,g) is of type (p,q) if it carries exactly p linearly independent real Killing spinors with $\alpha>0$ and exactly q linearly independent real Killing spinors with $\alpha<0$.

Theorem (Friedrich,Kath)

Every simply connected Sasaki-Einstein manifold admits non-trivial real Killing spinors.

• For Sasaki-Einstein manifolds we have the following table:

• A Riemannian spin manifold (M^n,g) is of type (p,q) if it carries exactly p linearly independent real Killing spinors with $\alpha>0$ and exactly q linearly independent real Killing spinors with $\alpha<0$.

Theorem (Friedrich, Kath)

Every simply connected Sasaki-Einstein manifold admits non-trivial real Killing spinors.

• For Sasaki-Einstein manifolds we have the following table:

•

dim(M)	Manifold M	type (<i>p</i> , <i>q</i>)
2m+1	S^{2m+1}	$(2^m, 2^m)$
4m + 1	Sasaki – Einstein	(1,1)
4 <i>m</i> + 3	Sasaki – Einstein	(2,0)
4 <i>m</i> + 3	3 Sasakian	(m+2,0)

• A Riemannian spin manifold (M^n,g) is of type (p,q) if it carries exactly p linearly independent real Killing spinors with $\alpha>0$ and exactly q linearly independent real Killing spinors with $\alpha<0$.

Theorem (Friedrich, Kath)

Every simply connected Sasaki-Einstein manifold admits non-trivial real Killing spinors.

For Sasaki-Einstein manifolds we have the following table:

•

dim(M)	Manifold <i>M</i>	type (<i>p</i> , <i>q</i>)
2m+1	S^{2m+1}	$(2^m, 2^m)$
4m + 1	Sasaki – Einstein	(1,1)
4 <i>m</i> + 3	Sasaki – Einstein	(2,0)
4 <i>m</i> + 3	3 Sasakian	(m+2,0)

 The two Killing spinors of type (2,0) form a vector space; whereas those of type (1,1) do not form a vector space.

• A Riemannian spin manifold (M^n,g) is of type (p,q) if it carries exactly p linearly independent real Killing spinors with $\alpha>0$ and exactly q linearly independent real Killing spinors with $\alpha<0$.

Theorem (Friedrich, Kath)

Every simply connected Sasaki-Einstein manifold admits non-trivial real Killing spinors.

For Sasaki-Einstein manifolds we have the following table:

.

dim(M)	Manifold <i>M</i>	type (<i>p</i> , <i>q</i>)
2m+1	S^{2m+1}	$(2^m, 2^m)$
4m + 1	Sasaki – Einstein	(1,1)
4 <i>m</i> + 3	Sasaki – Einstein	(2,0)
4 <i>m</i> + 3	3 Sasakian	(m+2,0)

- The two Killing spinors of type (2,0) form a vector space; whereas those of type (1,1) do not form a vector space.
- The only other compact manifolds that admit real Killing spinors are the round spheres of any dimension and manifolds of dimension 6 and 7 whose Riemannian cone has holonomy G₂ and Spin7, respectively.

Supermanifolds

• We denote by $\mathbb{R}^{n|m}$ the space \mathbb{R}^n endowed with the **structure sheaf** $\mathcal{A} = \mathbb{C}^{\infty}[\theta^1, \cdots, \theta^m]$ where the θ^i generate an exterior algebra \mathcal{A}^1 and \mathbb{C}^{∞} is the sheaf of smooth functions on \mathbb{R}^n .

Supermanifolds

- We denote by $\mathbb{R}^{n|m}$ the space \mathbb{R}^n endowed with the **structure sheaf** $\mathcal{A} = \mathbb{C}^{\infty}[\theta^1, \cdots, \theta^m]$ where the θ^i generate an exterior algebra \mathcal{A}^1 and \mathbb{C}^{∞} is the sheaf of smooth functions on \mathbb{R}^n .
- A supermanifold M is a space |M| that is locally isomorphic to $\mathbb{R}^{n|m}$ with structure sheaf A_M .

Supermanifolds

- We denote by $\mathbb{R}^{n|m}$ the space \mathbb{R}^n endowed with the structure sheaf $\mathcal{A} = \mathbb{C}^{\infty}[\theta^1, \cdots, \theta^m]$ where the θ^i generate an exterior algebra \mathcal{A}^1 and \mathcal{C}^{∞} is the sheaf of smooth functions on \mathbb{R}^n .
- A supermanifold M is a space |M| that is locally isomorphic to $\mathbb{R}^{n|m}$ with structure sheaf A_{M} .
- Morphisms preserve the Z₂ grading.

Supermanifolds

- We denote by $\mathbb{R}^{n|m}$ the space \mathbb{R}^n endowed with the structure sheaf $\mathcal{A} = \mathbb{C}^{\infty}[\theta^1, \cdots, \theta^m]$ where the θ^i generate an exterior algebra \mathcal{A}^1 and \mathcal{C}^{∞} is the sheaf of smooth functions on \mathbb{R}^n .
- A supermanifold M is a space |M| that is locally isomorphic to $\mathbb{R}^{n|m}$ with structure sheaf A_{M} .
- Morphisms preserve the Z₂ grading.
- Note that |M| with structure sheaf A_M/A_M^1 is an ordinary smooth manifold.

Supermanifolds

- We denote by $\mathbb{R}^{n|m}$ the space \mathbb{R}^n endowed with the **structure sheaf** $\mathcal{A} = \mathbb{C}^{\infty}[\theta^1, \cdots, \theta^m]$ where the θ^i generate an exterior algebra \mathcal{A}^1 and \mathbb{C}^{∞} is the sheaf of smooth functions on \mathbb{R}^n .
- A supermanifold M is a space |M| that is locally isomorphic to $\mathbb{R}^{n|m}$ with structure sheaf A_M .
- Morphisms preserve the Z₂ grading.
- Note that |M| with structure sheaf A_M/A_M^1 is an ordinary smooth manifold.
- Since the variables θ^i are nilpotent, it is perhaps better to think of (M, A) as a scheme albeit with a \mathbb{Z}_2 graded ring-a superscheme.

Supermanifolds

- We denote by $\mathbb{R}^{n|m}$ the space \mathbb{R}^n endowed with the **structure sheaf** $\mathcal{A} = \mathbb{C}^{\infty}[\theta^1, \cdots, \theta^m]$ where the θ^i generate an exterior algebra \mathcal{A}^1 and \mathbb{C}^{∞} is the sheaf of smooth functions on \mathbb{R}^n .
- A supermanifold M is a space |M| that is locally isomorphic to $\mathbb{R}^{n|m}$ with structure sheaf A_M .
- Morphisms preserve the Z₂ grading.
- Note that |M| with structure sheaf A_M/A_M^1 is an ordinary smooth manifold.
- Since the variables θⁱ are nilpotent, it is perhaps better to think of (M, A) as a scheme albeit with a Z₂ graded ring-a superscheme.
- A Lie supergroup is a group in the category of supermanifolds.

Supermanifolds

- We denote by $\mathbb{R}^{n|m}$ the space \mathbb{R}^n endowed with the **structure sheaf** $\mathcal{A} = \mathbb{C}^{\infty}[\theta^1, \cdots, \theta^m]$ where the θ^i generate an exterior algebra \mathcal{A}^1 and \mathbb{C}^{∞} is the sheaf of smooth functions on \mathbb{R}^n .
- A supermanifold M is a space |M| that is locally isomorphic to $\mathbb{R}^{n|m}$ with structure sheaf A_M .
- Morphisms preserve the \mathbb{Z}_2 grading.
- Note that |M| with structure sheaf A_M/A_M^1 is an ordinary smooth manifold.
- Since the variables θⁱ are nilpotent, it is perhaps better to think of (M, A) as a scheme albeit with a Z₂ graded ring-a superscheme.
- A Lie supergroup is a group in the category of supermanifolds.

Supersymmetry

 Supersymmetry was defined by physicists as a symmetry in quantum field theory between fermionic fields that anticommute and bosonic fields that commute.

Supermanifolds

- We denote by $\mathbb{R}^{n|m}$ the space \mathbb{R}^n endowed with the **structure sheaf** $\mathcal{A} = \mathbb{C}^{\infty}[\theta^1, \cdots, \theta^m]$ where the θ^i generate an exterior algebra \mathcal{A}^1 and \mathbb{C}^{∞} is the sheaf of smooth functions on \mathbb{R}^n .
- A supermanifold M is a space |M| that is locally isomorphic to $\mathbb{R}^{n|m}$ with structure sheaf A_M .
- Morphisms preserve the \mathbb{Z}_2 grading.
- Note that |M| with structure sheaf A_M/A_M^1 is an ordinary smooth manifold.
- Since the variables θⁱ are nilpotent, it is perhaps better to think of (M, A) as a scheme albeit with a Z₂ graded ring-a superscheme.
- A Lie supergroup is a group in the category of supermanifolds.

- Supersymmetry was defined by physicists as a symmetry in quantum field theory between fermionic fields that anticommute and bosonic fields that commute.
- In mathematical terms one can work with bundles of Clifford superalgebra modules.

Supermanifolds

- We denote by $\mathbb{R}^{n|m}$ the space \mathbb{R}^n endowed with the **structure sheaf** $\mathcal{A} = \mathbb{C}^{\infty}[\theta^1, \cdots, \theta^m]$ where the θ^i generate an exterior algebra \mathcal{A}^1 and \mathbb{C}^{∞} is the sheaf of smooth functions on \mathbb{R}^n .
- A supermanifold M is a space |M| that is locally isomorphic to $\mathbb{R}^{n|m}$ with structure sheaf A_M .
- Morphisms preserve the \mathbb{Z}_2 grading.
- Note that |M| with structure sheaf A_M/A_M^1 is an ordinary smooth manifold.
- Since the variables θⁱ are nilpotent, it is perhaps better to think of (M, A) as a scheme albeit with a Z₂ graded ring-a superscheme.
- A Lie supergroup is a group in the category of supermanifolds.

- Supersymmetry was defined by physicists as a symmetry in quantum field theory between fermionic fields that anticommute and bosonic fields that commute.
- In mathematical terms one can work with bundles of Clifford superalgebra modules.
- The generators of supersymmetry should form a Lie superalgebra.

Supermanifolds

- We denote by $\mathbb{R}^{n|m}$ the space \mathbb{R}^n endowed with the **structure sheaf** $\mathcal{A} = \mathbb{C}^{\infty}[\theta^1, \cdots, \theta^m]$ where the θ^i generate an exterior algebra \mathcal{A}^1 and \mathbb{C}^{∞} is the sheaf of smooth functions on \mathbb{R}^n .
- A supermanifold M is a space |M| that is locally isomorphic to $\mathbb{R}^{n|m}$ with structure sheaf A_M .
- Morphisms preserve the Z₂ grading.
- Note that |M| with structure sheaf A_M/A_M^1 is an ordinary smooth manifold.
- Since the variables θⁱ are nilpotent, it is perhaps better to think of (M, A) as a scheme albeit with a Z₂ graded ring-a superscheme.
- A Lie supergroup is a group in the category of supermanifolds.

- Supersymmetry was defined by physicists as a symmetry in quantum field theory between fermionic fields that anticommute and bosonic fields that commute.
- In mathematical terms one can work with bundles of Clifford superalgebra modules.
- The generators of **supersymmetry** should form a **Lie superalgebra**.
- An Example: The Lie superalgebra g = g₀ + g₁ where g₀ is generated by the vector field ∂_t and g₁ is generated by Q = ∂_θ + θ∂_t. They satisfy the Z₂ graded bracket relations [Q, Q] = 2∂_t and [∂_t, Q] = 0.

Supermanifolds

- We denote by $\mathbb{R}^{n|m}$ the space \mathbb{R}^n endowed with the **structure sheaf** $\mathcal{A} = \mathbb{C}^{\infty}[\theta^1, \cdots, \theta^m]$ where the θ^i generate an exterior algebra \mathcal{A}^1 and \mathbb{C}^{∞} is the sheaf of smooth functions on \mathbb{R}^n .
- A supermanifold M is a space |M| that is locally isomorphic to $\mathbb{R}^{n|m}$ with structure sheaf A_M .
- Morphisms preserve the \mathbb{Z}_2 grading.
- Note that |M| with structure sheaf A_M/A_M^1 is an ordinary smooth manifold.
- Since the variables θⁱ are nilpotent, it is perhaps better to think of (M, A) as a scheme albeit with a Z₂ graded ring-a superscheme.
- A Lie supergroup is a group in the category of supermanifolds.

- Supersymmetry was defined by physicists as a symmetry in quantum field theory between fermionic fields that anticommute and bosonic fields that commute.
- In mathematical terms one can work with bundles of Clifford superalgebra modules.
- The generators of supersymmetry should form a Lie superalgebra.
- An Example: The Lie superalgebra $\mathfrak{g}=\mathfrak{g}_0+\mathfrak{g}_1$ where \mathfrak{g}_0 is generated by the vector field ∂_t and \mathfrak{g}_1 is generated by $Q=\partial_\theta+\theta\partial_t$. They satisfy the \mathbb{Z}_2 graded bracket relations $[Q,Q]=2\partial_t$ and $[\partial_t,Q]=0$.
- This generates an action of a Lie supergroup \mathfrak{G} on $\mathbb{R}^{1|1}$, namely $(t,\theta)\mapsto (t+t'+\theta'\theta,\theta+\theta')$.

• Here we have a baby example of **supersymmetry**:

- Here we have a baby example of supersymmetry:
- *N* a Riemannian manifold and $x : \mathbb{R} \longrightarrow N$ is a path of a classical particle x.

- Here we have a baby example of supersymmetry:
- N a Riemannian manifold and $x : \mathbb{R} \longrightarrow N$ is a path of a classical particle x.
- The manifold N can be Euclidean space, a representation of spin group, or more generally certain Riemannian manifolds to incorporate the so-called nonlinear σ models.

- Here we have a baby example of supersymmetry:
- N a Riemannian manifold and $x : \mathbb{R} \longrightarrow N$ is a path of a classical particle x.
- The manifold N can be Euclidean space, a representation of spin group, or more generally certain Riemannian manifolds to incorporate the so-called nonlinear σ models.
- A fermionic superpartner φ that is an odd tangent vector along the path.

- Here we have a baby example of supersymmetry:
- *N* a Riemannian manifold and $x : \mathbb{R} \longrightarrow N$ is a path of a classical particle x.
- The manifold *N* can be **Euclidean space**, a representation of **spin group**, or more generally certain Riemannian manifolds to incorporate the so-called **nonlinear** *σ* models.
- A fermionic superpartner φ that is an odd tangent vector along the path.
- This can be described by a map $\Phi: \mathbb{R}^{1|1} \longrightarrow N$ such that $x = \iota^* \Phi$ and $\varphi = \iota^* D \Phi$ where $D = \partial_\theta \theta \partial_t$ and $\iota: \mathbb{R} \longrightarrow \mathbb{R}^{1|1}$ is the inclusion defined by $\iota^* t = t$ and $\iota^* \theta = 0$.

- Here we have a baby example of supersymmetry:
- N a Riemannian manifold and $x : \mathbb{R} \longrightarrow N$ is a path of a classical particle x.
- The manifold N can be Euclidean space, a representation of spin group, or more generally certain Riemannian manifolds to incorporate the so-called **nonlinear** σ models.
- A fermionic superpartner φ that is an odd tangent vector along the path.
- This can be described by a map $\Phi: \mathbb{R}^{1|1} \longrightarrow N$ such that $x = \iota^* \Phi$ and $\varphi = \iota^* D\Phi$ where $D = \partial_{\theta} - \theta \partial_{t}$ and $\iota : \mathbb{R} \longrightarrow \mathbb{R}^{1|1}$ is the inclusion defined by $\iota^{*}t = t$ and $\iota^{*}\theta = 0$.
- The Lagrangian density for this is

$$\mathcal{L} = \frac{1}{2}|\dot{x}|^2 + \frac{1}{2} < \varphi, \nabla_{\dot{x}}\varphi > .$$

- Here we have a baby example of supersymmetry:
- N a Riemannian manifold and $x : \mathbb{R} \longrightarrow N$ is a path of a classical particle x.
- The manifold N can be Euclidean space, a representation of spin group, or more generally certain Riemannian manifolds to incorporate the so-called nonlinear σ models.
- A fermionic superpartner φ that is an odd tangent vector along the path.
- This can be described by a map $\Phi : \mathbb{R}^{1|1} \longrightarrow N$ such that $x = \iota^* \Phi$ and $\varphi = \iota^* D \Phi$ where $D = \partial_{\theta} \theta \partial_t$ and $\iota : \mathbb{R} \longrightarrow \mathbb{R}^{1|1}$ is the inclusion defined by $\iota^* t = t$ and $\iota^* \theta = 0$.
- The Lagrangian density for this is

$$\mathcal{L} = \frac{1}{2} |\dot{x}|^2 + \frac{1}{2} < \varphi, \nabla_{\dot{x}} \varphi > .$$

• \mathcal{L} is invariant under the Lie supergroup \mathfrak{G} generated by ∂_t , $Q = \partial_\theta + \theta \partial_t$, that is \mathcal{L} is supersymmetric.

• I want to understand the following implications:

- I want to understand the following implications:
- SASAKI-EINSTEIN ⇒ KILLING SPINORS ⇒ SUPERMANIFOLD with SUPERSYMMETRY

- I want to understand the following implications:
- SASAKI-EINSTEIN ⇒ KILLING SPINORS ⇒ SUPERMANIFOLD with SUPERSYMMETRY
- The first implication is now clear.

- I want to understand the following implications:
- SASAKI-EINSTEIN ⇒ KILLING SPINORS ⇒ SUPERMANIFOLD with SUPERSYMMETRY
- The first implication is now clear.
- Folklore: according to physicists Killing spinors give rise to supersymmetry.

- I want to understand the following implications:
- SASAKI-EINSTEIN ⇒ KILLING SPINORS ⇒ SUPERMANIFOLD with SUPERSYMMETRY
- The first implication is now clear.
- Folklore: according to physicists Killing spinors give rise to supersymmetry.

QUESTIONS

 Exactly how does this occur? Is there a general recipe that associates a Lie superalgebra to a vector space of Killing spinors?

- I want to understand the following implications:
- SASAKI-EINSTEIN ⇒ KILLING SPINORS ⇒ SUPERMANIFOLD with SUPERSYMMETRY
- The first implication is now clear.
- Folklore: according to physicists Killing spinors give rise to supersymmetry.

- Exactly how does this occur? Is there a general recipe that associates a Lie superalgebra to a vector space of Killing spinors?
- Given a Sasaki-Einstein manifold |M|, can we associate a supermanifold structure (M, A) on |M| such that the Killing spinors "generate" a Lie supergroup action on (M, A)?

